Generalized point models in structural mechanics [[electronic resource] /] / Ivan V. Andronov
| Generalized point models in structural mechanics [[electronic resource] /] / Ivan V. Andronov |
| Autore | Andronov I. V (Ivan V.) |
| Pubbl/distr/stampa | Singapore ; ; River Edge, N.J., : World Scientific, c2002 |
| Descrizione fisica | 1 online resource (276 p.) |
| Disciplina |
515.35
624.1/71 624.171 |
| Collana | Series on stability, vibration, and control of systems. Series A |
| Soggetto topico |
Structural analysis (Engineering) - Mathematical models
Structural engineering |
| Soggetto genere / forma | Electronic books. |
| ISBN | 981-277-790-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Contents ; Preface ; Chapter 1 Vibrations of Thin Elastic Plates and Classical Point Models ; 1.1 Kirchhoff model for flexural waves ; 1.1.1 Fundamentals of elasticity ; 1.1.2 Flexural deformations of thin plates ; 1.1.3 Differential operator and boundary conditions
1.1.4 Flexural waves 1.2 Fluid loaded plates ; 1.3 Scattering problems and general properties of solutions ; 1.3.1 Problem formulation ; 1.3.2 Green's function of unperturbed problem ; 1.3.3 Integral representation ; 1.3.4 Optical theorem ; 1.3.5 Uniqueness of the solution 1.3.6 Flexural wave concentrated near a circular hole 1.4 Classical point models ; 1.4.1 Point models in two dimensions ; 1.4.2 Scattering by crack at oblique incidence ; 1.4.3 Point models in three dimensions ; 1.5 Scattering problems for plates with infinite crack 1.5.1 General properties of boundary value problems 1.5.2 Scattering problems in isolated plates ; 1.5.3 Scattering by pointwise joint ; Chapter 2 Operator Methods in Diffraction ; 2.1 Abstract operator theory ; 2.1.1 Hilbert space ; 2.1.2 Operators 2.1.3 Adjoint symmetric and selfadjoint operators 2.1.4 Extension theory ; 2.2 Space L2 and differential operators ; 2.2.1 Hilbert space L2 ; 2.2.2 Generalized derivatives ; 2.2.3 Sobolev spaces and embedding theorems ; 2.3 Problems of scattering ; 2.3.1 Harmonic operator 2.3.2 Bi-harmonic operator |
| Record Nr. | UNINA-9910458069303321 |
Andronov I. V (Ivan V.)
|
||
| Singapore ; ; River Edge, N.J., : World Scientific, c2002 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Generalized point models in structural mechanics [[electronic resource] /] / Ivan V. Andronov
| Generalized point models in structural mechanics [[electronic resource] /] / Ivan V. Andronov |
| Autore | Andronov I. V (Ivan V.) |
| Pubbl/distr/stampa | Singapore ; ; River Edge, N.J., : World Scientific, c2002 |
| Descrizione fisica | 1 online resource (276 p.) |
| Disciplina |
515.35
624.1/71 624.171 |
| Collana | Series on stability, vibration, and control of systems. Series A |
| Soggetto topico |
Structural analysis (Engineering) - Mathematical models
Structural engineering |
| ISBN | 981-277-790-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Contents ; Preface ; Chapter 1 Vibrations of Thin Elastic Plates and Classical Point Models ; 1.1 Kirchhoff model for flexural waves ; 1.1.1 Fundamentals of elasticity ; 1.1.2 Flexural deformations of thin plates ; 1.1.3 Differential operator and boundary conditions
1.1.4 Flexural waves 1.2 Fluid loaded plates ; 1.3 Scattering problems and general properties of solutions ; 1.3.1 Problem formulation ; 1.3.2 Green's function of unperturbed problem ; 1.3.3 Integral representation ; 1.3.4 Optical theorem ; 1.3.5 Uniqueness of the solution 1.3.6 Flexural wave concentrated near a circular hole 1.4 Classical point models ; 1.4.1 Point models in two dimensions ; 1.4.2 Scattering by crack at oblique incidence ; 1.4.3 Point models in three dimensions ; 1.5 Scattering problems for plates with infinite crack 1.5.1 General properties of boundary value problems 1.5.2 Scattering problems in isolated plates ; 1.5.3 Scattering by pointwise joint ; Chapter 2 Operator Methods in Diffraction ; 2.1 Abstract operator theory ; 2.1.1 Hilbert space ; 2.1.2 Operators 2.1.3 Adjoint symmetric and selfadjoint operators 2.1.4 Extension theory ; 2.2 Space L2 and differential operators ; 2.2.1 Hilbert space L2 ; 2.2.2 Generalized derivatives ; 2.2.3 Sobolev spaces and embedding theorems ; 2.3 Problems of scattering ; 2.3.1 Harmonic operator 2.3.2 Bi-harmonic operator |
| Record Nr. | UNINA-9910784515103321 |
Andronov I. V (Ivan V.)
|
||
| Singapore ; ; River Edge, N.J., : World Scientific, c2002 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Problems of high frequency diffraction by elongated bodies / / Ivan Andronov
| Problems of high frequency diffraction by elongated bodies / / Ivan Andronov |
| Autore | Andronov I. V (Ivan V.) |
| Edizione | [1st ed. 2023.] |
| Pubbl/distr/stampa | Singapore : , : Springer, , [2023] |
| Descrizione fisica | 1 online resource (XII, 188 p. 43 illus., 6 illus. in color.) |
| Disciplina | 381 |
| Collana | Springer Series in Optical Sciences |
| Soggetto topico | Diffraction |
| ISBN | 981-9912-76-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | High-frequency diffraction and elongated bodies -- Diffraction by an elliptic cylinder -- Acoustic waves diffraction by spheroid -- Electromagnetic waves diffraction by spheroid -- Other strongly elongated shapes. |
| Record Nr. | UNINA-9910698640303321 |
Andronov I. V (Ivan V.)
|
||
| Singapore : , : Springer, , [2023] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||