Autonomous airborne wireless networks / / editors, Muhammad Ali Imran, Oluwakayode Onireti, Shuja Ansari
| Autonomous airborne wireless networks / / editors, Muhammad Ali Imran, Oluwakayode Onireti, Shuja Ansari |
| Pubbl/distr/stampa | Hoboken, NJ : , : John Wiley & Sons, Inc., , [2021] |
| Descrizione fisica | 1 online resource (323 pages) |
| Disciplina | 621.384 |
| Collana | Wiley - IEEE Press. |
| Soggetto topico |
Drone aircraft
Wireless communication systems - Technological innovations |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-119-75170-5
1-119-75171-3 1-119-75169-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910555186803321 |
| Hoboken, NJ : , : John Wiley & Sons, Inc., , [2021] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Autonomous airborne wireless networks / / editors, Muhammad Ali Imran, Oluwakayode Onireti, Shuja Ansari
| Autonomous airborne wireless networks / / editors, Muhammad Ali Imran, Oluwakayode Onireti, Shuja Ansari |
| Pubbl/distr/stampa | Hoboken, NJ : , : John Wiley & Sons, Inc., , [2021] |
| Descrizione fisica | 1 online resource (323 pages) |
| Disciplina | 621.384 |
| Collana | Wiley - IEEE Press. |
| Soggetto topico |
Drone aircraft
Wireless communication systems - Technological innovations |
| ISBN |
1-119-75170-5
1-119-75171-3 1-119-75169-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910830645803321 |
| Hoboken, NJ : , : John Wiley & Sons, Inc., , [2021] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
The Role of 6G and Beyond on the Road to Net-Zero Carbon
| The Role of 6G and Beyond on the Road to Net-Zero Carbon |
| Autore | Imran Muhammad Ali |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Stevenage : , : Institution of Engineering & Technology, , 2023 |
| Descrizione fisica | 1 online resource (274 pages) |
| Disciplina | 363.738746 |
| Altri autori (Persone) |
TahaAhmad
AnsariShuja UsmanMuhammad AbbasiQammer H |
| Collana | Telecommunications Series |
| Soggetto topico |
6G mobile communication systems
Sustainable development |
| ISBN |
1-83724-445-6
1-5231-6310-0 1-83953-737-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Title -- Copyright -- Contents -- About the editors -- Preface -- 1 The role of mobile communication in achieving net zero: the current status -- 1.1 Efforts from the industry -- 1.2 Main sectors, use cases -- 1.2.1 Transportation -- 1.2.2 Energy -- 1.2.3 Industry/manufacturing -- 1.2.4 Agritech/farming -- 1.3 ICT and mobile networks as actors of power consumption -- 1.4 Challenges and possible solutions in reaching Net Zero Emissions in Telco infrastructures -- 1.5 Conclusions -- References -- 2 6G radio hardware-contributing to the net‒zero target -- 2.1 Introduction -- 2.2 Cell-free massive MIMO -- 2.2.1 Energy efficiency in CF mMIMO -- 2.3 Reconfigurable intelligent surfaces -- 2.4 Reconfigurable intelligent edges -- 2.5 Wireless power harvesting -- 2.6 Manufacturing sustainable hardware for 6G and beyond -- 2.7 Conclusion -- References -- 3 The role of 6G and beyond for urban air mobility and utilising space systems for road to net-zero carbon -- 3.1 Introduction -- 3.1.1 Smart mobility in mobile networks -- 3.1.2 Airborne network evolution -- 3.2 Role of ISTN in the future 6G-based urban air mobility: vision and architecture -- 3.2.1 Airspace division and radio network planning -- 3.2.2 Envisaged 6G technologies for UAM -- 3.2.3 Uncharted frequency bands -- 3.2.4 Intelligent reflecting surfaces -- 3.2.5 Massive intelligence -- 3.2.6 Low Earth orbit satellite backhaul -- 3.2.7 Quantum computing -- 3.3 KPIs for enabling 6G AWN mobility -- 3.3.1 Retainability -- 3.3.2 Mobility -- 3.4 Challenges, threats, and opportunities -- 3.5 The role of UAVs in the future mobile networks and their unique characteristics -- 3.5.1 UAV characteristics -- 3.5.2 Applications and use cases of UAVs -- 3.6 Solutions for space systems utilising for reaching global net-zero target -- 3.7 Conclusions -- References.
4 Sustainable RF wireless power transfer and energy harvesting and their applications -- 4.1 RF power harvesting and conversion methods -- 4.1.1 Device-level considerations: rectifiers -- 4.1.2 Antenna topologies and simultaneous wireless information and power transfer -- 4.2 Sustainable wearable and biomedical applications and approaches -- 4.2.1 Materials and fabrication process -- 4.2.2 Safety consideration and practical deployment -- 4.3 Emerging systems and applications -- 4.4 Summary and conclusions -- References -- 5 Long distance power transmission -- 5.1 Introduction -- 5.2 UAV-assisted wireless networking -- 5.2.1 Brief state-of-the-art -- 5.3 Reconfigurable intelligent surfaces (RIS) -- 5.3.1 Brief state-of-the-art -- 5.4 RIS and UAV cooperation in wireless networking -- 5.4.1 Brief state-of-the-art -- 5.5 Satellite communications -- 5.5.1 Brief state-of-the-art -- 5.6 Role of machine learning as an enabler -- 5.7 Summary -- References -- 6 Energy-efficient architectures for 6G networks -- 6.1 Overview of 6G networks -- 6.1.1 6G and technical requirements -- 6.1.2 Candidate technologies -- 6.2 Artificial intelligence and edge computing for energy savings in 6G -- 6.3 Zero-energy devices and 6G networks -- 6.4 Climate change and societal transformations -- 6.5 6G and future smart power systems -- 6.5.1 Microgrids and distribution networks -- 6.5.2 Renewable energy integration -- 6.5.3 Improved grid resilience -- 6.6 Case study 1: 6G and demand response -- 6.7 Case study 2: power system frequency control with EV networks -- 6.8 Conclusions -- References -- 7 Energy-efficient UAV communication and deployment -- 7.1 Introduction -- 7.1.1 UAV deployment -- 7.1.2 UAV energy efficiency -- 7.1.3 UAV-assisted index modulation -- 7.1.4 Contributions -- 7.2 IM-UAV communication system -- 7.2.1 Review of the concept of IM. 7.2.2 Proposed IM-UAV system model -- 7.2.3 Channel model -- 7.2.4 UAV deployment for the IM-UAV communication system -- 7.2.5 Low-complexity detection -- 7.3 Simulation results -- 7.4 Conclusion -- References -- 8 Cooperative intelligent transport systems for net-zero -- 8.1 Overview of ITS worldwide -- 8.2 Construction and design of VANETs -- 8.2.1 V2I communications -- 8.2.2 V2V communications -- 8.2.3 An overview of VANET protocol stacks -- 8.3 Security and privacy objectives -- 8.3.1 Privacy requirements -- 8.3.2 Security requirements -- 8.4 Challenges and security concerns -- 8.5 Towards 6G-based V2X communication -- 8.5.1 Revolutionary technologies for 6G-V2X -- 8.5.2 Evolutionary technologies for 6G-V2X -- 8.6 Conclusions -- References -- 9 Intelligent reflective surfaces (IRSs) for green networks -- 9.1 Smart radio environment and IRS -- 9.2 Overview of IRS technology, its properties, and how it works -- 9.2.1 IRS structure and control mechanism -- 9.2.2 IRS passive beamforming -- 9.3 IRS applications -- 9.3.1 IRS-assisted B5G and 6G networks -- 9.3.2 IRS-enabled smart cities and IoT networks -- 9.3.3 IRS for wireless power transfer -- 9.3.4 IRS-assisted UAV networks -- 9.4 IRS vs. active solutions: an environmental point of view -- 9.4.1 Power efficiency -- 9.4.2 Sustainable infrastructure -- 9.5 Conclusion and future research directions -- References -- 10 Energy efficient optical receivers for next generation non-terrestrial communication networks -- 10.1 Introduction -- 10.1.1 Motivation behind using a detector array receiver in free-space optical communications -- 10.1.2 Detector arrays in free-space optics: a background literature review -- 10.1.3 Energy savings with a detector array receiver -- 10.1.4 Model assumptions -- 10.1.5 Organization of the chapter -- 10.2 Symbol detection performance of an array of detectors. 10.2.1 Combining schemes with an array of detectors -- 10.3 Angle-of-arrival tracking with an array of detectors -- 10.4 Joint symbol detection and tracking with a detector array receiver -- 10.5 A brief complexity analysis -- 10.6 Experimental results and comments -- 10.7 Conclusion -- References -- 11 The role of 6G in green energy generation -- 11.1 Introduction -- 11.2 Advantages of 6G technology for green energy generation -- 11.3 Edge computing and energy systems -- 11.4 6G edge computing and SGs -- 11.4.1 Self-healing in SGs -- 11.4.2 Forecasting in SGs -- 11.4.3 Wireless charging in SGs -- 11.5 6G supporting edge AI -- 11.6 6G and SGs challenges -- 11.7 6G supporting P2P trading -- 11.7.1 6G P2P in VPPs -- 11.8 6G and energy Internet -- 11.9 Conclusion -- References -- Conclusion -- Paving the way to a net-zero carbon future with 6G -- Index. |
| Record Nr. | UNINA-9911007172303321 |
Imran Muhammad Ali
|
||
| Stevenage : , : Institution of Engineering & Technology, , 2023 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||