Brain-Inspired Computing [[electronic resource] ] : 4th International Workshop, BrainComp 2019, Cetraro, Italy, July 15–19, 2019, Revised Selected Papers / / edited by Katrin Amunts, Lucio Grandinetti, Thomas Lippert, Nicolai Petkov |
Autore | Amunts Katrin |
Edizione | [1st ed. 2021.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021 |
Descrizione fisica | 1 online resource (163 p.) |
Disciplina |
005.437
004.019 |
Altri autori (Persone) |
GrandinettiLucio
LippertThomas PetkovNicolai |
Collana | Theoretical Computer Science and General Issues |
Soggetto topico |
User interfaces (Computer systems)
Human-computer interaction Artificial intelligence Image processing—Digital techniques Computer vision Computer engineering Computer networks User Interfaces and Human Computer Interaction Artificial Intelligence Computer Imaging, Vision, Pattern Recognition and Graphics Computer Engineering and Networks |
ISBN | 3-030-82427-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Machine Learning and Deep learning approaches in human brain mapping -- A high-resolution model of the human entorhinal cortex in the ‘BigBrain’– use case for machine learning and 3D analyses -- Deep learning-supported cytoarchitectonic mapping of the human lateral geniculate body in the BigBrain -- Brain modelling and simulation -- Computational modelling of cerebellar magnetic stimulation: the effect of washout? -- Usage and scaling of an open-source spiking multi-area model of the monkey cortex -- Exascale compute and data infrastructures for neuroscience and applications -- Modular supercomputing for neuroscience -- Fenix: Distributed e-Infrastructure Services for EBRAINS -- Independent component analysis for noise and artifact removal in three-dimensional Polarized Light Imaging -- Exascale artificial and natural neural architectures -- Brain-inspired algorithms for processing of visual data -- An hybrid attention-based system for the prediction of facial attributes -- The statistical physics of learning revisited: Typical learning curves in model scenarios -- Emotion mining: from unimodal to multimodal approaches -- . |
Record Nr. | UNISA-996464497503316 |
Amunts Katrin | ||
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Brain-Inspired Computing : 4th International Workshop, BrainComp 2019, Cetraro, Italy, July 15–19, 2019, Revised Selected Papers / / edited by Katrin Amunts, Lucio Grandinetti, Thomas Lippert, Nicolai Petkov |
Autore | Amunts Katrin |
Edizione | [1st ed. 2021.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021 |
Descrizione fisica | 1 online resource (163 p.) |
Disciplina |
005.437
004.019 |
Altri autori (Persone) |
GrandinettiLucio
LippertThomas PetkovNicolai |
Collana | Theoretical Computer Science and General Issues |
Soggetto topico |
User interfaces (Computer systems)
Human-computer interaction Artificial intelligence Image processing—Digital techniques Computer vision Computer engineering Computer networks User Interfaces and Human Computer Interaction Artificial Intelligence Computer Imaging, Vision, Pattern Recognition and Graphics Computer Engineering and Networks |
ISBN | 3-030-82427-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Machine Learning and Deep learning approaches in human brain mapping -- A high-resolution model of the human entorhinal cortex in the ‘BigBrain’– use case for machine learning and 3D analyses -- Deep learning-supported cytoarchitectonic mapping of the human lateral geniculate body in the BigBrain -- Brain modelling and simulation -- Computational modelling of cerebellar magnetic stimulation: the effect of washout? -- Usage and scaling of an open-source spiking multi-area model of the monkey cortex -- Exascale compute and data infrastructures for neuroscience and applications -- Modular supercomputing for neuroscience -- Fenix: Distributed e-Infrastructure Services for EBRAINS -- Independent component analysis for noise and artifact removal in three-dimensional Polarized Light Imaging -- Exascale artificial and natural neural architectures -- Brain-inspired algorithms for processing of visual data -- An hybrid attention-based system for the prediction of facial attributes -- The statistical physics of learning revisited: Typical learning curves in model scenarios -- Emotion mining: from unimodal to multimodal approaches -- . |
Record Nr. | UNINA-9910491852803321 |
Amunts Katrin | ||
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|