top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
A Gentle Introduction to Data, Learning, and Model Order Reduction : Techniques and Twinning Methodologies / / by Francisco Chinesta, Elías Cueto, Victor Champaney, Chady Ghnatios, Amine Ammar, Nicolas Hascoët, David González, Icíar Alfaro, Daniele Di Lorenzo, Angelo Pasquale, Dominique Baillargeat
A Gentle Introduction to Data, Learning, and Model Order Reduction : Techniques and Twinning Methodologies / / by Francisco Chinesta, Elías Cueto, Victor Champaney, Chady Ghnatios, Amine Ammar, Nicolas Hascoët, David González, Icíar Alfaro, Daniele Di Lorenzo, Angelo Pasquale, Dominique Baillargeat
Autore Chinesta Francisco
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (XVI, 227 p. 33 illus., 29 illus. in color.)
Disciplina 006.3
Collana Studies in Big Data
Soggetto topico Computational intelligence
Mathematics - Data processing
Machine learning
Computational Intelligence
Computational Science and Engineering
Machine Learning
ISBN 3-031-87572-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Abstract -- Extended summary -- Part 1.Around Data -- Part 2.Around Learning -- Part 3. Around Reduction -- Part 4. Around Data Assimilation & Twinning.
Record Nr. UNINA-9911015966303321
Chinesta Francisco  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Statistical Fluid Dynamics
Statistical Fluid Dynamics
Autore Ammar Amine
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (174 p.)
Soggetto topico History of engineering and technology
Materials science
Technology: general issues
Soggetto non controllato Carreau nanofluid
concentrated suspensions
data-driven model
diffuse approximation
diffuse interface
discrete numerical simulation
domain reconstruction
energy dissipation
flow around circular cylinders
flow induced orientation
flow simulation
graphene nano-powder
Hausdorff distance
interval-pooled stepped spillway
liquid-liquid interface
lubrication effect
manifold learning
microcapsule suspension
microstructure generation
mixture model
model order reduction
molecular dynamics
n/a
nanoparticle two-phase flow
nanoparticles
Navier-Stokes equation
numerical simulation
octree optimization
omega identification method
particle coagulation and breakage
particle distribution
permeability computing
phase field method
Poisson equation
porous media approach
proper orthogonal decomposition
Proper Orthogonal Decomposition (POD)
reduced-order model
reinforced polymers
rheological behavior
shear rate
singularity
steam generator
thermal nanofluid
topological data analysis (TDA)
transitional flow
turbulence
Vallejo law
void fraction
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910585935403321
Ammar Amine  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Stream-tube method : a complex-fluid dynamics and computational approach / / Jean-Robert Clermont, Amine Ammar
Stream-tube method : a complex-fluid dynamics and computational approach / / Jean-Robert Clermont, Amine Ammar
Autore Clermont Jean-Robert
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (303 pages)
Disciplina 530.42
Soggetto topico Complex fluids
Fluid dynamics - Mathematical models
Computational fluid dynamics
ISBN 3-030-65470-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword -- Acknowledgements -- Introduction -- Specific Features of the Book -- Examples in the Book -- Expected Audience -- Pathways Through the Book -- Contents -- Nomenclature -- Abbreviations -- Notation -- 1 Tensor Frames -- 1.1 Introduction -- 1.2 Matrices -- 1.3 Vectors and Basis -- 1.3.1 Vectors in Cartesian Coordinates -- 1.3.2 Basis Vectors -- 1.3.3 Natural Basis: Dual of Natural Basis -- 1.3.4 Contravariant and Covariant Components -- 1.3.5 Change of Coordinates -- 1.3.6 Vector Matrix -- 1.3.7 Gradient of a Scalar Function -- 1.4 Tensors -- 1.4.1 Tensor Operations -- 1.4.2 Invariants of Second-Order Tensors -- 1.5 Operations with Derivatives -- 1.5.1 Gradients -- 1.5.2 Divergence -- 1.5.3 Curl of a Vector -- 1.6 Special Non-Cartesian Coordinate Systems -- 1.6.1 Cylindrical Coordinates -- 1.6.2 Spherical Coordinates -- References -- 2 Kinematics-Conservation Laws: Constitutive Equations -- 2.1 Introduction -- 2.2 Kinematics -- 2.2.1 Basic Elements: Eulerian and Lagrangian Descriptions: Material Derivative -- 2.2.2 Kinematic Tensors -- 2.2.3 Stress Tensor-Stress Vector -- 2.3 Laws of Conservation -- 2.3.1 Mass Conservation: Incompressible Materials -- 2.4 Momentum Conservation Equations -- 2.4.1 Linear Momentum Equation -- 2.4.2 Conservation of Angular Momentum -- 2.5 Conservation of Energy -- 2.6 Constitutive Equations -- 2.6.1 Inelastic Models: Newtonian Fluid -- 2.6.2 Viscoelastic Constitutive Equations -- 2.7 Concluding Remarks -- References -- 3 Domain Transformations: Stream-Tube Method in Two-Dimensional Cases -- 3.1 Introduction -- 3.2 Global Transformations for Physical Domains -- 3.2.1 Conformal Mappings-Grid Generation Techniques -- 3.2.2 General Curvilinear Coordinates -- 3.2.3 Domain Transformations Based on Kinematic Concepts -- 3.3 Stream-Tube Method (STM) for Two-Dimensional Problems.
3.3.1 Transformation for Two-Dimensional Domains -- 3.3.2 Basic Operators -- 3.3.3 Natural and Reciprocal Bases with Curvilinear Coordinates -- 3.3.4 Deformation Gradient Tensor -- 3.4 Velocity Gradient, Rate-of-Deformation and Vorticity Tensors in Two-Dimensional Cases -- 3.4.1 The Planar Case -- 3.4.2 The Axisymmetric Case -- 3.4.3 Velocity Derivatives Versus the Mapping Functions -- 3.4.4 Momentum Conservation Equations in 2D Isothermal Cases -- 3.4.5 Specific Features in Stream-Tube Method -- 3.5 Stream-Tube Method and Constitutive Equations -- 3.5.1 Newtonian and Inelastic Rheological Models -- 3.5.2 Differential Models -- 3.5.3 Memory-Integral Models -- 3.6 Concluding Remarks -- References -- 4 Stream-Tube Method in Two-Dimensional Problems -- 4.1 Introduction -- 4.2 Formulations: Boundary Conditions -- 4.2.1 Primary and Mixed Formulations -- 4.2.2 Boundary Condition Equations -- 4.3 Discretization -- 4.3.1 Approximating the Unknowns -- 4.3.2 Finite Differences -- 4.3.3 Mesh Elements -- 4.4 Solving the Equations -- 4.4.1 Consistency and Stability -- 4.4.2 The Newton-Raphson Algorithm -- 4.4.3 Methods Based on Optimization Concepts-Trust Region Algorithm -- 4.4.4 Levenberg-Marquardt (LM) Optimization Algorithm -- 4.5 Two-Dimensional Flows -- 4.5.1 Flow Rates and Streamlines in a Tube -- 4.5.2 Inelastic Models: Newtonian Examples -- 4.5.3 Viscoelastic Models in STM Problems -- 4.6 Concluding Remarks -- 4.7 Examples of Two-Dimensional Flow Situations for STM -- References -- 5 Stream-Tube Method in Three-Dimensional Problems -- 5.1 Introduction -- 5.2 Analysis of Three-Dimensional Flows -- 5.2.1 Basic Equations -- 5.2.2 Determination of Velocity Contour Curves in Poiseuille Flows -- 5.2.3 Computations of Kinematics -- 5.2.4 Conservation Laws and Boundary Conditions -- 5.2.5 Boundary Condition Equations.
5.2.6 The Transformation in Cylindrical Coordinates -- 5.2.7 Dynamic Equations with Cylindrical Coordinates -- 5.2.8 Kinematic Tensors for Codeformational Models -- 5.3 STM Applications -- 5.3.1 Newtonian Fluid in a Converging Domain -- 5.3.2 Viscoelastic Fluid in the Converging Domain -- 5.3.3 Swell Problem: Duct of Square Cross-Section -- 5.4 Concluding Remarks -- 5.5 Example of a Three-Dimensional Problem in STM -- References -- 6 Stream-Tube Method Domain Decomposition Closed Streamlines -- 6.1 Introduction -- 6.2 General Transformations: Basic Computational Results with the Stream-Tube Method -- 6.2.1 Basic Equations for General Transformations -- 6.2.2 Transformations of Sub-domains -- 6.2.3 Kinematics: Basic Equations and Unknowns -- 6.3 Specific Properties: Computational Considerations -- 6.3.1 Specific Features of the Analysis -- 6.3.2 Reference Kinematic Functions: Computational Considerations -- 6.4 Flows in Ducts -- 6.5 Flows Between Eccentric Cylinders -- 6.5.1 Rotating Flows Without Recirculations: An Example -- 6.5.2 Two-Dimensional Flows Between Eccentric Cylinders (Journal Bearing Problem) with Recirculating Regions -- 6.6 Concluding Remarks -- References -- 7 Stream-Tube Method for Unsteady Flows -- 7.1 Introduction -- 7.2 Theoretical Analysis of Unsteady Flows in STM -- 7.2.1 Open and Closed Streamlines -- 7.2.2 Domain Transformation of Open Streamlines in Unsteady Flows -- 7.2.3 Domain Transformation for Unsteady Flows with Closed Streamlines -- 7.3 Examples: Flows Between Concentric and Eccentric Cylinders for Newtonian, Anelastic and Viscoelastic Fluids -- 7.3.1 Flow Characteristics: Rheological Models for the Applications -- 7.3.2 Dynamic Equations and Solving Procedure -- 7.3.3 Numerical Results -- 7.4 Concluding Remarks -- References -- 8 Stream-Tube Method for Thermal Flows and Solid Mechanics -- 8.1 Introduction.
8.2 Thermal Flows in Stream-Tube Method -- 8.2.1 Stream-Tube Method and the Thermal Problem -- 8.2.2 Energy Equation with Finite Element Approach -- 8.2.3 Two-Dimensional Examples: Ducts with Restriction Zones: Stick-slip: Converging Flows -- 8.3 Comments on the STM Flow Results -- 8.4 Stream-Tube Method for Solid Mechanics Problems -- 8.4.1 Formulation Based on Energetic Concepts -- 8.4.2 An Example of Results -- 8.5 Concluding Remarks -- References -- 9 Micro-Macro Simulations and Stream-Tube Method -- 9.1 Introduction -- 9.2 A Representative Micro-Macro Model of a Complex Fluid Flow -- 9.2.1 Macroscopic Equations -- 9.2.2 Microscopic Equations of a Hypothetical Fibre Network Model -- 9.3 Microscopic Scale: A Separated Representation Solver -- 9.3.1 Addressing Complex Flows -- 9.4 Macroscopic Scale: Flow Kinematics Solver -- 9.4.1 The Stream-Tube Method Revisited: Basic Concepts -- 9.4.2 Solving the Problem -- 9.5 Numerical Results -- 9.5.1 Transient Network Analysis in a Steady Simple Shear -- 9.5.2 Analysis of a Contraction Flow -- 9.5.3 Convergence Analysis -- 9.6 Concluding Remarks -- References -- Appendix A4.1 Detailed Coefficients for Differential Equations -- Appendix A9.1 Separated Representation Solver: Notation -- Appendix A9.2 Separated Representation Solver: Projection Step -- Appendix A9.3 Separated Representation Solver: Approximation Basis Enrichment -- Index.
Record Nr. UNINA-9910484564903321
Clermont Jean-Robert  
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui