top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Interdisciplinary statistics in Mexico : AME virtual meeting, September 10-11, 2020, and 34 FNE, Acatlán, Mexico, September 22-24, 2021 / / Isadora Antoniano-Villalobos [and three others] editors
Interdisciplinary statistics in Mexico : AME virtual meeting, September 10-11, 2020, and 34 FNE, Acatlán, Mexico, September 22-24, 2021 / / Isadora Antoniano-Villalobos [and three others] editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (234 pages)
Disciplina 519.5
Collana Springer proceedings in mathematics & statistics
Soggetto topico Mathematical statistics
Statistics
Estadística matemàtica
Soggetto genere / forma Congressos
Llibres electrònics
ISBN 3-031-12778-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- A Methodological Proposal to Model and Evaluate the Complexity of the Mexican Geo-Electoral System -- 1 Introduction -- 2 Methodological Framework -- 2.1 Conceptualization of Electoral Complexity -- 2.2 Statistical Indicators for Quantifying Electoral Complexity -- 2.3 Data Transformation, Electoral Complexity Indices, and Stratification -- 3 ECI Construction and Stratification -- 3.1 Exploratory Analysis and PCA Implementation -- 3.2 Clustering Analysis and Stratification with K-Means -- 4 Electoral Complexity Ranking and Stratification Results -- 5 Conclusions -- References -- A Spatial Analysis of Drug Dealing in Mexico City -- 1 Introduction -- 2 Background -- 2.1 Drug Dealing as Part of Organized Crime -- 2.2 Research Approaches -- 3 Methodology -- 4 Results -- 4.1 Univariate Global and Local Moran's I -- 4.2 Bivariate Global and Local Moran's I -- 5 Discussion and Conclusions -- References -- Bayesian Hierarchical Multinomial Modeling of the 2021 Mexican Election Outcomes with Censored Samples -- 1 Introduction -- 2 Background -- 2.1 Estimation Methods in the 2021 Quick Count -- 2.2 NBM Model Background -- 2.3 The Bias Problem -- 3 The NBM Model -- 3.1 Specification -- 3.2 Consistency of Our Modeling Assumptions -- 3.3 Fitting Procedure -- 3.4 Model Adequacy -- 4 The 2021 Mexican Elections -- 4.1 Data and Sample Design -- 4.2 Results -- 5 Conclusions and Future Work -- References -- Assessing Hospitalization for SARS-CoV-2 Confirmed Cases by a Cross-Entropy Weighted Ensemble Classifier -- 1 Introduction -- 2 Material -- 2.1 Dataset Description -- 2.2 Data Analysis -- 3 Cross-entropy Weighted Ensemble Classifier -- 4 Results -- 5 Discussion -- 6 Conclusion -- References -- Emotion Analysis to Identify Risk of Committing Suicide Using Statistical Learning -- 1 Background -- 2 Materials and Methods.
2.1 Emotion Mining -- 2.2 Statistical Learning Methods -- 2.3 Training and Test Datasets -- 3 Results -- 3.1 Supervised Models -- 3.2 Unsupervised Model -- 3.3 Model Comparison -- 3.4 Testing the Models with a New Test Set: COVID-19 -- 4 Conclusions -- References -- Characterizing Groups Using Latent Class Mixed Models: Antiretroviral Treatment Adherence Analysis -- 1 Introduction -- 2 Materials -- 2.1 Population -- 2.2 Data Collection -- 2.3 ART Adherence Definition -- 3 Latent Class Mixture Models -- 4 Results -- 4.1 Latent Classes from ART Adherence -- 4.2 Latent Classes for Bivariate Response of CD4/CD8 Ratio and CD4+T Within Groups of Adherence -- 5 Discussion and Conclusions -- References -- A Dynamic Model for Analyzing the Public Health Policy of the Mexican Government During the COVID-19 Pandemic -- 1 Introduction -- 2 Related Work -- 3 Methods -- 3.1 SIRD Model -- 3.2 Transmission Rate Model -- 3.3 Recovery Rate Estimation -- 3.4 Bayesian Inference -- 4 Results -- 5 Conclusions -- References -- Social Lag in the Municipalities of the State of Guerrero, México -- 1 Introduction -- 2 Methodology -- 2.1 CONEVAL -- 2.2 Clustering -- 3 Application -- 4 Results -- 4.1 CONEVAL -- 4.2 Cluster -- 4.3 Comparison -- 5 Conclusions -- References -- Challenges in Performing the Quick Counts of the National Electoral Institute in Mexico -- 1 Introduction -- 2 The Model -- 3 The Code -- 3.1 The Functional Code -- 3.2 First Idea: Use the Sample Design -- 3.3 Second Idea: Reach Out to the Community -- 4 Concluding Remarks -- References -- Sampling Design and Poststratification to Correct Lack of Information in Bayesian Quick Counts -- 1 Introduction -- 2 Model and Specifications -- 3 Sample Design -- 4 Incomplete Sample Estimation -- 4.1 General Strategy -- 4.2 Poststratification -- 4.3 Credibility Level Correction -- 5 Election Day -- 6 Conclusions.
References -- Maximum Likelihood Estimation for a Markov-Modulated Jump-Diffusion Model -- 1 Introduction -- 2 Markov-Modulated Jump-Diffusion Model -- 3 Methodology for the Maximum Likelihood Estimators -- 3.1 Identify the Jumps of the MJP -- 3.2 Estimate the Distribution of the Jumps -- 3.3 Estimate the Coefficients of the GBM -- 3.4 MLE of Q -- 4 Simulation Study -- 5 Real Data -- 6 Conclusions -- References -- Estimating the Composition of the Chamber of Deputies in the Quick Count for the 2021 Federal Election in Mexico -- 1 Introduction -- 1.1 The Quick Count -- 2 The Chamber of Deputies -- 2.1 Conformation -- 3 Estimation -- 3.1 Sampling Design -- 3.2 Bootstrap Estimation -- 4 Incomplete Samples -- 4.1 Multiple Imputation -- 5 Election Day: June 6, 2021 -- 5.1 Election Day Strategy -- 5.2 Arrival of Information -- 5.3 Estimations -- 6 Discussion -- A Appendix: Transforming Votes into Seats in the Deputy Chamber -- A.1 Relative Majority -- A.2 Voting Types Considered in the Law -- A.3 Proportional Representation -- References -- Bayesian Analysis of Homicide Rates in Mexico from 2000 to 2012 -- 1 Introduction -- 2 Literature Review -- 3 Data -- 4 Model Specification -- 5 Analysis and Results -- 6 Concluding Remarks -- References -- Index.
Record Nr. UNINA-9910633937503321
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Interdisciplinary statistics in Mexico : AME virtual meeting, September 10-11, 2020, and 34 FNE, Acatlán, Mexico, September 22-24, 2021 / / Isadora Antoniano-Villalobos [and three others] editors
Interdisciplinary statistics in Mexico : AME virtual meeting, September 10-11, 2020, and 34 FNE, Acatlán, Mexico, September 22-24, 2021 / / Isadora Antoniano-Villalobos [and three others] editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (234 pages)
Disciplina 519.5
Collana Springer proceedings in mathematics & statistics
Soggetto topico Mathematical statistics
Statistics
Estadística matemàtica
Soggetto genere / forma Congressos
Llibres electrònics
ISBN 3-031-12778-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- A Methodological Proposal to Model and Evaluate the Complexity of the Mexican Geo-Electoral System -- 1 Introduction -- 2 Methodological Framework -- 2.1 Conceptualization of Electoral Complexity -- 2.2 Statistical Indicators for Quantifying Electoral Complexity -- 2.3 Data Transformation, Electoral Complexity Indices, and Stratification -- 3 ECI Construction and Stratification -- 3.1 Exploratory Analysis and PCA Implementation -- 3.2 Clustering Analysis and Stratification with K-Means -- 4 Electoral Complexity Ranking and Stratification Results -- 5 Conclusions -- References -- A Spatial Analysis of Drug Dealing in Mexico City -- 1 Introduction -- 2 Background -- 2.1 Drug Dealing as Part of Organized Crime -- 2.2 Research Approaches -- 3 Methodology -- 4 Results -- 4.1 Univariate Global and Local Moran's I -- 4.2 Bivariate Global and Local Moran's I -- 5 Discussion and Conclusions -- References -- Bayesian Hierarchical Multinomial Modeling of the 2021 Mexican Election Outcomes with Censored Samples -- 1 Introduction -- 2 Background -- 2.1 Estimation Methods in the 2021 Quick Count -- 2.2 NBM Model Background -- 2.3 The Bias Problem -- 3 The NBM Model -- 3.1 Specification -- 3.2 Consistency of Our Modeling Assumptions -- 3.3 Fitting Procedure -- 3.4 Model Adequacy -- 4 The 2021 Mexican Elections -- 4.1 Data and Sample Design -- 4.2 Results -- 5 Conclusions and Future Work -- References -- Assessing Hospitalization for SARS-CoV-2 Confirmed Cases by a Cross-Entropy Weighted Ensemble Classifier -- 1 Introduction -- 2 Material -- 2.1 Dataset Description -- 2.2 Data Analysis -- 3 Cross-entropy Weighted Ensemble Classifier -- 4 Results -- 5 Discussion -- 6 Conclusion -- References -- Emotion Analysis to Identify Risk of Committing Suicide Using Statistical Learning -- 1 Background -- 2 Materials and Methods.
2.1 Emotion Mining -- 2.2 Statistical Learning Methods -- 2.3 Training and Test Datasets -- 3 Results -- 3.1 Supervised Models -- 3.2 Unsupervised Model -- 3.3 Model Comparison -- 3.4 Testing the Models with a New Test Set: COVID-19 -- 4 Conclusions -- References -- Characterizing Groups Using Latent Class Mixed Models: Antiretroviral Treatment Adherence Analysis -- 1 Introduction -- 2 Materials -- 2.1 Population -- 2.2 Data Collection -- 2.3 ART Adherence Definition -- 3 Latent Class Mixture Models -- 4 Results -- 4.1 Latent Classes from ART Adherence -- 4.2 Latent Classes for Bivariate Response of CD4/CD8 Ratio and CD4+T Within Groups of Adherence -- 5 Discussion and Conclusions -- References -- A Dynamic Model for Analyzing the Public Health Policy of the Mexican Government During the COVID-19 Pandemic -- 1 Introduction -- 2 Related Work -- 3 Methods -- 3.1 SIRD Model -- 3.2 Transmission Rate Model -- 3.3 Recovery Rate Estimation -- 3.4 Bayesian Inference -- 4 Results -- 5 Conclusions -- References -- Social Lag in the Municipalities of the State of Guerrero, México -- 1 Introduction -- 2 Methodology -- 2.1 CONEVAL -- 2.2 Clustering -- 3 Application -- 4 Results -- 4.1 CONEVAL -- 4.2 Cluster -- 4.3 Comparison -- 5 Conclusions -- References -- Challenges in Performing the Quick Counts of the National Electoral Institute in Mexico -- 1 Introduction -- 2 The Model -- 3 The Code -- 3.1 The Functional Code -- 3.2 First Idea: Use the Sample Design -- 3.3 Second Idea: Reach Out to the Community -- 4 Concluding Remarks -- References -- Sampling Design and Poststratification to Correct Lack of Information in Bayesian Quick Counts -- 1 Introduction -- 2 Model and Specifications -- 3 Sample Design -- 4 Incomplete Sample Estimation -- 4.1 General Strategy -- 4.2 Poststratification -- 4.3 Credibility Level Correction -- 5 Election Day -- 6 Conclusions.
References -- Maximum Likelihood Estimation for a Markov-Modulated Jump-Diffusion Model -- 1 Introduction -- 2 Markov-Modulated Jump-Diffusion Model -- 3 Methodology for the Maximum Likelihood Estimators -- 3.1 Identify the Jumps of the MJP -- 3.2 Estimate the Distribution of the Jumps -- 3.3 Estimate the Coefficients of the GBM -- 3.4 MLE of Q -- 4 Simulation Study -- 5 Real Data -- 6 Conclusions -- References -- Estimating the Composition of the Chamber of Deputies in the Quick Count for the 2021 Federal Election in Mexico -- 1 Introduction -- 1.1 The Quick Count -- 2 The Chamber of Deputies -- 2.1 Conformation -- 3 Estimation -- 3.1 Sampling Design -- 3.2 Bootstrap Estimation -- 4 Incomplete Samples -- 4.1 Multiple Imputation -- 5 Election Day: June 6, 2021 -- 5.1 Election Day Strategy -- 5.2 Arrival of Information -- 5.3 Estimations -- 6 Discussion -- A Appendix: Transforming Votes into Seats in the Deputy Chamber -- A.1 Relative Majority -- A.2 Voting Types Considered in the Law -- A.3 Proportional Representation -- References -- Bayesian Analysis of Homicide Rates in Mexico from 2000 to 2012 -- 1 Introduction -- 2 Literature Review -- 3 Data -- 4 Model Specification -- 5 Analysis and Results -- 6 Concluding Remarks -- References -- Index.
Record Nr. UNISA-996499866703316
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Selected Contributions on Statistics and Data Science in Latin America : 33 FNE and 13 CLATSE, 2018, Guadalajara, Mexico, October 1−5 / / edited by Isadora Antoniano-Villalobos, Ramsés H. Mena, Manuel Mendoza, Lizbeth Naranjo, Luis E. Nieto-Barajas
Selected Contributions on Statistics and Data Science in Latin America : 33 FNE and 13 CLATSE, 2018, Guadalajara, Mexico, October 1−5 / / edited by Isadora Antoniano-Villalobos, Ramsés H. Mena, Manuel Mendoza, Lizbeth Naranjo, Luis E. Nieto-Barajas
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (VIII, 154 p. 46 illus., 36 illus. in color.)
Disciplina 519.233
Collana Springer Proceedings in Mathematics & Statistics
Soggetto topico Markov processes
Statistics
Quantitative research
Big data
Markov Process
Applied Statistics
Bayesian Inference
Data Analysis and Big Data
Big Data
ISBN 3-030-31551-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Anzarut, M., González, L. F., and Ortiz, M. T: A Heavy-tailed Multilevel Mixture Model for the Quick Count in the Mexican Elections of 2018 -- Baltazar, F. and Esparza, L. J. R: Bayesian estimation for the Markov-Modulated Diffusion Risk Model -- Sergio, A. B., Johny, J. P., Ana, B. N., and Purificaci´on, G: Meta-analysis in DTA with hierarchical models Bivariate and HSROC: Simulation study -- Coen, A. and Chaparro, B. G: Compound Dirichlet Processes -- Guti´errez, E. and Walker, S. G: An efficient method to determine the degree of overlap of two multivariate distributions -- Mart´ınez, A. F.: Clustering via non-symmetric partition distributions -- Naranjo, L., Fuentes, R., and P´erez, C, J: A Flexible Replication-Based Classification Approach for Parkinson’s Disease Detection by Using Voice Recordings -- Novoa, F., Espinoza, S. C., P´erez, A. C., and Duque, I. H: Calibration of population growth mathematical models by using time series -- Castro, E. P., Jaimes, F. G., Rodr´ıguez, E. B., Carreto, R. R., Roque, R. L., Leyva, V. V: Impact of the Red Code process using structural equation models -- Esparza, L. J. R.: On a construction of stationary processes via Bilateral Matrix-Exponential distributions -- Richards, E. I. V., Gallagher, E., and Su´arez, P: BoostNet: Bootstrapping detection of socialbots, and a case study from Guatemala.
Record Nr. UNINA-9910360853903321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui