top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Chemical reaction kinetics : concepts, methods, and case studies / / Prof. Jorge Ancheyta
Chemical reaction kinetics : concepts, methods, and case studies / / Prof. Jorge Ancheyta
Autore Ancheyta Jorge
Pubbl/distr/stampa Hoboken, NJ : , : John Wiley & Sons, Inc., , 2017
Descrizione fisica 1 online resource
Disciplina 541/.394
Soggetto topico Chemical kinetics
Chemical reactions
ISBN 1-119-22700-3
1-5231-1496-7
1-119-22665-1
1-119-22666-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Fundamentals of chemical reaction kinetics -- Irreversible reactions of one component -- Irreversible reactions with two or three components -- Reversible reactions -- Complex reactions -- Special topics in kinetic modeling -- Conclusions.
Record Nr. UNINA-9910830213103321
Ancheyta Jorge  
Hoboken, NJ : , : John Wiley & Sons, Inc., , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Deactivation of heavy oil hydroprocessing catalysts : fundamentals and modeling / / Jorge Ancheyta
Deactivation of heavy oil hydroprocessing catalysts : fundamentals and modeling / / Jorge Ancheyta
Autore Ancheyta Jorge
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, , [2016]
Descrizione fisica 1 online resource (339 p.)
Disciplina 622/.33827
Soggetto topico Petroleum - Refining
Catalyst poisoning
ISBN 1-118-76991-0
1-5231-0978-5
1-118-76981-3
1-118-76963-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Properties of heavy oils -- Properties of catalysts for heavy oil hydroprocessing -- Deactivation of hydroprocessing catalysts -- Characterization of spent hydroprocessing catalyst -- Modeling catalyst deactivation.
Record Nr. UNINA-9910134876803321
Ancheyta Jorge  
Hoboken, New Jersey : , : John Wiley & Sons, , [2016]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Deactivation of heavy oil hydroprocessing catalysts : fundamentals and modeling / / Jorge Ancheyta
Deactivation of heavy oil hydroprocessing catalysts : fundamentals and modeling / / Jorge Ancheyta
Autore Ancheyta Jorge
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, , [2016]
Descrizione fisica 1 online resource (339 p.)
Disciplina 622/.33827
Soggetto topico Petroleum - Refining
Catalyst poisoning
ISBN 1-118-76991-0
1-5231-0978-5
1-118-76981-3
1-118-76963-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Properties of heavy oils -- Properties of catalysts for heavy oil hydroprocessing -- Deactivation of hydroprocessing catalysts -- Characterization of spent hydroprocessing catalyst -- Modeling catalyst deactivation.
Record Nr. UNINA-9910825025503321
Ancheyta Jorge  
Hoboken, New Jersey : , : John Wiley & Sons, , [2016]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mathematical Modeling of Complex Reaction Systems in the Oil and Gas Industry
Mathematical Modeling of Complex Reaction Systems in the Oil and Gas Industry
Autore Ancheyta Jorge
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (482 pages)
Disciplina 541.39015118
Altri autori (Persone) ZagoruikoAndrey
ElyshevAndrey
ISBN 9781394220038
9781394220021
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Chapter 1 Modeling the Kinetics of Hydrocracking of Heavy Oil with Mineral Catalyst -- 1.1 Introduction -- 1.1.1 Reserves and Production of Heavy Crude Oils -- 1.1.2 Heavy Crude Oil Upgrading Processes -- 1.1.3 Reactions During Slurry Phase Hydrocracking -- 1.1.4 Catalysts for Hydrocracking of Heavy Crude Oils in Slurry Phase -- 1.2 Kinetic Models -- 1.2.1 General Types of Kinetic Models -- 1.2.1.1 Lumping Kinetic Models -- 1.2.1.2 Continuous Lumping Kinetic Models -- 1.2.1.3 Single-Event. Kinetic Models -- 1.2.2 Kinetic Models Reported in the Literature for Hydrocracking of Heavy Crude Oils Using Dispersed Catalysts -- 1.2.2.1 Kinetic Models Based on Distillation Curves -- 1.2.2.2 Kinetic Models Based on SARA Fractions -- 1.2.3 Kinetic Models Based on Continuous Lumping -- 1.2.4 Thermodynamic Model to Predict the Asphaltenes Flocculation and Sediments Formation -- 1.3 Kinetic Parameters Estimation -- 1.3.1 Assumptions -- 1.3.2 Initialization of Parameters -- 1.3.3 Nonlinear Optimization -- 1.3.4 Objective Function -- 1.3.5 Sensitivity and Statistical Analyses -- 1.3.5.1 Perturbations -- 1.3.5.2 Parity Plots -- 1.3.5.3 Residuals -- 1.3.5.4 AIC and BIC -- 1.4 Results and Discussion -- 1.4.1 Kinetic Parameters -- 1.4.1.1 Assumptions -- 1.4.1.2 Reaction Rate Coefficients -- 1.4.1.3 Activation Energies -- 1.4.2 Accuracy of the Kinetic Models -- 1.4.2.1 SARA-Based. Models -- 1.4.2.2 Distillation Curves-Based Models -- 1.4.3 Reactions in Parallel and in Series -- 1.4.4 Thermodynamic Model -- 1.4.5 General Comments -- 1.5 Conclusion -- References -- Chapter 2 Modeling Catalyst Deactivation of Hydrotreating of Heavy Oils -- 2.1 Introduction -- 2.2 Mechanisms of Deactivation -- 2.2.1 Coking Deposition (Fouling) -- 2.2.2 Metal Deposition (Poisoning).
2.3 Deactivation Models -- 2.3.1 Deactivation Models by Coke Deposition -- 2.3.2 Deactivation Models by Metal Deposition -- 2.3.3 Deactivation Models by Coke and Metal Deposition -- 2.4 Development of Models for HDT Catalyst Deactivation -- 2.4.1 Important Issues -- 2.4.2 Final Remarks -- 2.5 Development of a Reactor Model for Heavy Oil Hydrotreating with Catalyst Deactivation Based on Vanadium and Coke Deposition -- 2.5.1 The Model -- 2.5.1.1 Description -- 2.5.1.2 Solution of the Model -- 2.5.1.3 Advantages of the Model -- 2.5.1.4 Procedure for Parameter Estimation -- 2.5.2 Results and Discussion -- 2.5.2.1 Profiles of Sulfur and Vanadium Concentration in Products -- 2.5.2.2 Comparison of Predictions with Literature and Proposed Model -- 2.5.2.3 Profiles of Coke and Vanadium on Catalyst -- 2.5.2.4 Final Remarks -- 2.5.3 Usefulness of the Model -- 2.5.4 Conclusion -- 2.6 Application of the Deactivation Model for Hydrotreating of.Heavy Crude Oil in Bench-Scale Reactor -- 2.6.1 Properties of Heavy Oil -- 2.6.2 Properties of the Catalyst -- 2.6.3 Bench-Scale Reactor -- 2.6.4 Catalyst Activation -- 2.6.5 Operating Conditions -- 2.6.6 Characterization Methods -- 2.6.7 Parameter Estimation -- 2.6.8 Results and Discussion -- 2.6.8.1 Evolution of Sulfur and Metals Concentration in Products -- 2.6.8.2 Coke and Metals on Catalyst -- 2.6.9 Conclusion -- Nomenclature -- References -- Chapter 3 Simulation of the Oxidative Regeneration of Coked Catalysts: Kinetics, Catalyst Pellet, and Bed Levels -- 3.1 Introduction -- 3.2 Process Chemistry and Laboratory Experiments -- 3.2.1 Catalyst and Proposed Reactions -- 3.2.2 Reaction Kinetics -- 3.2.3 Experimental Setup -- 3.2.4 Experiments -- 3.3 Mathematical Model -- 3.4 Model Solution Method -- 3.5 Modeling Results -- 3.6 Conclusion -- 3.7 Notation -- Abbreviations -- Acknowledgment -- References.
Chapter 4 Modeling of Unsteady-State Catalytic and Adsorption-Catalytic Processes: Novel Reactor Designs -- 4.1 Introduction -- 4.2 Novel Reactor Designs for Catalytic Reverse-Flow and Adsorption-Catalytic Processes -- 4.2.1 Unsteady-State Catalytic Reverse-Flow Process -- 4.2.2 Adsorption-Catalytic Process -- 4.3 Mathematical Models of the Processes -- 4.3.1 Unsteady-State Catalytic Reverse-Flow Process -- 4.3.2 Adsorption-Catalytic Process -- 4.4 Results -- 4.4.1 Unsteady-State Catalytic Reverse-Flow Process -- 4.4.2 Adsorption-Catalytic Process -- 4.4.2.1 Reactor with Truncated Cone Entrance -- 4.4.2.2 Multisectional Reactor -- 4.5 Conclusion -- 4.6 Notation -- Abbreviations -- Acknowledgments -- References -- Chapter 5 Molecular Reconstruction of Complex Hydrocarbon Mixtures for Modeling of Heavy Oil Processing -- 5.1 Introduction -- 5.2 The Problem -- 5.3 Illustration -- 5.4 Reconstruction by Entropy Maximization (REM) -- 5.5 Stochastic Reconstruction (SR) -- 5.6 SR-EM -- 5.7 Structure-Oriented. Lumping (SOL) Method -- 5.8 State Space Representation Method -- 5.9 Molecular Type-Homologous Series Matrix -- 5.10 Conclusion -- Acknowledgment -- References -- Chapter 6 Modeling of Catalytic Hydrotreating Reactor for Production of Green Diesel -- 6.1 Introduction -- 6.2 Conversion of Vegetable Oils into Renewable Fuels -- 6.2.1 Commercial Production of Renewable Diesel -- 6.3 Hydrotreating Kinetic Models and Reaction Pathways -- 6.3.1 Model Compounds -- 6.3.2 Vegetable Oils -- 6.4 Models for Catalytic Deactivation -- 6.5 Reactor Modeling for Vegetable Oil Hydrotreating -- 6.5.1 Deviation from Ideal Flow Pattern -- 6.6 The Importance of Modelling Reactors for Vegetable Oil Hydrotreating -- 6.7 Study Case for the Development of Dynamic Reactor Model -- 6.7.1 .Equations.and Assumptions for Hydrotreating Reactor Modeling.
6.7.2 Kinetic Model for Hydrotreating of Vegetable Oil -- 6.7.3 Hydrogen Consumption and Gas Generation -- 6.7.4 Solution of Reactor Models -- 6.8 Analysis and Discussion of Results -- 6.8.1 Criteria to Ensure Ideal Behaviors in Trickle-Bed Reactor -- 6.8.2 Dynamic Profiles of Feedstock and Products of a Bench-Scale Reactor for.Catalytic Hydrotreating of Vegetable Oil -- 6.8.3 Validation of Hydrotreating Reactor Model with Pilot Plant Data -- 6.8.4 Dynamic Simulation of a Non-isothermal Reactor -- 6.8.4.1 Comparison of Non-isothermal Model with Experimental Results in Isothermal Reactor -- 6.8.4.2 Comparison of Bench-Scale and Pilot-Scale. Reactor Under Non-isothermal Operating.Condition -- 6.8.5 Dynamic Simulation of an Adiabatic Commercial Reactor -- 6.8.5.1 Configuration of Hydrogen Quenching -- 6.8.5.2 Liquid-Phase. Yields and Gas Composition -- 6.9 Conclusions -- References -- Chapter 7 Modeling of Slurry-Phase Hydrocracking Reactor -- 7.1 Introduction -- 7.1.1 Characteristics of Slurry-Phase Reactors for Hydrocracking -- 7.1.1.1 Type of Reactors -- 7.1.1.2 Catalyst Properties -- 7.1.2 SPR Modeling -- 7.1.2.1 Classification -- 7.1.2.2 Model Complexity -- 7.1.2.3 Models for Slurry Reactors -- 7.2 Proposed Generalized Model -- 7.2.1 .Equations for the Generalized Model -- 7.2.2 Solids Concentration -- 7.2.3 Initial and Boundary Conditions -- 7.2.4 Estimation of Model Parameters -- 7.2.5 Gas Holdup -- 7.2.6 Gas-Liquid Mass Transfer Coefficients -- 7.2.7 Gas-Liquid. Equilibrium -- 7.2.8 Liquid-Solid and Gas-Solid Mass Transfer Coefficients -- 7.2.9 Dispersion Coefficients -- 7.2.10 Heat Transfer Coefficients -- 7.2.11 Example of Simplification of the Generalized Model -- 7.3 Simplified Models -- 7.3.1 SPR 1D Model -- 7.3.2 SPR 2D Model -- 7.3.3 Continous Stirred Tank Reactor Model -- 7.3.4 Parameters -- 7.3.5 Reaction Kinetics.
7.3.6 Solution Method -- 7.4 Numerical Simulations -- 7.4.1 Experimental Reactors -- 7.4.1.1 Dynamic Simulations of CSTR and SPR -- 7.4.1.2 Steady-State Simulations of a SPR -- 7.4.2 Industrial-Scale Reactor -- 7.4.2.1 Dynamic Simulations of the Industrial Slurry-Phase Reactor -- 7.4.2.2 Sensitivity Analysis for the Industrial Slurry-Phase Reactor -- 7.5 Conclusions -- Nomenclature -- References -- Chapter 8 Modeling of Fischer-Tropsch Synthesis Reactor -- 8.1 Fundamentals of the Fischer-Tropsch Synthesis to Produce Clean Fuels -- 8.1.1 Fischer-Tropsch Synthesis Technology -- 8.1.2 Fischer-Tropsch Synthesis Catalysts -- 8.1.2.1 Cobalt-Based Catalysts -- 8.1.2.2 Iron-Based Catalysts -- 8.1.2.3 Catalyst Support -- 8.1.3 Fischer-Tropsch Synthesis Kinetic Models -- 8.1.3.1 Kinetic Models Developed with Iron Catalyst -- 8.1.3.2 Kinetic Models Developed with Cobalt Catalyst -- 8.1.4 General Aspects of Fischer-Tropsch Catalytic Mechanisms -- 8.1.5 The Fischer-Tropsch Synthesis Product Distribution Models -- 8.1.6 Final Remarks -- 8.2 Modeling of Catalytic Fixed-Bed Reactors for Fuels Production by Fischer-Tropsch Synthesis -- 8.2.1 Introduction -- 8.2.2 Modeling of Fixed-Bed Fischer-Tropsch Reactors -- 8.2.2.1 Classification of Fixed-Bed Fischer-Tropsch Reactor Models -- 8.2.2.2 One- and Two-Dimensional Pseudohomogeneous Model -- 8.2.2.3 One- and Two-Dimensional Heterogeneous Model -- 8.2.3 Development of a Generalized Fixed-Bed Fischer-Tropsch Reactor Model -- 8.2.3.1 General Equations.of the Model -- 8.2.3.2 Boundary Conditions of the Proposed Generalized Model -- 8.2.3.3 Pressure Drop -- 8.2.4 Model Parameters -- 8.2.4.1 Mass Transfer Parameters -- 8.2.4.2 Heat Transfer Parameters -- 8.2.4.3 Phase Equilibrium -- 8.2.4.4 Catalyst Particles Parameters -- 8.2.4.5 Catalytic Bed Parameters -- 8.2.5 Final Remarks.
8.3 Importance of Proper Hydrodynamics Modeling in Fixed-Bed Fischer-Tropsch Synthesis Reactor.
Record Nr. UNINA-9910878994703321
Ancheyta Jorge  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Modeling and simulation of catalytic reactors for petroleum refining [[electronic resource] /] / Jorge Ancheyta
Modeling and simulation of catalytic reactors for petroleum refining [[electronic resource] /] / Jorge Ancheyta
Autore Ancheyta Jorge
Pubbl/distr/stampa Hoboken, NJ, : Wiley, c2011
Descrizione fisica 1 online resource (525 p.)
Disciplina 665.5/3
Soggetto topico Catalytic reforming - Simulation methods
Petroleum - Refining
ISBN 1-118-00216-4
1-283-05233-4
9786613052339
0-470-93356-9
0-470-93355-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto MODELING AND SIMULATION OF CATALYTIC REACTORS FOR PETROLEUM REFINING; CONTENTS; PREFACE; ABOUT THE AUTHOR; 1: PETROLEUM REFINING; 1.1 PROPERTIES OF PETROLEUM; 1.2 ASSAY OF CRUDE OILS; 1.3 SEPARATION PROCESSES; 1.3.1 Crude Oil Pretreatment: Desalting; 1.3.2 Atmospheric Distillation; 1.3.3 Vacuum Distillation; 1.3.4 Solvent Extraction and Dewaxing; 1.3.5 Deasphalting; 1.3.6 Other Separation Processes; 1.4 UPGRADING OF DISTILLATES; 1.4.1 Catalytic Reforming; 1.4.2 Isomerization; 1.4.3 Alkylation; 1.4.4 Polymerization; 1.4.5 Catalytic Hydrotreating; 1.4.6 Fluid Catalytic Cracking
1.5 UPGRADING OF HEAVY FEEDS1.5.1 Properties of Heavy Oils; 1.5.2 Process Options for Upgrading Heavy Feeds; 2: REACTOR MODELING IN THE PETROLEUM REFINING INDUSTRY; 2.1 DESCRIPTION OF REACTORS; 2.1.1 Fixed-Bed Reactors; 2.1.2 Slurry-Bed Reactors; 2.2 DEVIATION FROM AN IDEAL FLOW PATTERN; 2.2.1 Ideal Flow Reactors; 2.2.2 Intrareactor Temperature Gradients; 2.2.3 Intrareactor Mass Gradients; 2.2.4 Wetting Effects; 2.2.5 Wall Effects; 2.3 KINETIC MODELING APPROACHES; 2.3.1 Traditional Lumping; 2.3.2 Models Based on Continuous Mixtures; 2.3.3 Structure-Oriented Lumping and Single-Event Models
2.4 REACTOR MODELING2.4.1 Classification and Selection of Reactor Models; 2.4.2 Description of Reactor Models; 2.4.3 Generalized Reactor Model; 2.4.4 Estimation of Model Parameters; REFERENCES; NOMENCLATURE; 3: MODELING OF CATALYTIC HYDROTREATING; 3.1 THE HYDROTREATING PROCESS; 3.1.1 Characteristics of HDT Reactors; 3.1.2 Process Variables; 3.1.3 Other Process Aspects; 3.2 FUNDAMENTALS OF HYDROTREATING; 3.2.1 Chemistry; 3.2.2 Thermodynamics; 3.2.3 Kinetics; 3.2.4 Catalysts; 3.3 REACTOR MODELING; 3.3.1 Effect of Catalyst Particle Shape; 3.3.2 Steady-State Simulation
3.3.3 Simulation of a Commercial HDT Reactor with Quenching3.3.4 Dynamic Simulation; 3.3.5 Simulation of Countercurrent Operation; REFERENCES; NOMENCLATURE; 4: MODELING OF CATALYTIC REFORMING; 4.1 THE CATALYTIC REFORMING PROCESS; 4.1.1 Description; 4.1.2 Types of Catalytic Reforming Processes; 4.1.3 Process Variables; 4.2 FUNDAMENTALS OF CATALYTIC REFORMING; 4.2.1 Chemistry; 4.2.2 Thermodynamics; 4.2.3 Kinetics; 4.2.4 Catalysts; 4.3 REACTOR MODELING; 4.3.1 Development of the Kinetic Model; 4.3.2 Validation of the Kinetic Model with Bench-Scale Reactor Experiments
4.3.3 Simulation of Commercial Semiregenerative Reforming Reactors4.3.4 Simulation of the Effect of Benzene Precursors in the Feed; 4.3.5 Use of the Model to Predict Other Process Parameters; REFERENCES; NOMENCLATURE; 5: MODELING AND SIMULATION OF FLUIDIZED-BED CATALYTIC CRACKING CONVERTERS; 5.1 INTRODUCTION; 5.1.1 Description of the Process; 5.1.2 Place of the FCC Unit Inside the Refinery; 5.1.3 Fractionation of Products and Gas Recovery; 5.1.4 Common Yields and Product Quality; 5.2 REACTION MECHANISM OF CATALYTIC CRACKING
5.2.1 Transport Phenomena, Thermodynamic Aspects, and Reaction Patterns
Record Nr. UNINA-9910141014303321
Ancheyta Jorge  
Hoboken, NJ, : Wiley, c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Modeling of processes and reactors for upgrading of heavy petroleum / / Jorge Ancheyta
Modeling of processes and reactors for upgrading of heavy petroleum / / Jorge Ancheyta
Autore Ancheyta Jorge
Pubbl/distr/stampa Boca Raton : , : CRC Press, , 2013
Descrizione fisica 1 online resource (551 p.)
Disciplina 546.434
Collana Chemical industries
Soggetto topico Petroleum - Refining
Petroleum industry and trade
ISBN 0-429-06682-1
1-4398-8046-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Contents; Preface; Acknowledgments; Author; Chapter 1 - Heavy Petroleum; Chapter 2 - Technologies for Upgrading of Heavy Petroleum; Chapter 3 - Modeling of Visbreaking; Chapter 4 - Modeling of Gasification; Chapter 5 - Modeling of Coking; Chapter 6 - Noncatalytic (Thermal) Hydrotreating; Chapter 7 - Modeling of Catalytic Hydroprocessing; Chapter 8 - Modeling and Simulation of Heavy Oil Hydroprocessing; Chapter 9 - Modeling of Bench-Scale Reactor for HDM and HDS of Maya Crude Oil; Chapter 10 - Modeling of Ebullated-Bed and Slurry-Phase Reactors
Chapter 11 - Modeling of Hydrocracking by Continuous Kinetic Lumping ApproachChapter 12 - Correlations and Other Aspects of Hydroprocessing; Back Cover
Record Nr. UNINA-9910786044103321
Ancheyta Jorge  
Boca Raton : , : CRC Press, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui