Statistical Fluid Dynamics |
Autore | Ammar Amine |
Pubbl/distr/stampa | Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 |
Descrizione fisica | 1 electronic resource (174 p.) |
Soggetto topico |
Technology: general issues
History of engineering & technology Materials science |
Soggetto non controllato |
graphene nano-powder
thermal nanofluid rheological behavior Carreau nanofluid lubrication effect Vallejo law liquid-liquid interface shear rate nanoparticles diffuse interface phase field method molecular dynamics numerical simulation octree optimization microstructure generation domain reconstruction flow simulation permeability computing data-driven model model order reduction proper orthogonal decomposition manifold learning diffuse approximation microcapsule suspension Hausdorff distance topological data analysis (TDA) reinforced polymers concentrated suspensions flow induced orientation discrete numerical simulation steam generator void fraction mixture model porous media approach reduced-order model Proper Orthogonal Decomposition (POD) energy dissipation interval-pooled stepped spillway omega identification method Navier-Stokes equation singularity transitional flow turbulence Poisson equation nanoparticle two-phase flow particle coagulation and breakage flow around circular cylinders particle distribution |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910585935403321 |
Ammar Amine
![]() |
||
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Stream-tube method : a complex-fluid dynamics and computational approach / / Jean-Robert Clermont, Amine Ammar |
Autore | Clermont Jean-Robert |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (303 pages) |
Disciplina | 530.42 |
Soggetto topico |
Complex fluids
Fluid dynamics - Mathematical models Computational fluid dynamics |
ISBN | 3-030-65470-2 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Foreword -- Acknowledgements -- Introduction -- Specific Features of the Book -- Examples in the Book -- Expected Audience -- Pathways Through the Book -- Contents -- Nomenclature -- Abbreviations -- Notation -- 1 Tensor Frames -- 1.1 Introduction -- 1.2 Matrices -- 1.3 Vectors and Basis -- 1.3.1 Vectors in Cartesian Coordinates -- 1.3.2 Basis Vectors -- 1.3.3 Natural Basis: Dual of Natural Basis -- 1.3.4 Contravariant and Covariant Components -- 1.3.5 Change of Coordinates -- 1.3.6 Vector Matrix -- 1.3.7 Gradient of a Scalar Function -- 1.4 Tensors -- 1.4.1 Tensor Operations -- 1.4.2 Invariants of Second-Order Tensors -- 1.5 Operations with Derivatives -- 1.5.1 Gradients -- 1.5.2 Divergence -- 1.5.3 Curl of a Vector -- 1.6 Special Non-Cartesian Coordinate Systems -- 1.6.1 Cylindrical Coordinates -- 1.6.2 Spherical Coordinates -- References -- 2 Kinematics-Conservation Laws: Constitutive Equations -- 2.1 Introduction -- 2.2 Kinematics -- 2.2.1 Basic Elements: Eulerian and Lagrangian Descriptions: Material Derivative -- 2.2.2 Kinematic Tensors -- 2.2.3 Stress Tensor-Stress Vector -- 2.3 Laws of Conservation -- 2.3.1 Mass Conservation: Incompressible Materials -- 2.4 Momentum Conservation Equations -- 2.4.1 Linear Momentum Equation -- 2.4.2 Conservation of Angular Momentum -- 2.5 Conservation of Energy -- 2.6 Constitutive Equations -- 2.6.1 Inelastic Models: Newtonian Fluid -- 2.6.2 Viscoelastic Constitutive Equations -- 2.7 Concluding Remarks -- References -- 3 Domain Transformations: Stream-Tube Method in Two-Dimensional Cases -- 3.1 Introduction -- 3.2 Global Transformations for Physical Domains -- 3.2.1 Conformal Mappings-Grid Generation Techniques -- 3.2.2 General Curvilinear Coordinates -- 3.2.3 Domain Transformations Based on Kinematic Concepts -- 3.3 Stream-Tube Method (STM) for Two-Dimensional Problems.
3.3.1 Transformation for Two-Dimensional Domains -- 3.3.2 Basic Operators -- 3.3.3 Natural and Reciprocal Bases with Curvilinear Coordinates -- 3.3.4 Deformation Gradient Tensor -- 3.4 Velocity Gradient, Rate-of-Deformation and Vorticity Tensors in Two-Dimensional Cases -- 3.4.1 The Planar Case -- 3.4.2 The Axisymmetric Case -- 3.4.3 Velocity Derivatives Versus the Mapping Functions -- 3.4.4 Momentum Conservation Equations in 2D Isothermal Cases -- 3.4.5 Specific Features in Stream-Tube Method -- 3.5 Stream-Tube Method and Constitutive Equations -- 3.5.1 Newtonian and Inelastic Rheological Models -- 3.5.2 Differential Models -- 3.5.3 Memory-Integral Models -- 3.6 Concluding Remarks -- References -- 4 Stream-Tube Method in Two-Dimensional Problems -- 4.1 Introduction -- 4.2 Formulations: Boundary Conditions -- 4.2.1 Primary and Mixed Formulations -- 4.2.2 Boundary Condition Equations -- 4.3 Discretization -- 4.3.1 Approximating the Unknowns -- 4.3.2 Finite Differences -- 4.3.3 Mesh Elements -- 4.4 Solving the Equations -- 4.4.1 Consistency and Stability -- 4.4.2 The Newton-Raphson Algorithm -- 4.4.3 Methods Based on Optimization Concepts-Trust Region Algorithm -- 4.4.4 Levenberg-Marquardt (LM) Optimization Algorithm -- 4.5 Two-Dimensional Flows -- 4.5.1 Flow Rates and Streamlines in a Tube -- 4.5.2 Inelastic Models: Newtonian Examples -- 4.5.3 Viscoelastic Models in STM Problems -- 4.6 Concluding Remarks -- 4.7 Examples of Two-Dimensional Flow Situations for STM -- References -- 5 Stream-Tube Method in Three-Dimensional Problems -- 5.1 Introduction -- 5.2 Analysis of Three-Dimensional Flows -- 5.2.1 Basic Equations -- 5.2.2 Determination of Velocity Contour Curves in Poiseuille Flows -- 5.2.3 Computations of Kinematics -- 5.2.4 Conservation Laws and Boundary Conditions -- 5.2.5 Boundary Condition Equations. 5.2.6 The Transformation in Cylindrical Coordinates -- 5.2.7 Dynamic Equations with Cylindrical Coordinates -- 5.2.8 Kinematic Tensors for Codeformational Models -- 5.3 STM Applications -- 5.3.1 Newtonian Fluid in a Converging Domain -- 5.3.2 Viscoelastic Fluid in the Converging Domain -- 5.3.3 Swell Problem: Duct of Square Cross-Section -- 5.4 Concluding Remarks -- 5.5 Example of a Three-Dimensional Problem in STM -- References -- 6 Stream-Tube Method Domain Decomposition Closed Streamlines -- 6.1 Introduction -- 6.2 General Transformations: Basic Computational Results with the Stream-Tube Method -- 6.2.1 Basic Equations for General Transformations -- 6.2.2 Transformations of Sub-domains -- 6.2.3 Kinematics: Basic Equations and Unknowns -- 6.3 Specific Properties: Computational Considerations -- 6.3.1 Specific Features of the Analysis -- 6.3.2 Reference Kinematic Functions: Computational Considerations -- 6.4 Flows in Ducts -- 6.5 Flows Between Eccentric Cylinders -- 6.5.1 Rotating Flows Without Recirculations: An Example -- 6.5.2 Two-Dimensional Flows Between Eccentric Cylinders (Journal Bearing Problem) with Recirculating Regions -- 6.6 Concluding Remarks -- References -- 7 Stream-Tube Method for Unsteady Flows -- 7.1 Introduction -- 7.2 Theoretical Analysis of Unsteady Flows in STM -- 7.2.1 Open and Closed Streamlines -- 7.2.2 Domain Transformation of Open Streamlines in Unsteady Flows -- 7.2.3 Domain Transformation for Unsteady Flows with Closed Streamlines -- 7.3 Examples: Flows Between Concentric and Eccentric Cylinders for Newtonian, Anelastic and Viscoelastic Fluids -- 7.3.1 Flow Characteristics: Rheological Models for the Applications -- 7.3.2 Dynamic Equations and Solving Procedure -- 7.3.3 Numerical Results -- 7.4 Concluding Remarks -- References -- 8 Stream-Tube Method for Thermal Flows and Solid Mechanics -- 8.1 Introduction. 8.2 Thermal Flows in Stream-Tube Method -- 8.2.1 Stream-Tube Method and the Thermal Problem -- 8.2.2 Energy Equation with Finite Element Approach -- 8.2.3 Two-Dimensional Examples: Ducts with Restriction Zones: Stick-slip: Converging Flows -- 8.3 Comments on the STM Flow Results -- 8.4 Stream-Tube Method for Solid Mechanics Problems -- 8.4.1 Formulation Based on Energetic Concepts -- 8.4.2 An Example of Results -- 8.5 Concluding Remarks -- References -- 9 Micro-Macro Simulations and Stream-Tube Method -- 9.1 Introduction -- 9.2 A Representative Micro-Macro Model of a Complex Fluid Flow -- 9.2.1 Macroscopic Equations -- 9.2.2 Microscopic Equations of a Hypothetical Fibre Network Model -- 9.3 Microscopic Scale: A Separated Representation Solver -- 9.3.1 Addressing Complex Flows -- 9.4 Macroscopic Scale: Flow Kinematics Solver -- 9.4.1 The Stream-Tube Method Revisited: Basic Concepts -- 9.4.2 Solving the Problem -- 9.5 Numerical Results -- 9.5.1 Transient Network Analysis in a Steady Simple Shear -- 9.5.2 Analysis of a Contraction Flow -- 9.5.3 Convergence Analysis -- 9.6 Concluding Remarks -- References -- Appendix A4.1 Detailed Coefficients for Differential Equations -- Appendix A9.1 Separated Representation Solver: Notation -- Appendix A9.2 Separated Representation Solver: Projection Step -- Appendix A9.3 Separated Representation Solver: Approximation Basis Enrichment -- Index. |
Record Nr. | UNINA-9910484564903321 |
Clermont Jean-Robert
![]() |
||
Cham, Switzerland : , : Springer, , [2021] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|