top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced Multimedia and Ubiquitous Engineering : Future Information Technology Volume 2 / / edited by James J. (Jong Hyuk) Park, Han-Chieh Chao, Hamid Arabnia, Neil Y. Yen
Advanced Multimedia and Ubiquitous Engineering : Future Information Technology Volume 2 / / edited by James J. (Jong Hyuk) Park, Han-Chieh Chao, Hamid Arabnia, Neil Y. Yen
Edizione [1st ed. 2016.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2016
Descrizione fisica 1 online resource (497 p.)
Disciplina 620
Collana Lecture Notes in Electrical Engineering
Soggetto topico Electrical engineering
Computer communication systems
Multimedia information systems
Communications Engineering, Networks
Computer Communication Networks
Multimedia Information Systems
ISBN 3-662-47895-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto From the Contents: The study on the detection of the damaged file using the graph of the information entropy for Security Management -- Enhancing Dataset Processing in Hadoop YARN Performance for Big Data Applications -- A Multimetric Approach for Discriminating Distributed Denial of Service Attacks from Flash Crowds -- A Supporting Tool for Spiral Model of Cryptographic Protocol Design with Reasoning-based Formal Analysis.
Record Nr. UNINA-9910254184603321
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced Multimedia and Ubiquitous Engineering : Future Information Technology / / edited by James J. (Jong Hyuk) Park, Han-Chieh Chao, Hamid Arabnia, Neil Y. Yen
Advanced Multimedia and Ubiquitous Engineering : Future Information Technology / / edited by James J. (Jong Hyuk) Park, Han-Chieh Chao, Hamid Arabnia, Neil Y. Yen
Edizione [1st ed. 2015.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2015
Descrizione fisica 1 online resource (367 p.)
Disciplina 004.6
006.7
620
621.382
Collana Lecture Notes in Electrical Engineering
Soggetto topico Electrical engineering
Computer communication systems
Multimedia information systems
Communications Engineering, Networks
Computer Communication Networks
Multimedia Information Systems
ISBN 3-662-47487-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto From the Contents: Audio, Image, Video Processing, Coding and Compression -- Computer Graphics and Simulation -- GUI (Graphical User Interface) -- Image Processing -- Multimedia Information Retrieval -- Current Challenges in Multimedia -- Home Entertainment Devices -- Multimodal sensing -- Wearable, Personal and Body Area Systems -- Adaptive and context-aware computing -- Internet of Things -- Multimedia in Telemedicine -- Ubiquitous Computing and Technology -- Context-Aware Ubiquitous Computing.
Record Nr. UNINA-9910299826103321
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in artificial intelligence and applied cognitive computing : proceedings from ICAI'20 and ACC'20 / / edited by Hamid R. Arabnia [and five others]
Advances in artificial intelligence and applied cognitive computing : proceedings from ICAI'20 and ACC'20 / / edited by Hamid R. Arabnia [and five others]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (1152 pages)
Disciplina 006.3
Collana Transactions on Computational Science and Computational Intelligence
Soggetto topico Artificial intelligence
Soft computing
ISBN 3-030-70296-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Artificial Intelligence: ICAI 2020 - Program Committee -- Applied Cognitive Computing: ACC 2020 - Program Committee -- Contents -- Part I Deep Learning, Generative Adversarial Network, CNN, and Applications -- Fine Tuning a Generative Adversarial Network's Discriminator for Student Attrition Prediction -- 1 Introduction -- 2 Background and Other Work -- 3 Methodology -- 3.1 Discriminator -- 3.2 Generator -- 4 Experiments and Results -- 4.1 Experiment 1 -- 4.2 Experiment 2 -- 4.3 Experiment 3 -- 4.4 Results -- 5 Conclusions -- References -- Automatic Generation of Descriptive Titles for Video Clips Using Deep Learning -- 1 Introduction -- 2 Definition and Related Work -- 2.1 Image/Video Captioning -- 2.2 Text Summarization -- 3 Methodology -- 3.1 Video to Document Process -- 3.2 Document to Title Process -- 4 Experiments -- 5 Conclusion -- References -- White Blood Cell Classification Using Genetic Algorithm-Enhanced Deep Convolutional Neural Networks -- 1 Introduction -- 2 White Blood Cells -- 3 Deep Convolutional Network Model and Kaggle Data Set -- 3.1 Genetic Algorithm -- 3.2 Chromosome Representation of CNN Optimization Using GA -- 3.3 Data Preprocessing -- 3.4 Genetic Algorithm -- 3.5 Convolutional Neural Network Model -- 3.6 Kaggle Data Set -- 4 GA-Enhanced D-CNN Model and Results -- 5 Conclusions -- References -- Deep Learning-Based Constituency Parsing for Arabic Language -- 1 Introduction -- 2 Survey of Related Work -- 3 Dense Input Representation -- 4 Parse Tree Generator Model -- 5 Workflow -- 5.1 Workflow -- 5.2 Dataset -- 6 Experiments -- 6.1 Short Sentences with Minimum Split Points -- 6.2 Short Sentences with Maximum Split Points -- 6.3 Long Sentences with Minimum Split Points -- 6.4 Long Sentences with Maximum Split Points -- 7 Conclusion -- References.
Deep Embedded Knowledge Graph Representationsfor Tactic Discovery -- 1 Introduction -- 1.1 Exploration Domain: NFL Football -- 2 Methodology -- 2.1 Naive Vectorization -- 2.2 Knowledge Graph Construction -- 2.2.1 Domain-Specific Semantic Graph -- 2.2.2 Specification Graph -- 2.3 Embedding Techniques -- 2.4 Testing Protocol -- 2.4.1 Supervised Classification Task -- 2.4.2 Unsupervised Discovery Task -- 3 Results -- 3.1 Supervised Classification Task -- 3.2 Unsupervised Discovery Task -- 4 Conclusions -- References -- Pathways to Artificial General Intelligence: A Brief Overview of Developments and Ethical Issues via Artificial Intelligence, Machine Learning, Deep Learning, and Data Science -- 1 Introduction -- 2 Artificial Intelligence -- 3 Data Science -- 4 Machine Learning (ML) -- 5 Artificial Neural Network -- 6 Deep Learning (DL) -- 7 Discussion -- 8 Ethics -- References -- Brain Tumor Segmentation Using Deep Neural Networks and Survival Prediction -- 1 Introduction -- 2 Materials and Methods -- 2.1 Data Acquisition -- 2.2 Data Preprocessing -- 2.3 3D Deep Learning Algorithms -- 3 Results -- 3.1 DeepMedic Base Model -- 3.1.1 3D U-Net Neural Network Model -- 3.1.2 Survival Prediction -- 4 Discussion -- 5 Conclusion -- References -- Combination of Variational Autoencoders and Generative Adversarial Network into an Unsupervised Generative Model -- 1 Introduction -- 2 Related Work -- 3 Agent Model -- 4 VAE (V) Model -- 5 MDN-RNN (M) Model -- 6 Controller Model (C) -- 7 GAN/Discriminator -- 8 C. MDN-RNN (M) Model -- 9 D. Controller Model© -- 10 Experimental Results of Car Racing: Feature Extraction -- 11 Evolutional Strategies and Doom RNN -- 12 Conclusion -- References -- Long Short-Term Memory in Chemistry Dynamics Simulation -- 1 Introduction -- 2 Methodology -- 2.1 Prediction-Correction Algorithm -- 2.2 Long Short-Term Memory -- 2.3 Model.
3 Experimental Results -- 4 Conclusion and Future WORK -- References -- When Entity Resolution Meets Deep Learning, Is Similarity Measure Necessary? -- 1 Introduction -- 2 Problem Statement and Related Work -- 3 The Design of the Deep Learning Method -- 3.1 Difference with the Traditional Method -- 3.2 Record Pair Representation -- 3.3 Deep Learning Classifier -- 4 Experiments and Results -- 4.1 Convolutional Neural Network -- 4.2 Long Short-Term Memory -- 4.3 Embedding Combining MLP -- 4.4 Count Combining MLP -- 4.5 TF-IDF Combining MLP -- 4.6 Validation on Real-World Cora Data -- 5 Conclusion and Future Work -- References -- Generic Object Recognition Using Both Illustration Images and Real-Object Images by CNN -- 1 AlexNet [1] -- 2 An Experiment on Object Recognition Using AlexNet -- 3 Generation of Illustration Images -- 4 Evaluations -- 5 Conclusion -- References -- A Deep Learning Approach to Diagnose Skin Cancer Using Image Processing -- 1 Introduction -- 2 Dataset -- 3 Methodology -- 3.1 Image Preprocessing -- 3.2 CNN -- 3.3 VGG-Net -- 4 Results -- 5 Conclusions -- References -- Part II Learning Strategies, Data Science, and Applications -- Effects of Domain Randomization on Simulation-to-Reality Transfer of Reinforcement Learning Policies for Industrial Robots -- 1 Introduction -- 2 Related Work -- 2.1 Reinforcement Learning -- 2.2 Simulation-to-Reality Transfer Learning -- 2.3 Attention Maps -- 3 Experimental Setup -- 3.1 Learning Environment -- 3.2 Agent Architecture -- 3.3 Design of Experiments -- 4 Results -- 4.1 Training in Simulation -- 4.2 Transfer to Real World -- 4.3 Attention Maps -- 4.4 Summary and Outlook -- References -- Human Motion Recognition Using Zero-Shot Learning -- 1 Introduction -- 2 Related Work -- 2.1 Supervised Learning -- 2.2 Unsupervised Learning -- 2.3 Auto-Encoder -- 3 Proposed Method -- 3.1 Preliminary.
3.2 Semantic Auto-Encoder Adaptation on Human Motion Recognition -- 3.3 Tuning Projection Functions for Semantic Auto-Encoder -- 4 Experimental Result -- 4.1 Dataset -- 4.2 Supervised Learning Results -- 4.3 Unsupervised Learning -- 5 Discussion and Conclusion -- References -- The Effectiveness of Data Mining Techniques at Estimating Future Population Levels for Isolated Moose Populations -- 1 Introduction -- 2 Methods -- 2.1 Data Wrangling -- 2.2 Multiple Regression -- 2.2.1 First Maximal Model -- 2.2.2 Reduced Parameter Maximal Model -- 2.3 Regression Trees -- 2.4 Neural Networks -- 2.5 K-Nearest Neighbors (KNN) Regression -- 2.6 Simulation (After Knadler [6]) -- 2.6.1 System Analysis and Data Collection -- 2.6.2 Simulation Habitat -- 2.6.3 Wolf Characterization -- 2.6.4 Moose Characterization -- 2.6.5 Simulation Initialization -- 3 Results -- 3.1 Overview -- 3.2 Constant Population Assumption -- 3.3 Multiple Regression -- 3.4 Regression Tree -- 3.5 Neural Network -- 3.6 KNN1 -- 3.7 KNN2 -- 3.8 KNN3 -- 3.9 KNN4 -- 4 Conclusions -- References -- Unsupervised Classification of Cell-Imaging Data Using the Quantization Error in a Self-Organizing Map -- 1 Introduction -- 2 Materials and Methods -- 2.1 Images -- 2.2 SOM Prototype and Quantization Error (QE) -- 2.3 SOM Training and Data Analysis -- 3 Results -- 4 Conclusions -- References -- Event-Based Keyframing: Transforming Observation Data into Compact and Meaningful Form -- 1 Introduction -- 2 Systems Requirements for Adaptive Learning -- 3 Insights from Past Experiences -- 4 Event-Based Keyframing -- 4.1 Event Representation and Event Recognition -- 4.2 Keyframes and Keyframing -- 4.3 Elaboration and Repair -- References -- An Incremental Learning Scheme with Adaptive Earlystopping for AMI Datastream Processing -- 1 Introduction -- 2 Problem Description -- 3 Proposed System.
3.1 Architecture Overview -- 3.2 Proposed Incremental Learning Scheme -- 4 Experiment Results -- 4.1 Experimental Environment -- 4.2 Effects of Concept Drift Threshold -- 4.3 Performance Comparison with Other Incremental Learning Algorithms -- 5 Conclusions -- References -- Traceability Analysis of Patterns Using Clustering Techniques -- 1 Introduction -- 2 Literature Review About Approaches for Traceability -- 3 Analyzed Techniques -- 4 Experiments -- 4.1 Metrics -- 4.2 Results -- 4.2.1 General Results -- 4.2.2 Analysis of the Results -- 4.3 Example of Analysis of the Traceability of the Patterns -- 5 Conclusions -- References -- An Approach to Interactive Analysis of StarCraft: BroodWar Replay Data -- 1 Introduction -- 2 Logic Programming -- 2.1 Encoding Domain Knowledge in Datalog -- 2.2 Datalog Queries -- 3 Knowledge Representation -- 3.1 StarCraft Domain Knowledge -- 4 Replay Knowledge Representation -- 5 Example Data Analyses -- 5.1 Build Order Identification -- 5.2 State Estimation -- 5.3 Future Work -- 6 Concluding Remarks -- References -- Merging Deep Learning and Data Analytics for Inferring Coronavirus Human Adaptive Transmutability and Transmissibility -- 1 Introduction and Approaches -- 2 Methods -- 2.1 Develop Deep Learning-Based Methods for Interacting Host-Cell Identification -- 2.2 Stacked Autoencoders for Dimension Reduction -- 2.3 Nonmetric Similarity Measurement -- 2.4 Hybrid Unsupervised Clustering -- 2.5 Build a Hybrid Statistical Model to Construct the Temporal Order of Host-Cell-Adaptive Process -- 2.6 Identifying Adjacency Relationships between Clusters and Reconstructing Interacting Host-Cell Lineage -- 2.7 Constructing Pseudo-temporal Ordering of Individual Interaction -- 2.8 Reconstruct Host-Cell-Specific Regulatory Networks by Integrating Profiles and Pseudo-Temporal Information -- 2.9 Building Target Interaction Modules.
2.10 Establish Differential Interaction Modules.
Record Nr. UNISA-996464524703316
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Advances in artificial intelligence and applied cognitive computing : proceedings from ICAI'20 and ACC'20 / / edited by Hamid R. Arabnia [and five others]
Advances in artificial intelligence and applied cognitive computing : proceedings from ICAI'20 and ACC'20 / / edited by Hamid R. Arabnia [and five others]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (1152 pages)
Disciplina 006.3
Collana Transactions on Computational Science and Computational Intelligence
Soggetto topico Artificial intelligence
Soft computing
ISBN 3-030-70296-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Artificial Intelligence: ICAI 2020 - Program Committee -- Applied Cognitive Computing: ACC 2020 - Program Committee -- Contents -- Part I Deep Learning, Generative Adversarial Network, CNN, and Applications -- Fine Tuning a Generative Adversarial Network's Discriminator for Student Attrition Prediction -- 1 Introduction -- 2 Background and Other Work -- 3 Methodology -- 3.1 Discriminator -- 3.2 Generator -- 4 Experiments and Results -- 4.1 Experiment 1 -- 4.2 Experiment 2 -- 4.3 Experiment 3 -- 4.4 Results -- 5 Conclusions -- References -- Automatic Generation of Descriptive Titles for Video Clips Using Deep Learning -- 1 Introduction -- 2 Definition and Related Work -- 2.1 Image/Video Captioning -- 2.2 Text Summarization -- 3 Methodology -- 3.1 Video to Document Process -- 3.2 Document to Title Process -- 4 Experiments -- 5 Conclusion -- References -- White Blood Cell Classification Using Genetic Algorithm-Enhanced Deep Convolutional Neural Networks -- 1 Introduction -- 2 White Blood Cells -- 3 Deep Convolutional Network Model and Kaggle Data Set -- 3.1 Genetic Algorithm -- 3.2 Chromosome Representation of CNN Optimization Using GA -- 3.3 Data Preprocessing -- 3.4 Genetic Algorithm -- 3.5 Convolutional Neural Network Model -- 3.6 Kaggle Data Set -- 4 GA-Enhanced D-CNN Model and Results -- 5 Conclusions -- References -- Deep Learning-Based Constituency Parsing for Arabic Language -- 1 Introduction -- 2 Survey of Related Work -- 3 Dense Input Representation -- 4 Parse Tree Generator Model -- 5 Workflow -- 5.1 Workflow -- 5.2 Dataset -- 6 Experiments -- 6.1 Short Sentences with Minimum Split Points -- 6.2 Short Sentences with Maximum Split Points -- 6.3 Long Sentences with Minimum Split Points -- 6.4 Long Sentences with Maximum Split Points -- 7 Conclusion -- References.
Deep Embedded Knowledge Graph Representationsfor Tactic Discovery -- 1 Introduction -- 1.1 Exploration Domain: NFL Football -- 2 Methodology -- 2.1 Naive Vectorization -- 2.2 Knowledge Graph Construction -- 2.2.1 Domain-Specific Semantic Graph -- 2.2.2 Specification Graph -- 2.3 Embedding Techniques -- 2.4 Testing Protocol -- 2.4.1 Supervised Classification Task -- 2.4.2 Unsupervised Discovery Task -- 3 Results -- 3.1 Supervised Classification Task -- 3.2 Unsupervised Discovery Task -- 4 Conclusions -- References -- Pathways to Artificial General Intelligence: A Brief Overview of Developments and Ethical Issues via Artificial Intelligence, Machine Learning, Deep Learning, and Data Science -- 1 Introduction -- 2 Artificial Intelligence -- 3 Data Science -- 4 Machine Learning (ML) -- 5 Artificial Neural Network -- 6 Deep Learning (DL) -- 7 Discussion -- 8 Ethics -- References -- Brain Tumor Segmentation Using Deep Neural Networks and Survival Prediction -- 1 Introduction -- 2 Materials and Methods -- 2.1 Data Acquisition -- 2.2 Data Preprocessing -- 2.3 3D Deep Learning Algorithms -- 3 Results -- 3.1 DeepMedic Base Model -- 3.1.1 3D U-Net Neural Network Model -- 3.1.2 Survival Prediction -- 4 Discussion -- 5 Conclusion -- References -- Combination of Variational Autoencoders and Generative Adversarial Network into an Unsupervised Generative Model -- 1 Introduction -- 2 Related Work -- 3 Agent Model -- 4 VAE (V) Model -- 5 MDN-RNN (M) Model -- 6 Controller Model (C) -- 7 GAN/Discriminator -- 8 C. MDN-RNN (M) Model -- 9 D. Controller Model© -- 10 Experimental Results of Car Racing: Feature Extraction -- 11 Evolutional Strategies and Doom RNN -- 12 Conclusion -- References -- Long Short-Term Memory in Chemistry Dynamics Simulation -- 1 Introduction -- 2 Methodology -- 2.1 Prediction-Correction Algorithm -- 2.2 Long Short-Term Memory -- 2.3 Model.
3 Experimental Results -- 4 Conclusion and Future WORK -- References -- When Entity Resolution Meets Deep Learning, Is Similarity Measure Necessary? -- 1 Introduction -- 2 Problem Statement and Related Work -- 3 The Design of the Deep Learning Method -- 3.1 Difference with the Traditional Method -- 3.2 Record Pair Representation -- 3.3 Deep Learning Classifier -- 4 Experiments and Results -- 4.1 Convolutional Neural Network -- 4.2 Long Short-Term Memory -- 4.3 Embedding Combining MLP -- 4.4 Count Combining MLP -- 4.5 TF-IDF Combining MLP -- 4.6 Validation on Real-World Cora Data -- 5 Conclusion and Future Work -- References -- Generic Object Recognition Using Both Illustration Images and Real-Object Images by CNN -- 1 AlexNet [1] -- 2 An Experiment on Object Recognition Using AlexNet -- 3 Generation of Illustration Images -- 4 Evaluations -- 5 Conclusion -- References -- A Deep Learning Approach to Diagnose Skin Cancer Using Image Processing -- 1 Introduction -- 2 Dataset -- 3 Methodology -- 3.1 Image Preprocessing -- 3.2 CNN -- 3.3 VGG-Net -- 4 Results -- 5 Conclusions -- References -- Part II Learning Strategies, Data Science, and Applications -- Effects of Domain Randomization on Simulation-to-Reality Transfer of Reinforcement Learning Policies for Industrial Robots -- 1 Introduction -- 2 Related Work -- 2.1 Reinforcement Learning -- 2.2 Simulation-to-Reality Transfer Learning -- 2.3 Attention Maps -- 3 Experimental Setup -- 3.1 Learning Environment -- 3.2 Agent Architecture -- 3.3 Design of Experiments -- 4 Results -- 4.1 Training in Simulation -- 4.2 Transfer to Real World -- 4.3 Attention Maps -- 4.4 Summary and Outlook -- References -- Human Motion Recognition Using Zero-Shot Learning -- 1 Introduction -- 2 Related Work -- 2.1 Supervised Learning -- 2.2 Unsupervised Learning -- 2.3 Auto-Encoder -- 3 Proposed Method -- 3.1 Preliminary.
3.2 Semantic Auto-Encoder Adaptation on Human Motion Recognition -- 3.3 Tuning Projection Functions for Semantic Auto-Encoder -- 4 Experimental Result -- 4.1 Dataset -- 4.2 Supervised Learning Results -- 4.3 Unsupervised Learning -- 5 Discussion and Conclusion -- References -- The Effectiveness of Data Mining Techniques at Estimating Future Population Levels for Isolated Moose Populations -- 1 Introduction -- 2 Methods -- 2.1 Data Wrangling -- 2.2 Multiple Regression -- 2.2.1 First Maximal Model -- 2.2.2 Reduced Parameter Maximal Model -- 2.3 Regression Trees -- 2.4 Neural Networks -- 2.5 K-Nearest Neighbors (KNN) Regression -- 2.6 Simulation (After Knadler [6]) -- 2.6.1 System Analysis and Data Collection -- 2.6.2 Simulation Habitat -- 2.6.3 Wolf Characterization -- 2.6.4 Moose Characterization -- 2.6.5 Simulation Initialization -- 3 Results -- 3.1 Overview -- 3.2 Constant Population Assumption -- 3.3 Multiple Regression -- 3.4 Regression Tree -- 3.5 Neural Network -- 3.6 KNN1 -- 3.7 KNN2 -- 3.8 KNN3 -- 3.9 KNN4 -- 4 Conclusions -- References -- Unsupervised Classification of Cell-Imaging Data Using the Quantization Error in a Self-Organizing Map -- 1 Introduction -- 2 Materials and Methods -- 2.1 Images -- 2.2 SOM Prototype and Quantization Error (QE) -- 2.3 SOM Training and Data Analysis -- 3 Results -- 4 Conclusions -- References -- Event-Based Keyframing: Transforming Observation Data into Compact and Meaningful Form -- 1 Introduction -- 2 Systems Requirements for Adaptive Learning -- 3 Insights from Past Experiences -- 4 Event-Based Keyframing -- 4.1 Event Representation and Event Recognition -- 4.2 Keyframes and Keyframing -- 4.3 Elaboration and Repair -- References -- An Incremental Learning Scheme with Adaptive Earlystopping for AMI Datastream Processing -- 1 Introduction -- 2 Problem Description -- 3 Proposed System.
3.1 Architecture Overview -- 3.2 Proposed Incremental Learning Scheme -- 4 Experiment Results -- 4.1 Experimental Environment -- 4.2 Effects of Concept Drift Threshold -- 4.3 Performance Comparison with Other Incremental Learning Algorithms -- 5 Conclusions -- References -- Traceability Analysis of Patterns Using Clustering Techniques -- 1 Introduction -- 2 Literature Review About Approaches for Traceability -- 3 Analyzed Techniques -- 4 Experiments -- 4.1 Metrics -- 4.2 Results -- 4.2.1 General Results -- 4.2.2 Analysis of the Results -- 4.3 Example of Analysis of the Traceability of the Patterns -- 5 Conclusions -- References -- An Approach to Interactive Analysis of StarCraft: BroodWar Replay Data -- 1 Introduction -- 2 Logic Programming -- 2.1 Encoding Domain Knowledge in Datalog -- 2.2 Datalog Queries -- 3 Knowledge Representation -- 3.1 StarCraft Domain Knowledge -- 4 Replay Knowledge Representation -- 5 Example Data Analyses -- 5.1 Build Order Identification -- 5.2 State Estimation -- 5.3 Future Work -- 6 Concluding Remarks -- References -- Merging Deep Learning and Data Analytics for Inferring Coronavirus Human Adaptive Transmutability and Transmissibility -- 1 Introduction and Approaches -- 2 Methods -- 2.1 Develop Deep Learning-Based Methods for Interacting Host-Cell Identification -- 2.2 Stacked Autoencoders for Dimension Reduction -- 2.3 Nonmetric Similarity Measurement -- 2.4 Hybrid Unsupervised Clustering -- 2.5 Build a Hybrid Statistical Model to Construct the Temporal Order of Host-Cell-Adaptive Process -- 2.6 Identifying Adjacency Relationships between Clusters and Reconstructing Interacting Host-Cell Lineage -- 2.7 Constructing Pseudo-temporal Ordering of Individual Interaction -- 2.8 Reconstruct Host-Cell-Specific Regulatory Networks by Integrating Profiles and Pseudo-Temporal Information -- 2.9 Building Target Interaction Modules.
2.10 Establish Differential Interaction Modules.
Record Nr. UNINA-9910502594303321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in software engineering, education, and e-learning : proceedings from FECS'20, FCS'20, SERP'20, and EEE'20 / / Hamid R. Arabnia [and three others], editors
Advances in software engineering, education, and e-learning : proceedings from FECS'20, FCS'20, SERP'20, and EEE'20 / / Hamid R. Arabnia [and three others], editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (1003 pages)
Disciplina 004
Collana Transactions on Computational Science and Computational Intelligence
Soggetto topico Computer science
Computer science - Study and teaching
ISBN 3-030-70873-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910503001103321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
CSCI 2017 : 2017 International ; Conference on Computational Science and Computational Intelligence : proceedings : Las Vegas, USA, 14-16 December 2017 / / Institute of Electrical and Electronics Engineers ; edited by Hamid R. Arabnia
CSCI 2017 : 2017 International ; Conference on Computational Science and Computational Intelligence : proceedings : Las Vegas, USA, 14-16 December 2017 / / Institute of Electrical and Electronics Engineers ; edited by Hamid R. Arabnia
Pubbl/distr/stampa Piscataway, New Jersey : , : Institute of Electrical and Electronics Engineers, , 2017
Descrizione fisica 1 online resource (xl, 810 pages)
Disciplina 004
Soggetto topico Computer science
Computational intelligence
Soggetto genere / forma Electronic books.
ISBN 1-5386-2652-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996280545503316
Piscataway, New Jersey : , : Institute of Electrical and Electronics Engineers, , 2017
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
CSCI 2017 : 2017 International ; Conference on Computational Science and Computational Intelligence : proceedings : Las Vegas, USA, 14-16 December 2017 / / Institute of Electrical and Electronics Engineers ; edited by Hamid R. Arabnia
CSCI 2017 : 2017 International ; Conference on Computational Science and Computational Intelligence : proceedings : Las Vegas, USA, 14-16 December 2017 / / Institute of Electrical and Electronics Engineers ; edited by Hamid R. Arabnia
Pubbl/distr/stampa Piscataway, New Jersey : , : Institute of Electrical and Electronics Engineers, , 2017
Descrizione fisica 1 online resource (xl, 810 pages)
Disciplina 004
Soggetto topico Computer science
Computational intelligence
Soggetto genere / forma Electronic books.
ISBN 1-5386-2652-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910295819503321
Piscataway, New Jersey : , : Institute of Electrical and Electronics Engineers, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Emerging trends in ICT security / / edited by Babak Akhgar, Hamid R. Arabnia
Emerging trends in ICT security / / edited by Babak Akhgar, Hamid R. Arabnia
Edizione [1st edition]
Pubbl/distr/stampa Waltham, Massachusetts : , : Morgan Kaufmann/Elsevier, , [2014]
Descrizione fisica 1 online resource (662 p.)
Disciplina 005.8
Altri autori (Persone) AkhgarBabak
ArabniaHamid
Soggetto topico Information technology - Security measures
Computer crimes - Prevention
Cyberterrorism - Prevention
Electronic surveillance
Soggetto genere / forma Electronic books.
ISBN 0-12-410487-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Emerging Trends in ICT Security; Copyright Page; Contents; Acknowledgments; Review Board; About the Editors; List of Contributors; Preface; 1 Information and Systems Security; 1 Theory/Reviews of the Field; 1 System Security Engineering for Information Systems; Introduction; System security engineering history; The system security engineering process; The revitalization of system security engineering; Established system security engineering methods, processes, and tools; Acquisition program protection planning; Information assurance; Systems engineering critical reviews
Modern and emerging system security engineering methods, processes, and tools Discovery and understanding of complex systems for security; Mission assurance; Formalized security requirements; Early design considerations; Plan for failure; Security and system patterns; Leveraging system architectures for security; Agile and self-organizing system security; Security metrics and evaluation; Identified SSE research areas; Conclusion; Recommendations; Disclaimer; Acknowledgments; References; Further reading; 2 Metrics and Indicators as Key Organizational Assets for ICT Security Assessment
Introduction GOCAME strategy overview; GOCAME conceptual framework; GOCAME process and the W5H rule; Security evaluation for a web system: A proof of concept; Target entity and information need; Security characteristic specification; Metric and indicator specifications; Implementing the M&E; Risk and security vulnerability issues; Metrics and indicators for repeatable and consistent analysis: a discussion; Related work; Conclusion and future work; References; 3 A Fresh Look at Semantic Natural Language Information Assurance and Security: NL IAS from Watermarking and Downgrading to...
Introduction Early breakthrough in NL IAS; The conceptual foundation of NL IAS; NL IA applications; NL watermarking; NL tamperproofing; NL sanitizing/downgrading; NL steganography and steganalysis; A sketch of ontological semantic technology; Mature semantic NL IAS; Semantic forensics; Unintended inferences and the meaning of the unsaid; Situational conceptual defaults; The term, its origins, and the canonical case; Default reversal; Are defaults really common sense knowledge?; Underdetermination of reality by language; Scripts; Anonymization; Summary; Acknowledgments; References; 2 Methods
4 An Approach to Facilitate Security Assurance for Information Sharing and Exchange in Big-Data Applications Introduction; UML extensions for XML security; Extensions for policy modeling and integration; Integrating local security policies into a global security policy; Assumptions and equivalence finding; Integration process for local SPSS; Resolving conflicts of integrated security rule sets; Creating the global SPSS; Related work; Conclusion; References; 5 Gamification of Information Security Awareness Training; Introduction; Literature review; General concepts; Serious games
Games adoption in multiple domains
Record Nr. UNINA-9910453222903321
Waltham, Massachusetts : , : Morgan Kaufmann/Elsevier, , [2014]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Emerging trends in ICT security / / edited by Babak Akhgar, Hamid R. Arabnia
Emerging trends in ICT security / / edited by Babak Akhgar, Hamid R. Arabnia
Edizione [1st edition]
Pubbl/distr/stampa Waltham, MA : , : Morgan Kaufmann, , 2014
Descrizione fisica 1 online resource (xxix, 631 pages) : illustrations (some color)
Disciplina 005.8
Collana Emerging trends in computer science & applied computing
Gale eBooks
Soggetto topico Information technology - Security measures
Computer crimes - Prevention
Cyberterrorism - Prevention
Electronic surveillance
ISBN 0-12-410487-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Emerging Trends in ICT Security; Copyright Page; Contents; Acknowledgments; Review Board; About the Editors; List of Contributors; Preface; 1 Information and Systems Security; 1 Theory/Reviews of the Field; 1 System Security Engineering for Information Systems; Introduction; System security engineering history; The system security engineering process; The revitalization of system security engineering; Established system security engineering methods, processes, and tools; Acquisition program protection planning; Information assurance; Systems engineering critical reviews
Modern and emerging system security engineering methods, processes, and tools Discovery and understanding of complex systems for security; Mission assurance; Formalized security requirements; Early design considerations; Plan for failure; Security and system patterns; Leveraging system architectures for security; Agile and self-organizing system security; Security metrics and evaluation; Identified SSE research areas; Conclusion; Recommendations; Disclaimer; Acknowledgments; References; Further reading; 2 Metrics and Indicators as Key Organizational Assets for ICT Security Assessment
Introduction GOCAME strategy overview; GOCAME conceptual framework; GOCAME process and the W5H rule; Security evaluation for a web system: A proof of concept; Target entity and information need; Security characteristic specification; Metric and indicator specifications; Implementing the M&E; Risk and security vulnerability issues; Metrics and indicators for repeatable and consistent analysis: a discussion; Related work; Conclusion and future work; References; 3 A Fresh Look at Semantic Natural Language Information Assurance and Security: NL IAS from Watermarking and Downgrading to...
Introduction Early breakthrough in NL IAS; The conceptual foundation of NL IAS; NL IA applications; NL watermarking; NL tamperproofing; NL sanitizing/downgrading; NL steganography and steganalysis; A sketch of ontological semantic technology; Mature semantic NL IAS; Semantic forensics; Unintended inferences and the meaning of the unsaid; Situational conceptual defaults; The term, its origins, and the canonical case; Default reversal; Are defaults really common sense knowledge?; Underdetermination of reality by language; Scripts; Anonymization; Summary; Acknowledgments; References; 2 Methods
4 An Approach to Facilitate Security Assurance for Information Sharing and Exchange in Big-Data Applications Introduction; UML extensions for XML security; Extensions for policy modeling and integration; Integrating local security policies into a global security policy; Assumptions and equivalence finding; Integration process for local SPSS; Resolving conflicts of integrated security rule sets; Creating the global SPSS; Related work; Conclusion; References; 5 Gamification of Information Security Awareness Training; Introduction; Literature review; General concepts; Serious games
Games adoption in multiple domains
Record Nr. UNINA-9910790864603321
Waltham, MA : , : Morgan Kaufmann, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Emerging trends in ICT security / / edited by Babak Akhgar, Hamid R. Arabnia
Emerging trends in ICT security / / edited by Babak Akhgar, Hamid R. Arabnia
Edizione [1st edition]
Pubbl/distr/stampa Waltham, MA : , : Morgan Kaufmann, , 2014
Descrizione fisica 1 online resource (xxix, 631 pages) : illustrations (some color)
Disciplina 005.8
Collana Emerging trends in computer science & applied computing
Gale eBooks
Soggetto topico Information technology - Security measures
Computer crimes - Prevention
Cyberterrorism - Prevention
Electronic surveillance
ISBN 0-12-410487-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Emerging Trends in ICT Security; Copyright Page; Contents; Acknowledgments; Review Board; About the Editors; List of Contributors; Preface; 1 Information and Systems Security; 1 Theory/Reviews of the Field; 1 System Security Engineering for Information Systems; Introduction; System security engineering history; The system security engineering process; The revitalization of system security engineering; Established system security engineering methods, processes, and tools; Acquisition program protection planning; Information assurance; Systems engineering critical reviews
Modern and emerging system security engineering methods, processes, and tools Discovery and understanding of complex systems for security; Mission assurance; Formalized security requirements; Early design considerations; Plan for failure; Security and system patterns; Leveraging system architectures for security; Agile and self-organizing system security; Security metrics and evaluation; Identified SSE research areas; Conclusion; Recommendations; Disclaimer; Acknowledgments; References; Further reading; 2 Metrics and Indicators as Key Organizational Assets for ICT Security Assessment
Introduction GOCAME strategy overview; GOCAME conceptual framework; GOCAME process and the W5H rule; Security evaluation for a web system: A proof of concept; Target entity and information need; Security characteristic specification; Metric and indicator specifications; Implementing the M&E; Risk and security vulnerability issues; Metrics and indicators for repeatable and consistent analysis: a discussion; Related work; Conclusion and future work; References; 3 A Fresh Look at Semantic Natural Language Information Assurance and Security: NL IAS from Watermarking and Downgrading to...
Introduction Early breakthrough in NL IAS; The conceptual foundation of NL IAS; NL IA applications; NL watermarking; NL tamperproofing; NL sanitizing/downgrading; NL steganography and steganalysis; A sketch of ontological semantic technology; Mature semantic NL IAS; Semantic forensics; Unintended inferences and the meaning of the unsaid; Situational conceptual defaults; The term, its origins, and the canonical case; Default reversal; Are defaults really common sense knowledge?; Underdetermination of reality by language; Scripts; Anonymization; Summary; Acknowledgments; References; 2 Methods
4 An Approach to Facilitate Security Assurance for Information Sharing and Exchange in Big-Data Applications Introduction; UML extensions for XML security; Extensions for policy modeling and integration; Integrating local security policies into a global security policy; Assumptions and equivalence finding; Integration process for local SPSS; Resolving conflicts of integrated security rule sets; Creating the global SPSS; Related work; Conclusion; References; 5 Gamification of Information Security Awareness Training; Introduction; Literature review; General concepts; Serious games
Games adoption in multiple domains
Record Nr. UNINA-9910807239603321
Waltham, MA : , : Morgan Kaufmann, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui