top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Strategies and tools for pollutant mitigation : research trends in Developing Nations / / J. Aravind, M. Kamaraj and S. Karthikeyan, editors
Strategies and tools for pollutant mitigation : research trends in Developing Nations / / J. Aravind, M. Kamaraj and S. Karthikeyan, editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (239 pages)
Disciplina 628.5
Soggetto topico Bioremediation
Refuse and refuse disposal - Developing countries
Refuse and refuse disposal
ISBN 3-030-98241-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910568299703321
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Strategies and tools for pollutant mitigation : avenues to a cleaner environment / / J. Aravind [and three others], editors
Strategies and tools for pollutant mitigation : avenues to a cleaner environment / / J. Aravind [and three others], editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (vii, 450 pages)
Disciplina 628.746
Soggetto topico Agriculture - Waste minimization
Pollution prevention
Bioremediation
Agricultural wastes - Recycling
Sustainable agriculture
ISBN 3-030-63575-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- Part I: Reviews on Energy and Environment -- Chapter 1: A Review on Production, Properties, and Applications of Microbial Surfactants as a Promising Biomolecule for Enviro... -- 1 Introduction -- 2 Physical and Chemical Properties of Biosurfactants -- 2.1 Surface and Interface Activity -- 2.2 Tolerance, Toxicity, and Biodegradability -- 2.3 Emulsification and De-emulsification -- 2.4 Foam and Wet Property of Biosurfactants -- 3 Classification and Source of Biosurfactants -- 3.1 Source of Biosurfactant -- 4 Biosurfactant Production -- 4.1 Sampling -- 4.2 Isolation -- 4.3 Screening Methods -- 4.4 Raw Materials for Biosurfactant Production -- 4.5 Media Formulation for Biosurfactant Production -- 4.6 Factors Affecting Biosurfactant Production -- 4.6.1 Carbon Sources -- 4.6.2 Nitrogen Sources -- 4.6.3 Carbon:Nitrogen Ratio -- 4.6.4 Phosphate and Salinity Source -- 4.6.5 Growth Conditions -- 4.7 Biosurfactant Extraction, Purification, and Characterization -- 4.7.1 Biosurfactant Extraction -- 4.7.2 Biosurfactant Purification -- 4.7.3 Biosurfactant Characterization -- 5 Environmental Application of Biosurfactants -- 5.1 Use of Biosurfactant in Contaminated Soils -- 5.2 Applications of Biosurfactants in Oil Recovery -- 6 Conclusion -- References -- Chapter 2: Hairy Roots as a Source for Phytoremediation -- 1 Introduction -- 2 Hairy Roots in Phytoremediation -- 2.1 Phytoremediation for Heavy Metal Degradation -- 2.2 Phytoremediation of Phenols -- 2.3 Phytoremediation of Xenobiotic Compounds -- 2.4 Phytoremediation of Azo Dyes -- 2.5 Hairy Roots in Other Environmental Applications -- 3 Hairy Roots Versus Normal Roots -- 4 Conclusion and Way Forward -- References -- Chapter 3: Pretreatment of Wheat Straw Using Ionic Liquids for Bioethanol Production: A Review -- 1 Introduction -- 2 Availability of Wheat Straw.
2.1 Potential and Properties of Wheat Straw as a Precursor for Bioethanol Production -- 2.2 Pretreatment of Wheat Straw -- 3 Impacts of Wheat Straw Pretreatment Using Ionic Liquids on a Sustainable and Cleaner Environment -- 4 Ionic Liquids (ILs) -- 4.1 General Types of Ionic Liquids -- 4.1.1 Protic Ionic Liquids (PILs) -- 4.1.2 Aprotic Ionic Liquids -- 4.2 Different Types of ILs for Pretreatment of Wheat Straw -- 4.2.1 1-Allyl-3-Methylimidazolium Chloride -- 4.2.2 1-Ethyl-3-Methylimidazolium Acetate (Emim-CH3COO) -- 4.2.3 1-Butyl-3-Methylimidazolium Hydrogen Sulfate (Bmim-HSO4) -- 4.2.4 1-Butyl-3-Methylimidazolium Thiocyanate (Bmim-SCN) -- 4.2.5 1-Ethyl-3-Methylimidazolium Diethyl Phosphate (EMIM-DEP) -- 4.2.6 1-Methyl-3-(4-Sulfobutyl)Imidazolium Bisulfate (HSO3-BMIM-HSO4) -- 4.2.7 Cholinium Taurate (Ch-Tau) ILs -- 5 Conclusion -- References -- Chapter 4: Harnessing the Sustainable Bioresource, Cellulose at the Nanoscale for Multifarious Environmental Applications -- 1 Introduction -- 2 ABCs of Cellulose and Nanocellulose -- 3 Extraction of NC -- 4 Surface Modification -- 5 Spectrum of Neoteric NC-Based Materials and Exploratory Endeavors for Environmental Applications -- 6 Challenges, Future-Direction of Research, and Concluding Remarks -- References -- Chapter 5: Allelochemicals as Natural Herbicides for Sustainable Agriculture to Promote a Cleaner Environment -- 1 Introduction -- 2 Allopathic Interactions and Allelopathic Compounds -- 2.1 Biosynthetic Pathways of Allelochemicals -- 2.2 Release of Allelochemicals -- 2.3 Factors Affecting the Production and Release of Allelochemicals -- 2.3.1 Genetic Factors -- 2.3.2 Environmental Factors -- 3 Mechanism of Allelochemical Action -- 4 Strategies for the Use of Allelochemicals as a Bioherbicide -- 4.1 Plant Allelopathins as a Source of Bioherbicides.
4.2 Allelopathic Crops in Weed Suppression through Intercropping and Crop Rotation Methods -- 4.2.1 Intercropping -- 4.2.2 Cover Crops -- 4.3 Plant Breeding and Biotechnology for Bioherbicide Development -- 4.3.1 Germplasm Screening for Allelopathic Cultivars -- 4.3.2 Molecular Breeding for Improving Allelopathic Traits -- 4.3.3 Genetic Engineering Approaches for Improving Allelopathic Traits -- 5 Conclusion -- References -- Chapter 6: Strategies and Limitations of Water Treatment Methods for Point-of-Use Application -- 1 Introduction -- 2 Chemical Disinfectants -- 2.1 Chlorination -- 2.2 Iodine -- 2.3 Silver -- 2.4 Potassium Permanganate, Ferrates, and Ozone -- 2.5 Coagulation -- 3 Physical Disinfectants -- 3.1 Ultraviolet Radiation -- 3.2 Solar Disinfection -- 3.3 Filtration Methods -- 3.3.1 Membrane-Based Techniques -- 3.3.2 Sand Filtration -- 3.3.3 Rapid Sand Filtration -- 3.3.4 Granular Activated Carbon -- 4 Future Perspectives on Water Disinfection -- References -- Part II: Cleaner Technologies on Mitigation of Organic and Inorganic Pollutants -- Chapter 7: Recent Trends in Application of Bacterial Polymers to Mitigate Organic and Inorganic Pollutants -- 1 Introduction -- 2 Environmental Application of Microbial Biopolymers -- 2.1 Oil Recovery -- 2.2 Heavy Metal Removal and Sorption -- 2.3 Dye Removal from Wastewater -- 2.4 Raw and Drinking Water Treatment -- 2.5 Wastewater Flocculation and Setting -- 2.6 Dewatering from Sludge -- 2.7 Removal of Toxic Organic Compounds -- 2.8 Landfill Leachate Treatment -- 2.9 Soil Remediation and Reclamation -- 2.10 Challenges and Prospects -- References -- Chapter 8: Bioremediation: Efficient Technology to Combat Pesticide Pollutants in Environment -- 1 Introduction -- 2 Different Sources of Pesticide Contamination -- 3 Bioremediation of Pesticide -- 3.1 Chemistry Behind Pesticide Degradation.
4 Microbial Diversity Involved in Degradation of Pesticides -- 4.1 Bacterial Degradation of Pesticides -- 4.2 Fungal Degradation of Pesticides -- 4.3 Enzymes Involved in Pesticide Degradation -- 5 Bioremediation Strategies and Its Application -- 5.1 In Situ Techniques -- 5.1.1 Bioventing -- 5.1.2 Bioaugmentation -- 5.1.3 Biopiles -- 5.1.4 Biosparging -- 5.1.5 Biostimulation -- 5.1.6 Natural Attenuation -- 5.2 Ex Situ Techniques -- 5.2.1 Composting -- 5.2.2 Land Farming -- 5.2.3 Bioreactors -- 6 Approaches for Enhancing the Bioremediation of Pesticides -- 6.1 Bioaugmentation -- 6.2 Biostimulation -- 6.3 Cell Immobilization -- 7 Technological Advancement in Bioremediation of Pesticides -- 7.1 Genetic Engineering for Biodegradation of Pesticides -- 7.2 Metagenomics Approaches for Biodegradation of Pesticides -- 7.3 Genomics and Proteomics Role in Biodegradation of Pesticides -- 7.4 Nanotechnological Approaches for Biodegradation of Pesticides -- 8 Conclusions and Future Prospects -- References -- Chapter 9: Removal of Dyes From Industrial Effluents Using Bioremediation Technique -- 1 Introduction -- 2 Bioremediation -- 3 Microorganisms Used in Bioremediation -- 3.1 Bacteria -- 3.2 Fungi -- 3.3 Algae -- 4 Types of Bioremediation -- 4.1 Biosorption -- 4.2 Bioaccumulation -- 4.3 Biosorption and Bioaccumulation -- 4.4 Bio-oxidation/Bioreduction -- 4.5 Bioleaching -- 4.6 Bioaugmentation -- 4.7 Biostimulation -- 5 Issues Related to Bioremediation -- 6 Conclusions -- References -- Chapter 10: A Harmless Approach on Textile Effluent Detoxification: Bioremediation and Recent Strategies -- 1 Introduction -- 2 Wet Processing in Textile Industry and Effluents -- 2.1 Pretreatment Process -- 2.2 Coloration Process -- 2.3 Finishing Process -- 3 Wastewater Treatment in Textile Processing -- 3.1 Physical Treatment Methods -- 3.2 Chemical Treatment Methods.
3.3 Biological Methods for Textile Effluent Treatment -- 3.3.1 Microbial Treatments for Bioremediation -- Yeast Culture -- Bacterial Culture -- Fungal Cultures -- Microalgae -- Aerobic Biodegradation -- Anaerobic Biodegradation -- 3.3.2 Agricultural Residues for Color Removal -- 3.3.3 Chitin and Chitosan -- 3.4 Integrated Approaches with Biotechnological Interventions -- 3.4.1 Cell Factories and Whole-Cell Biocatalysts (WCBs) -- 3.4.2 Microbial Fuel Cell Technology -- 3.4.3 Nanotechnological Applications -- 3.5 Appropriation of Best Practices -- 3.5.1 Eco-Friendly Alternatives to Conventional Manufacturing -- 3.5.2 Substituted Textile Process Products -- 3.5.3 Less Polluting Substances -- 4 Conclusions and Perspectives -- References -- Chapter 11: Modern Bioremediation Approaches for Clean and Green Environment -- 1 Introduction -- 1.1 Types of Bioremediation -- 1.2 Role of Bioremediation in Remediating Environmental Pollutants -- 2 Modern Approaches in Bioremediation -- 2.1 Electrokinetic Bioremediation -- 2.2 Nanobioremediation -- 2.3 Microbial Fuel Cells -- 2.4 Metagenomics and Their Role in Bioremediation -- 3 Conclusion -- References -- Chapter 12: Arsenic-Transforming Bacteria: A Potential Weapon for Arsenic-Contaminated Soil -- 1 Introduction -- 2 Arsenic Concentration in Aquatic Environment -- 3 Arsenic Contamination and Its Effects on Human Well-Being -- 4 Arsenic Translocation From Soil to Plant -- 5 Arsenic Toxicity: Effects on Plant Metabolism -- 6 Arsenic Effect on DNA Structure Modifications -- 6.1 Mitigation of Arsenic Accumulation in Rice -- 7 Bioremediation -- 7.1 Phytoremediation -- 7.2 Plant Growth-Promoting Bacteria -- 7.3 Arsenic-Transforming Bacteria and Its Diversity with Genes Related to Arsenic and Enzymes Resulting From Arsenic-Contamina... -- 7.4 Arsenic-Transforming Bacteria -- 8 Conclusion -- References.
Chapter 13: Phycoremediation of Heavy Metals, Factors Involved and Mechanisms Related to Functional Groups in the Algae Cell S...
Record Nr. UNINA-9910483167703321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui