Advances in Integrated Energy Systems Design, Control and Optimization / / edited by Josep M. Guerrero and Amjad Anvari-Moghaddam
| Advances in Integrated Energy Systems Design, Control and Optimization / / edited by Josep M. Guerrero and Amjad Anvari-Moghaddam |
| Pubbl/distr/stampa | Basel : , : MDPI - Multidisciplinary Digital Publishing Institute, , 2017 |
| Descrizione fisica | 1 online resource (ix, 172 pages) |
| Disciplina | 333.794 |
| Soggetto topico | Renewable energy sources |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910220015503321 |
| Basel : , : MDPI - Multidisciplinary Digital Publishing Institute, , 2017 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Communities for Clean Energy Justice and Equity in Grid Modernization
| Communities for Clean Energy Justice and Equity in Grid Modernization |
| Autore | Daneshvar Mohammadreza |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2025 |
| Descrizione fisica | 1 online resource (686 pages) |
| Altri autori (Persone) |
Mohammadi-IvatlooBehnam
Anvari-MoghaddamAmjad |
| Collana | IEEE Press Series on Power and Energy Systems Series |
| ISBN |
1-394-26574-3
1-394-26573-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9911019165703321 |
Daneshvar Mohammadreza
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2025 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Emerging Technologies for the Energy Systems of the Future
| Emerging Technologies for the Energy Systems of the Future |
| Autore | Anvari-Moghaddam Amjad |
| Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 |
| Descrizione fisica | 1 online resource (212 p.) |
| Soggetto topico | Technology: general issues |
| Soggetto non controllato |
100% renewable power generation
100% renewable power system Africa and energy security ancillary services ARMAX balancing market battery energy storage systems bidirectional long short-term memory (Bi-LSTM) black widow optimization CO2 environmental assessment deep learning domestic hot water production dynamic simulation economic outcomes electricity price forecasting (EPF) energy energy economics energy management energy storage energy transition food fractional integrator greenhouse gas emission grid code hybrid power plants hybrid systems individual and collective solar water heater systems island power systems marine microgrid microgrid Morocco n/a NARX-ANN nexus non-linear fractional integrator photovoltaic photovoltaic parks power management renewable energy sources RES investments residential and commercial loads secondary voltage control short-term load forecasting solar hot waters solar system solar water heaters spot market supplementary control tertiary voltage control thermal performance thermosyphon tidal generation system TRNbuild TRNSYSstudio water wind energy wind farms wind power forecasting (WPF) wind turbines Zimbabwe |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910557361303321 |
Anvari-Moghaddam Amjad
|
||
| Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Interconnected Modern Multi-Energy Networks and Intelligent Transportation Systems : Towards a Green Economy and Sustainable Development
| Interconnected Modern Multi-Energy Networks and Intelligent Transportation Systems : Towards a Green Economy and Sustainable Development |
| Autore | Daneshvar Mohammadreza |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
| Descrizione fisica | 1 online resource (475 pages) |
| Altri autori (Persone) |
Mohammadi-IvatlooBehnam
Anvari-MoghaddamAmjad RazzaghiReza |
| Collana | IEEE Press Series on Power and Energy Systems Series |
| ISBN |
1-394-18878-1
1-394-18876-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- About the Editors -- Preface -- Chapter 1 The Necessity for Modernizing the Coupled Structure of Intelligent Transportation Systems and Multi-Energy Networks -- 1.1 Introduction -- 1.2 Applications of Intelligent Transportation Systems -- 1.3 Coupled Structure of ITSs and Multi-Energy Networks -- 1.4 Summary -- References -- Chapter 2 Green Transportation Systems -- 2.1 Introduction -- 2.1.1 Motivation and Problem Description -- 2.1.2 Literature Review -- 2.1.3 Chapter Organization -- 2.2 History of Transportation -- 2.3 Transportation Expansion Issues -- 2.3.1 Urbanization's Growth -- 2.3.2 Traffic Growth -- 2.3.3 Environmental Issues -- 2.4 Definition of Green Transportation -- 2.5 Advantages of Green Transportation -- 2.6 International Agreements -- 2.7 Challenges to GT -- 2.7.1 Institutional Challenges -- 2.7.2 Regulatory Challenges and Barriers -- 2.7.3 Technology-related Barriers -- 2.7.4 Financial Barriers -- 2.7.5 General Admission -- 2.8 Green Transportation's Effects on Multi-Energy Networks -- 2.9 Implementation Strategies for the Green Transportation System -- 2.9.1 Actions Performed to Promote Green Transportation -- 2.10 New Technologies for Green Transportation -- 2.10.1 Energy Technology -- 2.10.2 Environmentally Friendly Technologies -- 2.10.2.1 Greener Tires -- 2.10.2.2 Reusing Energy -- 2.11 Intelligent Transportation System -- 2.11.1 Vehicle Communication in Intelligent Transportation -- 2.12 Conclusion -- References -- Chapter 3 Techno-Economic-Environmental Assessment of Green Transportation Systems -- 3.1 Introduction -- 3.2 Technologies for Green Transportation Systems -- 3.2.1 Eco-Friendly and Energy-Efficient Technologies -- 3.2.2 Intelligent System Technologies -- 3.2.3 Integrated Management Technologies -- 3.2.4 Distributed Ledger Technologies.
3.3 Economic Implications of Green Transportation Systems -- 3.3.1 Cost Saving -- 3.3.2 Job Creation -- 3.4 Environmental Implications of Green Transportation Systems -- 3.4.1 Lowering Emission of Pollutants -- 3.4.2 Improving Human Health Status -- 3.5 Conclusion -- References -- Chapter 4 Urban Integrated Sustainable Transportation Networks -- 4.1 Introduction -- 4.2 Necessity of Sustainable Transportation -- 4.2.1 Impact of Conventional Transportation on Climate Change -- 4.2.2 Impact of Transportation-related Emissions on Public Health -- 4.2.3 Role of Road Transportation in Carbon Emissions -- 4.2.4 Existing Global Energy Market -- 4.2.5 Potential Approaches for Mitigating Emissions -- 4.3 Challenges and Opportunities Associated with the Implementation of Sustainable Transportation -- 4.3.1 Growing Car Sector -- 4.3.2 Urban Growth -- 4.3.3 Transformation Cost -- 4.3.4 Planning Challenges -- 4.3.5 Safety Risks -- 4.3.6 Security Challenges -- 4.3.7 Social Benefits -- 4.3.8 Environmental Benefits -- 4.3.9 Economic Benefits -- 4.4 Modes of Sustainable Transportation -- 4.4.1 Walk -- 4.4.2 Bicycle -- 4.4.3 Electric Bike/Scooter -- 4.4.4 Carpooling -- 4.4.5 Electric Car -- 4.4.6 Public Transportation -- 4.5 Sustainable Transportation in Modern Urban Advancement -- 4.5.1 Importance of Sustainable Transport in Urban Growth -- 4.5.1.1 Urban Planning -- 4.5.1.2 Smart Cities -- 4.5.1.3 Economic Growth -- 4.5.1.4 Promoting Sustainable Transport -- 4.6 Infrastructure for Sustainable Transportation -- 4.6.1 Governance -- 4.6.2 Interaction with Electricity Infrastructure -- 4.6.2.1 Electric Buses and the Power Grid -- 4.6.2.2 Operational Strategies -- 4.6.2.3 Compensation for the Minimum Demand Reduction -- 4.6.2.4 Flexible Operation of E-mobility -- 4.6.3 Features of Integrated Sustainable Transportation Networks. 4.6.3.1 Transport Resilience and Sustainability -- 4.6.4 Transition to a Sustainable Transportation -- 4.7 Conclusion -- References -- Chapter 5 Multi-Energy Technologies in Green and Integrated Transportation Networks -- 5.1 Introduction -- 5.2 Definition of Green Transportation -- 5.3 Technological Development and Managerial Integration for Green Transportation -- 5.3.1 Energy-Efficient Technology -- 5.3.2 Eco-Friendly Technology -- 5.3.3 Intelligent Transportation System (ITS) -- 5.3.4 Integrating Systems: Efficiency by Design -- 5.3.5 Energy Re-using -- 5.3.6 Solar Impulse Technology -- 5.3.7 Integrated Management for Green Transportation -- 5.3.7.1 Infrastructure Development -- 5.3.7.2 Alternative Measures in Urban Transportation -- 5.4 Definition and Features of Integrated Multi-Energy System -- 5.4.1 Definition of Integrated Multi-Energy System -- 5.4.2 Major Characteristics of Integrated Multi-Energy System -- 5.4.3 Role and Effects of Multi-Energy Conversion Systems in Green and Integrated Transportation Networks -- 5.5 Electric Vehicle Integration with Renewable Energy Sources -- 5.5.1 Electric Vehicle Integration with Wind Energy -- 5.5.2 Electric Vehicle Integration with Solar Energy -- 5.6 Hybrid Fuel Cell/Battery Vehicle Systems -- 5.6.1 PEMFC-Based Fuel Cell Vehicle Systems -- 5.6.2 SOFC-Based Fuel Cell Vehicle Systems -- 5.6.3 Present Situation of Fuel Cell Vehicle Technology -- 5.6.4 Confronts of Fuel Cell Vehicle Technology -- 5.7 Barriers and Challenges -- 5.7.1 Societal Barriers and Challenges -- 5.7.2 Technological Barriers and Challenges -- 5.7.3 Financial Barriers and Challenges -- 5.8 Conclusion -- References -- Chapter 6 Flexible Operation of Power-To-X Energy Systems in Transportation Networks -- Table of Acronyms -- 6.1 Introduction -- 6.1.1 Problem Description and Motivation -- 6.1.2 State of the Art. 6.1.3 Contributions and Organization -- 6.2 Power to Hydrogen -- 6.3 Power to Methane -- 6.4 Power to Chemical (P2C) -- 6.4.1 Power to Diesel (P2D) -- 6.4.2 Power-to-Formic Acid (P2FA) -- 6.4.3 Power to Methanol (P2Me) -- 6.5 Power to Heat (P2H) -- 6.6 Power to Transport (P2T) -- 6.7 Power Demand Flexibility -- 6.8 Conclusion -- References -- Chapter 7 Integration of Electric Vehicles into Multi-energy Systems -- Abbreviations -- 7.1 Introduction -- 7.2 Multi-energy Systems Structure -- 7.2.1 General Aspects of MES Modeling -- 7.2.2 Energy Hub Concept -- 7.2.3 MES Modeling Process and Challenges -- 7.3 Integration of EVs in MES -- 7.3.1 Integration of EV with RES -- 7.3.1.1 Integration of EV with Wind Energy -- 7.3.1.2 Integration of EV with Solar Energy -- 7.3.2 Integration of EV with Power Grids -- 7.3.2.1 EV and Distribution Systems -- 7.3.2.2 EV and Microgrids -- 7.3.2.3 EVs and Homes/Buildings -- 7.3.2.4 EV and EH -- 7.3.2.5 EV and Virtual Power Plants -- 7.3.3 EV Charging/Discharging Strategies -- 7.3.3.1 Vehicle-to-Everything (V2X) -- 7.3.3.2 Smart Bidirectional Charging -- 7.4 Conclusion -- References -- Chapter 8 Self-Driving Vehicle Systems in Intelligent Transportation Networks -- 8.1 Introduction -- 8.2 Brief History -- 8.3 Literature Review -- 8.4 Advantages and Challenges -- 8.5 Sensing -- 8.6 Perception -- 8.6.1 Object Detection and Tracking -- 8.6.2 Simultaneous Localization and Mapping -- 8.7 Planning and Control -- 8.8 Conclusion -- Acknowledgment -- References -- Chapter 9 Energy Storage Technologies and Control Systems for Electric Vehicles -- Acronyms -- 9.1 Introduction -- 9.2 Fuel Cell -- 9.2.1 Types of Fuel Cells -- 9.2.1.1 Proton Exchange Membrane Fuel Cell -- 9.2.1.2 Phosphoric Acid Fuel Cell (PAFC) -- 9.2.1.3 Alkaline Fuel Cell -- 9.2.1.4 Molten Carbonate Fuel Cell -- 9.2.1.5 Solid Oxide Fuel Cell. 9.2.1.6 Direct Methanol Fuel Cell -- 9.3 Battery Technologies for Electric Vehicles -- 9.3.1 Lead-Acid Batteries -- 9.3.2 Nickel-Cadmium Battery (NiCd) -- 9.3.3 Nickel-Metal-Hydride (Ni-MH) -- 9.3.4 Lithium-ion (Li-ion) -- 9.3.4.1 Lithium Cobalt Oxide (LiCoO2, LCO) -- 9.3.4.2 Lithium Manganese Oxide (LiMn2O4, LMO/Spinel) -- 9.3.4.3 Lithium Iron Phosphate (LiFePO4, LFP) -- 9.4 Overview of Brushless Motor -- 9.4.1 Mathematical Modeling of BLDC Motor -- 9.4.1.1 Electric Model of BLDC -- 9.4.1.2 Mechanical Model of BLDC -- 9.5 BLDC Motor Control Strategy for Electric Vehicles -- 9.5.1 PI Controller -- 9.5.2 PID Controller -- 9.5.3 Fuzzy Logic Controller -- 9.5.3.1 Fuzzification -- 9.5.3.2 Fuzzy Inference -- 9.5.3.3 Defuzzification -- 9.6 Simulation Results -- 9.7 Environnemental Impact of EVs -- 9.8 EVs and Modern Technologies -- 9.9 Challenges and Perspectives of EVs -- 9.10 Conclusion -- Acknowledgments -- References -- Chapter 10 Electric Vehicle Path Towards Sustainable Transportation: A Comprehensive Structure -- Nomenclature -- 10.1 Introduction -- 10.2 Optimum Design of EVs -- 10.3 Characterization of EV Battery System -- 10.3.1 Thermal Management of Battery -- 10.3.2 Assessment of Battery System -- 10.4 Control System of EVs -- 10.5 Reliability Assessment of EV -- 10.6 Assessment of EV Charging Station -- 10.6.1 Location Assessment for EV Charging Station -- 10.6.2 Characterization of Charging Station -- 10.7 Worldwide Policy Framework for EV -- 10.8 Electric Vehicles on the Sustainability and Reliability of Transportation Network -- 10.9 Recent Trends and Future Challenges -- References -- Chapter 11 Electric Vehicle Charging Management in Parking Structures -- 11.1 Introduction -- 11.2 EV Charging Management Schemes -- 11.3 Fair Charging Management -- 11.3.1 Preliminaries on á-Fairness -- 11.3.2 Generic-Fair Energy Allocation Algorithm. 11.4 Delay-Fair Charging Management. |
| Record Nr. | UNINA-9910830452503321 |
Daneshvar Mohammadreza
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Interconnected Modern Multi-Energy Networks and Intelligent Transportation Systems : Towards a Green Economy and Sustainable Development
| Interconnected Modern Multi-Energy Networks and Intelligent Transportation Systems : Towards a Green Economy and Sustainable Development |
| Autore | Daneshvar Mohammadreza |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
| Descrizione fisica | 1 online resource (475 pages) |
| Disciplina | 625.794 |
| Altri autori (Persone) |
Mohammadi-IvatlooBehnam
Anvari-MoghaddamAmjad RazzaghiReza |
| Collana | IEEE Press Series on Power and Energy Systems Series |
| Soggetto topico |
Sustainable development
Renewable energy sources |
| ISBN |
9781394188789
1394188781 9781394188765 1394188765 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- About the Editors -- Preface -- Chapter 1 The Necessity for Modernizing the Coupled Structure of Intelligent Transportation Systems and Multi-Energy Networks -- 1.1 Introduction -- 1.2 Applications of Intelligent Transportation Systems -- 1.3 Coupled Structure of ITSs and Multi-Energy Networks -- 1.4 Summary -- References -- Chapter 2 Green Transportation Systems -- 2.1 Introduction -- 2.1.1 Motivation and Problem Description -- 2.1.2 Literature Review -- 2.1.3 Chapter Organization -- 2.2 History of Transportation -- 2.3 Transportation Expansion Issues -- 2.3.1 Urbanization's Growth -- 2.3.2 Traffic Growth -- 2.3.3 Environmental Issues -- 2.4 Definition of Green Transportation -- 2.5 Advantages of Green Transportation -- 2.6 International Agreements -- 2.7 Challenges to GT -- 2.7.1 Institutional Challenges -- 2.7.2 Regulatory Challenges and Barriers -- 2.7.3 Technology-related Barriers -- 2.7.4 Financial Barriers -- 2.7.5 General Admission -- 2.8 Green Transportation's Effects on Multi-Energy Networks -- 2.9 Implementation Strategies for the Green Transportation System -- 2.9.1 Actions Performed to Promote Green Transportation -- 2.10 New Technologies for Green Transportation -- 2.10.1 Energy Technology -- 2.10.2 Environmentally Friendly Technologies -- 2.10.2.1 Greener Tires -- 2.10.2.2 Reusing Energy -- 2.11 Intelligent Transportation System -- 2.11.1 Vehicle Communication in Intelligent Transportation -- 2.12 Conclusion -- References -- Chapter 3 Techno-Economic-Environmental Assessment of Green Transportation Systems -- 3.1 Introduction -- 3.2 Technologies for Green Transportation Systems -- 3.2.1 Eco-Friendly and Energy-Efficient Technologies -- 3.2.2 Intelligent System Technologies -- 3.2.3 Integrated Management Technologies -- 3.2.4 Distributed Ledger Technologies.
3.3 Economic Implications of Green Transportation Systems -- 3.3.1 Cost Saving -- 3.3.2 Job Creation -- 3.4 Environmental Implications of Green Transportation Systems -- 3.4.1 Lowering Emission of Pollutants -- 3.4.2 Improving Human Health Status -- 3.5 Conclusion -- References -- Chapter 4 Urban Integrated Sustainable Transportation Networks -- 4.1 Introduction -- 4.2 Necessity of Sustainable Transportation -- 4.2.1 Impact of Conventional Transportation on Climate Change -- 4.2.2 Impact of Transportation-related Emissions on Public Health -- 4.2.3 Role of Road Transportation in Carbon Emissions -- 4.2.4 Existing Global Energy Market -- 4.2.5 Potential Approaches for Mitigating Emissions -- 4.3 Challenges and Opportunities Associated with the Implementation of Sustainable Transportation -- 4.3.1 Growing Car Sector -- 4.3.2 Urban Growth -- 4.3.3 Transformation Cost -- 4.3.4 Planning Challenges -- 4.3.5 Safety Risks -- 4.3.6 Security Challenges -- 4.3.7 Social Benefits -- 4.3.8 Environmental Benefits -- 4.3.9 Economic Benefits -- 4.4 Modes of Sustainable Transportation -- 4.4.1 Walk -- 4.4.2 Bicycle -- 4.4.3 Electric Bike/Scooter -- 4.4.4 Carpooling -- 4.4.5 Electric Car -- 4.4.6 Public Transportation -- 4.5 Sustainable Transportation in Modern Urban Advancement -- 4.5.1 Importance of Sustainable Transport in Urban Growth -- 4.5.1.1 Urban Planning -- 4.5.1.2 Smart Cities -- 4.5.1.3 Economic Growth -- 4.5.1.4 Promoting Sustainable Transport -- 4.6 Infrastructure for Sustainable Transportation -- 4.6.1 Governance -- 4.6.2 Interaction with Electricity Infrastructure -- 4.6.2.1 Electric Buses and the Power Grid -- 4.6.2.2 Operational Strategies -- 4.6.2.3 Compensation for the Minimum Demand Reduction -- 4.6.2.4 Flexible Operation of E-mobility -- 4.6.3 Features of Integrated Sustainable Transportation Networks. 4.6.3.1 Transport Resilience and Sustainability -- 4.6.4 Transition to a Sustainable Transportation -- 4.7 Conclusion -- References -- Chapter 5 Multi-Energy Technologies in Green and Integrated Transportation Networks -- 5.1 Introduction -- 5.2 Definition of Green Transportation -- 5.3 Technological Development and Managerial Integration for Green Transportation -- 5.3.1 Energy-Efficient Technology -- 5.3.2 Eco-Friendly Technology -- 5.3.3 Intelligent Transportation System (ITS) -- 5.3.4 Integrating Systems: Efficiency by Design -- 5.3.5 Energy Re-using -- 5.3.6 Solar Impulse Technology -- 5.3.7 Integrated Management for Green Transportation -- 5.3.7.1 Infrastructure Development -- 5.3.7.2 Alternative Measures in Urban Transportation -- 5.4 Definition and Features of Integrated Multi-Energy System -- 5.4.1 Definition of Integrated Multi-Energy System -- 5.4.2 Major Characteristics of Integrated Multi-Energy System -- 5.4.3 Role and Effects of Multi-Energy Conversion Systems in Green and Integrated Transportation Networks -- 5.5 Electric Vehicle Integration with Renewable Energy Sources -- 5.5.1 Electric Vehicle Integration with Wind Energy -- 5.5.2 Electric Vehicle Integration with Solar Energy -- 5.6 Hybrid Fuel Cell/Battery Vehicle Systems -- 5.6.1 PEMFC-Based Fuel Cell Vehicle Systems -- 5.6.2 SOFC-Based Fuel Cell Vehicle Systems -- 5.6.3 Present Situation of Fuel Cell Vehicle Technology -- 5.6.4 Confronts of Fuel Cell Vehicle Technology -- 5.7 Barriers and Challenges -- 5.7.1 Societal Barriers and Challenges -- 5.7.2 Technological Barriers and Challenges -- 5.7.3 Financial Barriers and Challenges -- 5.8 Conclusion -- References -- Chapter 6 Flexible Operation of Power-To-X Energy Systems in Transportation Networks -- Table of Acronyms -- 6.1 Introduction -- 6.1.1 Problem Description and Motivation -- 6.1.2 State of the Art. 6.1.3 Contributions and Organization -- 6.2 Power to Hydrogen -- 6.3 Power to Methane -- 6.4 Power to Chemical (P2C) -- 6.4.1 Power to Diesel (P2D) -- 6.4.2 Power-to-Formic Acid (P2FA) -- 6.4.3 Power to Methanol (P2Me) -- 6.5 Power to Heat (P2H) -- 6.6 Power to Transport (P2T) -- 6.7 Power Demand Flexibility -- 6.8 Conclusion -- References -- Chapter 7 Integration of Electric Vehicles into Multi-energy Systems -- Abbreviations -- 7.1 Introduction -- 7.2 Multi-energy Systems Structure -- 7.2.1 General Aspects of MES Modeling -- 7.2.2 Energy Hub Concept -- 7.2.3 MES Modeling Process and Challenges -- 7.3 Integration of EVs in MES -- 7.3.1 Integration of EV with RES -- 7.3.1.1 Integration of EV with Wind Energy -- 7.3.1.2 Integration of EV with Solar Energy -- 7.3.2 Integration of EV with Power Grids -- 7.3.2.1 EV and Distribution Systems -- 7.3.2.2 EV and Microgrids -- 7.3.2.3 EVs and Homes/Buildings -- 7.3.2.4 EV and EH -- 7.3.2.5 EV and Virtual Power Plants -- 7.3.3 EV Charging/Discharging Strategies -- 7.3.3.1 Vehicle-to-Everything (V2X) -- 7.3.3.2 Smart Bidirectional Charging -- 7.4 Conclusion -- References -- Chapter 8 Self-Driving Vehicle Systems in Intelligent Transportation Networks -- 8.1 Introduction -- 8.2 Brief History -- 8.3 Literature Review -- 8.4 Advantages and Challenges -- 8.5 Sensing -- 8.6 Perception -- 8.6.1 Object Detection and Tracking -- 8.6.2 Simultaneous Localization and Mapping -- 8.7 Planning and Control -- 8.8 Conclusion -- Acknowledgment -- References -- Chapter 9 Energy Storage Technologies and Control Systems for Electric Vehicles -- Acronyms -- 9.1 Introduction -- 9.2 Fuel Cell -- 9.2.1 Types of Fuel Cells -- 9.2.1.1 Proton Exchange Membrane Fuel Cell -- 9.2.1.2 Phosphoric Acid Fuel Cell (PAFC) -- 9.2.1.3 Alkaline Fuel Cell -- 9.2.1.4 Molten Carbonate Fuel Cell -- 9.2.1.5 Solid Oxide Fuel Cell. 9.2.1.6 Direct Methanol Fuel Cell -- 9.3 Battery Technologies for Electric Vehicles -- 9.3.1 Lead-Acid Batteries -- 9.3.2 Nickel-Cadmium Battery (NiCd) -- 9.3.3 Nickel-Metal-Hydride (Ni-MH) -- 9.3.4 Lithium-ion (Li-ion) -- 9.3.4.1 Lithium Cobalt Oxide (LiCoO2, LCO) -- 9.3.4.2 Lithium Manganese Oxide (LiMn2O4, LMO/Spinel) -- 9.3.4.3 Lithium Iron Phosphate (LiFePO4, LFP) -- 9.4 Overview of Brushless Motor -- 9.4.1 Mathematical Modeling of BLDC Motor -- 9.4.1.1 Electric Model of BLDC -- 9.4.1.2 Mechanical Model of BLDC -- 9.5 BLDC Motor Control Strategy for Electric Vehicles -- 9.5.1 PI Controller -- 9.5.2 PID Controller -- 9.5.3 Fuzzy Logic Controller -- 9.5.3.1 Fuzzification -- 9.5.3.2 Fuzzy Inference -- 9.5.3.3 Defuzzification -- 9.6 Simulation Results -- 9.7 Environnemental Impact of EVs -- 9.8 EVs and Modern Technologies -- 9.9 Challenges and Perspectives of EVs -- 9.10 Conclusion -- Acknowledgments -- References -- Chapter 10 Electric Vehicle Path Towards Sustainable Transportation: A Comprehensive Structure -- Nomenclature -- 10.1 Introduction -- 10.2 Optimum Design of EVs -- 10.3 Characterization of EV Battery System -- 10.3.1 Thermal Management of Battery -- 10.3.2 Assessment of Battery System -- 10.4 Control System of EVs -- 10.5 Reliability Assessment of EV -- 10.6 Assessment of EV Charging Station -- 10.6.1 Location Assessment for EV Charging Station -- 10.6.2 Characterization of Charging Station -- 10.7 Worldwide Policy Framework for EV -- 10.8 Electric Vehicles on the Sustainability and Reliability of Transportation Network -- 10.9 Recent Trends and Future Challenges -- References -- Chapter 11 Electric Vehicle Charging Management in Parking Structures -- 11.1 Introduction -- 11.2 EV Charging Management Schemes -- 11.3 Fair Charging Management -- 11.3.1 Preliminaries on á-Fairness -- 11.3.2 Generic-Fair Energy Allocation Algorithm. 11.4 Delay-Fair Charging Management. |
| Record Nr. | UNINA-9911019560203321 |
Daneshvar Mohammadreza
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Microgrids : The Path to Sustainability
| Microgrids : The Path to Sustainability |
| Autore | Anvari-Moghaddam Amjad |
| Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 |
| Descrizione fisica | 1 online resource (280 p.) |
| Soggetto topico | Technology: general issues |
| Soggetto non controllato |
aggregated load forecasting
bulk photovoltaic power generation forecasting centralized control architecture command-filtered adaptive backstepping control data pre-processing day-ahead operational scheduling DC bus voltage stabilization DC microgrid desalination dimensionality reduction distributed control architecture distribution network operator double externalities DRNN Bi-LSTM earthquake electricity price constraint electricity theft energy storage energy support error fuzzy control geographic information systems (GIS) hybrid control architecture imbalance data inertia support Iran load disaggregation Micro Grid microgrid MPPT non-intrusive load monitoring (NILM) parameter tuning photovoltaic grid-connected system PI controller power distribution network power flow control strategy power fluctuation power sharing prescribed performance principal component analysis (PCA) PV system reconfigurable microgrid renewable energy resilience improvement planning resource mapping site selection small signal stability smart grid smart home solar potential assessment solar renewable stochastic operation subsidy sustainability thermal load tracking speed VSG water distribution network water-energy-nexus |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Altri titoli varianti | Microgrids |
| Record Nr. | UNINA-9910557464603321 |
Anvari-Moghaddam Amjad
|
||
| Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Microgrids : advances in operation, control, and protection / / edited by Amjad Anvari-Moghaddam [and three others]
| Microgrids : advances in operation, control, and protection / / edited by Amjad Anvari-Moghaddam [and three others] |
| Edizione | [1st ed. 2021.] |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
| Descrizione fisica | 1 online resource (XI, 643 p. 338 illus., 265 illus. in color.) |
| Disciplina | 621.31 |
| Collana | Power Systems |
| Soggetto topico | Electric power production |
| ISBN | 3-030-59750-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Part I. Operation of Microgrids -- Chapter 1. An Introduction to Microgrids, Concepts, Definitions, and Classifications -- Chapter 2. Operation Management of Microgrid Clusters -- Chapter 3. Energy Management Systems for Microgrids -- Chapter 4. Optimal Dispatch and Unit Commitment in Microgrids -- Chapter 5. The Role of Energy Storage Systems in Microgrids Operation -- Chapter 6. Microgrids and Local Energy Markets -- Chapter 7. Economic assessment of microgrids integrated with demand-side management schemes -- Chapter 8. Microgrids Operation: Real-Time Perspectives and Challenges -- Chapter 9. Applications of Heuristic Techniques and Evolutionary Algorithms in Microgrids Optimization Problems -- Part 2. Control of Microgrids -- Chapter 10. Conventional droop methods for microgrids -- Chapter 11. Distributed control approaches for microgrids -- Chapter 12. On Control of Energy Storage Systems in Microgrids -- Chapter 13. Microgrid Stability Definitions, Analysis, and Examples -- Chapter 14. Voltage unbalance compensation in AC microgrids -- Chapter 15. WAM-based Hierarchical Control of Islanded AC Microgrids -- Part III. Protection of Microgrids -- Chapter 16. Fault Ride Through and Fault Current Management for Microgrids -- Chapter 17. Microgrid protection -- Chapter 18. A New Second Central Moment-Based Algorithm for Differential Protection in Micro-grids -- Chapter 19. Microgrids Protection with Conventional and Adaptive protection schemes -- Chapter 20. Fault Identification, Protection Schemes, and Restoration Requirements of Microgrids -- Chapter 21. Real-time testing of Microgrids. |
| Record Nr. | UNINA-9910484039203321 |
| Cham, Switzerland : , : Springer, , [2021] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Sustainable Energy Systems Planning, Integration and Management
| Sustainable Energy Systems Planning, Integration and Management |
| Autore | Mohammadi-ivatloo Behnam |
| Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2020 |
| Descrizione fisica | 1 online resource (286 p.) |
| Soggetto topico | History of engineering and technology |
| Soggetto non controllato |
agricultural pruning
Black Sea configurations of internal wall control system cuckoo search algorithm datacenter demand response dual robust optimization electric power energy energy and environmental systems energy consumption ensemble empirical mode decomposition environment FANP feature extraction field test and numerical simulation forecasting validity fuzzy logic gradient descent heat storage and release heat transfer hot summer and cold winter climate zone information gap decision theory (IGDT) information platform intermittent heating internal coverings load regulation MCDM meteorological variables mixed-integer non-linear programming problem (MINLP) multi-type bus operating organization multiple uncertainties n/a neural networks non-intrusive load monitoring novel method numerical models optimal chiller loading (OCL) performance evaluation photovoltaic systems product quality model product usability testing pruning biomass public transport pure electric buses renewable biomass energy renewable energy resampling risk aversion Romanian coastal environment rural residential building smart box smart grid smart logistics system solar energy solid waste to energy plant support vector machine sustainable development SWAN thermal comfort threshold value of daily operation hours time-space network TOPSIS uncertain cooling demand vehicular emissions wave energy wind speed forecasting wind velocities |
| ISBN | 3-03928-047-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910372783903321 |
Mohammadi-ivatloo Behnam
|
||
| MDPI - Multidisciplinary Digital Publishing Institute, 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||