top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Bayesian Statistics and New Generations : BAYSM 2018, Warwick, UK, July 2-3 Selected Contributions / Raffaele Argiento, Daniele Durante, Sara Wade editors
Bayesian Statistics and New Generations : BAYSM 2018, Warwick, UK, July 2-3 Selected Contributions / Raffaele Argiento, Daniele Durante, Sara Wade editors
Pubbl/distr/stampa Cham, : Springer, 2019
Descrizione fisica xi, 184 p. : ill. ; 24 cm
Soggetto topico 62Mxx - Inference from stochastic processes [MSC 2020]
62-XX - Statistics [MSC 2020]
62Cxx - Statistical decision theory [MSC 2020]
62Gxx - Nonparametric inference [MSC 2020]
62Hxx - Multivariate analysis [MSC 2020]
62Pxx - Applications of statistics [MSC 2020]
62Fxx - Parametric inference [MSC 2020]
Soggetto non controllato Applications
Bayesian Inference
Bayesian Modeling
Bayesian computation
Computational problems in statistics
Data science
Inference from stochastic processes
Methodological and Applied Statistics
Multivariate Analysis
Neurosciences, astrostatistics, climate change
Nonparametric inference
Parametric inference
Young researchers
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0126746
Cham, : Springer, 2019
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Bayesian Statistics and New Generations : BAYSM 2018, Warwick, UK, July 2-3 Selected Contributions / Raffaele Argiento, Daniele Durante, Sara Wade editors
Bayesian Statistics and New Generations : BAYSM 2018, Warwick, UK, July 2-3 Selected Contributions / Raffaele Argiento, Daniele Durante, Sara Wade editors
Pubbl/distr/stampa Cham, : Springer, 2019
Descrizione fisica xi, 184 p. : ill. ; 24 cm
Soggetto topico 62-XX - Statistics [MSC 2020]
62Cxx - Statistical decision theory [MSC 2020]
62Fxx - Parametric inference [MSC 2020]
62Gxx - Nonparametric inference [MSC 2020]
62Hxx - Multivariate analysis [MSC 2020]
62Mxx - Inference from stochastic processes [MSC 2020]
62Pxx - Applications of statistics [MSC 2020]
Soggetto non controllato Applications
Bayesian Inference
Bayesian Modeling
Bayesian computation
Computational problems in statistics
Data science
Inference from stochastic processes
Methodological and Applied Statistics
Multivariate Analysis
Neurosciences, astrostatistics, climate change
Nonparametric inference
Parametric inference
Young researchers
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00126746
Cham, : Springer, 2019
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Bayesian Statistics and New Generations : BAYSM 2018, Warwick, UK, July 2-3 Selected Contributions / Raffaele Argiento, Daniele Durante, Sara Wade editors
Bayesian Statistics and New Generations : BAYSM 2018, Warwick, UK, July 2-3 Selected Contributions / Raffaele Argiento, Daniele Durante, Sara Wade editors
Edizione [Cham : Springer, 2019]
Pubbl/distr/stampa xi, 184 p., : ill. ; 24 cm
Descrizione fisica Pubblicazione in formato elettronico
Soggetto topico 62Mxx - Inference from stochastic processes [MSC 2020]
62-XX - Statistics [MSC 2020]
62Cxx - Statistical decision theory [MSC 2020]
62Gxx - Nonparametric inference [MSC 2020]
62Hxx - Multivariate analysis [MSC 2020]
62Pxx - Applications of statistics [MSC 2020]
62Fxx - Parametric inference [MSC 2020]
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-SUN0126746
xi, 184 p., : ill. ; 24 cm
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Bayesian Statistics in Action : BAYSM 2016, Florence, Italy, June 19-21 / Raffaele Argiento ... [et al.] editors
Bayesian Statistics in Action : BAYSM 2016, Florence, Italy, June 19-21 / Raffaele Argiento ... [et al.] editors
Pubbl/distr/stampa Cham, : Springer, 2017
Descrizione fisica IX, 251 p. : ill. ; 24 cm
Soggetto topico 62F15 - Bayesian inference [MSC 2020]
97K80 - Applied statistics (educational aspects) [MSC 2020]
Soggetto non controllato Bayesan statistics
Computational statistics
Statistical Theory and Methods
Theoretical and Applied statistics
Young researchers
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0123468
Cham, : Springer, 2017
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Bayesian Statistics in Action : BAYSM 2016, Florence, Italy, June 19-21 / Raffaele Argiento ... [et al.] editors
Bayesian Statistics in Action : BAYSM 2016, Florence, Italy, June 19-21 / Raffaele Argiento ... [et al.] editors
Pubbl/distr/stampa Cham, : Springer, 2017
Descrizione fisica IX, 251 p. : ill. ; 24 cm
Soggetto topico 62F15 - Bayesian inference [MSC 2020]
97K80 - Applied statistics (educational aspects) [MSC 2020]
Soggetto non controllato Bayesan statistics
Computational statistics
Statistical Theory and Methods
Theoretical and Applied statistics
Young researchers
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00123468
Cham, : Springer, 2017
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Bayesian Statistics in Action : BAYSM 2016, Florence, Italy, June 19-21 / Raffaele Argiento ... [et al.] editors
Bayesian Statistics in Action : BAYSM 2016, Florence, Italy, June 19-21 / Raffaele Argiento ... [et al.] editors
Edizione [Cham : Springer, 2017]
Pubbl/distr/stampa IX, 251 p., : ill. ; 24 cm
Descrizione fisica Pubblicazione in formato elettronico
Soggetto topico 62F15 - Bayesian inference [MSC 2020]
97K80 - Applied statistics (educational aspects) [MSC 2020]
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-SUN0123468
IX, 251 p., : ill. ; 24 cm
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
New Frontiers in Bayesian Statistics : BAYSM 2021, Online, September 1–3 / Raffaele Argiento, Federico Camerlenghi, Sally Paganin editors
New Frontiers in Bayesian Statistics : BAYSM 2021, Online, September 1–3 / Raffaele Argiento, Federico Camerlenghi, Sally Paganin editors
Pubbl/distr/stampa Cham, : Springer, 2022
Descrizione fisica xi, 117 p. : ill. ; 24 cm
Soggetto topico 00B25 - Proceedings of conferences of miscellaneous specific interest [MSC 2020]
62-XX - Statistics [MSC 2020]
62C10 - Bayesian problems; characterization of Bayes procedures [MSC 2020]
62C12 - Empirical decision procedures; empirical Bayes procedures [MSC 2020]
62F15 - Bayesian inference [MSC 2020]
62P10 - Applications of statistics to biology and medical sciences; meta analysis [MSC 2020]
Soggetto non controllato Bayesian Statistics
Bayesian nonparametrics
Markov chain
Mixture models
Monte Carlo algorithms
Structural Learning
Survival analysis
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0277965
Cham, : Springer, 2022
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
New Frontiers in Bayesian Statistics : BAYSM 2021, Online, September 1–3 / Raffaele Argiento, Federico Camerlenghi, Sally Paganin editors
New Frontiers in Bayesian Statistics : BAYSM 2021, Online, September 1–3 / Raffaele Argiento, Federico Camerlenghi, Sally Paganin editors
Pubbl/distr/stampa Cham, : Springer, 2022
Descrizione fisica xi, 117 p. : ill. ; 24 cm
Soggetto topico 00B25 - Proceedings of conferences of miscellaneous specific interest [MSC 2020]
62-XX - Statistics [MSC 2020]
62C10 - Bayesian problems; characterization of Bayes procedures [MSC 2020]
62C12 - Empirical decision procedures; empirical Bayes procedures [MSC 2020]
62F15 - Bayesian inference [MSC 2020]
62P10 - Applications of statistics to biology and medical sciences; meta analysis [MSC 2020]
Soggetto non controllato Bayesian Statistics
Bayesian nonparametrics
Markov chain
Mixture models
Monte Carlo algorithms
Structural Learning
Survival analysis
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00277965
Cham, : Springer, 2022
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui