Analyzing microarray gene expression data [[electronic resource] /] / Geoffrey J. McLachlan, Kim-Anh Do, Christopher Ambroise |
Autore | McLachlan Geoffrey J. <1946-> |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley-Interscience, c2004 |
Descrizione fisica | 1 online resource (366 p.) |
Disciplina |
572.8636
572.865 |
Altri autori (Persone) |
DoKim-Anh <1960->
AmbroiseChristophe <1969-> |
Collana | Wiley series in probability and statistics |
Soggetto topico |
DNA microarrays - Statistical methods
Gene expression - Statistical methods |
Soggetto genere / forma | Electronic books. |
ISBN |
1-280-25332-0
9786610253326 0-470-35030-X 0-471-72612-5 0-471-72842-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Analyzing Microarray Gene Expression Data; Contents; Preface; 1 Microarrays in Gene Expression Studies; 1.1 Introduction; 1.2 Background Biology; 1.2.1 Genome, Genotype, and Gene Expression; 1.2.2 Of Wild-Types and Other Alleles; 1.2.3 Aspects of Underlying Biology and Physiochemistry; 1.3 Polymerase Chain Reaction; 1.4 cDNA; 1.4.1 Expressed Sequence Tag; 1.5 Microarray Technology and Application; 1.5.1 History of Microarray Development; 1.5.2 Tools of Microarray Technology; 1.5.3 Limitations of Microarray Technology; 1.5.4 Oligonucleotides versus cDNA Arrays
1.5.5 SAGE: Another Method for Detecting and Measuring Gene Expression Levels1.5.6 Emerging Technologies; 1.6 Sampling of Relevant Research Entities and Public Resources; 2 Cleaning and Normalization; 2.1 Introduction; 2.2 Cleaning Procedures; 2.2.1 Image Processing to Extract Information; 2.2.2 Missing Value Estimation; 2.2.3 Sources of Nonlinearity; 2.3 Normalization and Plotting Procedures for Oligonucleotide Arrays; 2.3.1 Global Approaches for Oligonucleotide Array Data; 2.3.2 Spiked Standard Approaches; 2.3.3 Geometric Mean and Linear Regression Normalization for Multiple Arrays 2.3.4 Nonlinear Normalization for Multiple Arrays Using Smooth Curves2.4 Normalization Methods for cDNA Microarray Data; 2.4.1 Single-Array Normalization; 2.4.2 Multiple Slides Normalization; 2.4.3 ANOVA and Related Methods for Normalization; 2.4.4 Mixed-Model Method for Normalization; 2.4.5 SNOMAD; 2.5 Transformations and Replication; 2.5.1 Importance of Replication; 2.5.2 Transformations; 2.6 Analysis of the Alon Data Set; 2.7 Comparison of Normalization Strategies and Discussion; 3 Some Cluster Analysis Methods; 3.1 Introduction; 3.2 Reduction in the Dimension of the Feature Space 3.3 Cluster Analysis3.4 Some Hierarchical Agglomerative Techniques; 3.5 k-Means Clustering; 3.6 Cluster Analysis with No A Priori Metric; 3.7 Clustering via Finite Mixture Models; 3.7.1 Definition; 3.7.2 Advantages of Model-Based Clustering; 3.8 Fitting Mixture Models Via the EM Algorithm; 3.8.1 E-Step; 3.8.2 M-Step; 3.8.3 Choice of Starting Values for the EM Algorithm; 3.9 Clustering Via Normal Mixtures; 3.9.1 Heteroscedastic Components; 3.9.2 Homoscedastic Components; 3.9.3 Spherical Components; 3.9.4 Choice of Root; 3.9.5 Available Software; 3.10 Mixtures of t Distributions 3.11 Mixtures of Factor Analyzers3.12 Choice of Clustering Solution; 3.13 Classification ML Approach; 3.14 Mixture Models for Clinical and Microarray Data; 3.14.1 Unconditional Approach; 3.14.2 Conditional Approach; 3.15 Choice of the Number of Components in a Mixture Model; 3.15.1 Order of a Mixture Model; 3.15.2 Approaches for Assessing Mixture Order; 3.15.3 Bayesian Information Criterion; 3.15.4 Integrated Classification Likelihood Criterion; 3.16 Resampling Approach; 3.17 Other Resampling Approaches for Number of Clusters; 3.17.1 The Gap Statistic 3.17.2 The Clest Method for the Number of Clusters |
Record Nr. | UNINA-9910146082203321 |
McLachlan Geoffrey J. <1946-> | ||
Hoboken, N.J., : Wiley-Interscience, c2004 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Analyzing microarray gene expression data [[electronic resource] /] / Geoffrey J. McLachlan, Kim-Anh Do, Christopher Ambroise |
Autore | McLachlan Geoffrey J. <1946-> |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley-Interscience, c2004 |
Descrizione fisica | 1 online resource (366 p.) |
Disciplina |
572.8636
572.865 |
Altri autori (Persone) |
DoKim-Anh <1960->
AmbroiseChristophe <1969-> |
Collana | Wiley series in probability and statistics |
Soggetto topico |
DNA microarrays - Statistical methods
Gene expression - Statistical methods |
ISBN |
1-280-25332-0
9786610253326 0-470-35030-X 0-471-72612-5 0-471-72842-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Analyzing Microarray Gene Expression Data; Contents; Preface; 1 Microarrays in Gene Expression Studies; 1.1 Introduction; 1.2 Background Biology; 1.2.1 Genome, Genotype, and Gene Expression; 1.2.2 Of Wild-Types and Other Alleles; 1.2.3 Aspects of Underlying Biology and Physiochemistry; 1.3 Polymerase Chain Reaction; 1.4 cDNA; 1.4.1 Expressed Sequence Tag; 1.5 Microarray Technology and Application; 1.5.1 History of Microarray Development; 1.5.2 Tools of Microarray Technology; 1.5.3 Limitations of Microarray Technology; 1.5.4 Oligonucleotides versus cDNA Arrays
1.5.5 SAGE: Another Method for Detecting and Measuring Gene Expression Levels1.5.6 Emerging Technologies; 1.6 Sampling of Relevant Research Entities and Public Resources; 2 Cleaning and Normalization; 2.1 Introduction; 2.2 Cleaning Procedures; 2.2.1 Image Processing to Extract Information; 2.2.2 Missing Value Estimation; 2.2.3 Sources of Nonlinearity; 2.3 Normalization and Plotting Procedures for Oligonucleotide Arrays; 2.3.1 Global Approaches for Oligonucleotide Array Data; 2.3.2 Spiked Standard Approaches; 2.3.3 Geometric Mean and Linear Regression Normalization for Multiple Arrays 2.3.4 Nonlinear Normalization for Multiple Arrays Using Smooth Curves2.4 Normalization Methods for cDNA Microarray Data; 2.4.1 Single-Array Normalization; 2.4.2 Multiple Slides Normalization; 2.4.3 ANOVA and Related Methods for Normalization; 2.4.4 Mixed-Model Method for Normalization; 2.4.5 SNOMAD; 2.5 Transformations and Replication; 2.5.1 Importance of Replication; 2.5.2 Transformations; 2.6 Analysis of the Alon Data Set; 2.7 Comparison of Normalization Strategies and Discussion; 3 Some Cluster Analysis Methods; 3.1 Introduction; 3.2 Reduction in the Dimension of the Feature Space 3.3 Cluster Analysis3.4 Some Hierarchical Agglomerative Techniques; 3.5 k-Means Clustering; 3.6 Cluster Analysis with No A Priori Metric; 3.7 Clustering via Finite Mixture Models; 3.7.1 Definition; 3.7.2 Advantages of Model-Based Clustering; 3.8 Fitting Mixture Models Via the EM Algorithm; 3.8.1 E-Step; 3.8.2 M-Step; 3.8.3 Choice of Starting Values for the EM Algorithm; 3.9 Clustering Via Normal Mixtures; 3.9.1 Heteroscedastic Components; 3.9.2 Homoscedastic Components; 3.9.3 Spherical Components; 3.9.4 Choice of Root; 3.9.5 Available Software; 3.10 Mixtures of t Distributions 3.11 Mixtures of Factor Analyzers3.12 Choice of Clustering Solution; 3.13 Classification ML Approach; 3.14 Mixture Models for Clinical and Microarray Data; 3.14.1 Unconditional Approach; 3.14.2 Conditional Approach; 3.15 Choice of the Number of Components in a Mixture Model; 3.15.1 Order of a Mixture Model; 3.15.2 Approaches for Assessing Mixture Order; 3.15.3 Bayesian Information Criterion; 3.15.4 Integrated Classification Likelihood Criterion; 3.16 Resampling Approach; 3.17 Other Resampling Approaches for Number of Clusters; 3.17.1 The Gap Statistic 3.17.2 The Clest Method for the Number of Clusters |
Record Nr. | UNINA-9910830637803321 |
McLachlan Geoffrey J. <1946-> | ||
Hoboken, N.J., : Wiley-Interscience, c2004 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Analyzing microarray gene expression data / / Geoffrey J. McLachlan, Kim-Anh Do, Christopher Ambroise |
Autore | McLachlan Geoffrey J. <1946-> |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley-Interscience, c2004 |
Descrizione fisica | 1 online resource (366 p.) |
Disciplina | 572.8/636 |
Altri autori (Persone) |
DoKim-Anh <1960->
AmbroiseChristophe <1969-> |
Collana | Wiley series in probability and statistics |
Soggetto topico |
DNA microarrays - Statistical methods
Gene expression - Statistical methods |
ISBN |
1-280-25332-0
9786610253326 0-470-35030-X 0-471-72612-5 0-471-72842-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Analyzing Microarray Gene Expression Data; Contents; Preface; 1 Microarrays in Gene Expression Studies; 1.1 Introduction; 1.2 Background Biology; 1.2.1 Genome, Genotype, and Gene Expression; 1.2.2 Of Wild-Types and Other Alleles; 1.2.3 Aspects of Underlying Biology and Physiochemistry; 1.3 Polymerase Chain Reaction; 1.4 cDNA; 1.4.1 Expressed Sequence Tag; 1.5 Microarray Technology and Application; 1.5.1 History of Microarray Development; 1.5.2 Tools of Microarray Technology; 1.5.3 Limitations of Microarray Technology; 1.5.4 Oligonucleotides versus cDNA Arrays
1.5.5 SAGE: Another Method for Detecting and Measuring Gene Expression Levels1.5.6 Emerging Technologies; 1.6 Sampling of Relevant Research Entities and Public Resources; 2 Cleaning and Normalization; 2.1 Introduction; 2.2 Cleaning Procedures; 2.2.1 Image Processing to Extract Information; 2.2.2 Missing Value Estimation; 2.2.3 Sources of Nonlinearity; 2.3 Normalization and Plotting Procedures for Oligonucleotide Arrays; 2.3.1 Global Approaches for Oligonucleotide Array Data; 2.3.2 Spiked Standard Approaches; 2.3.3 Geometric Mean and Linear Regression Normalization for Multiple Arrays 2.3.4 Nonlinear Normalization for Multiple Arrays Using Smooth Curves2.4 Normalization Methods for cDNA Microarray Data; 2.4.1 Single-Array Normalization; 2.4.2 Multiple Slides Normalization; 2.4.3 ANOVA and Related Methods for Normalization; 2.4.4 Mixed-Model Method for Normalization; 2.4.5 SNOMAD; 2.5 Transformations and Replication; 2.5.1 Importance of Replication; 2.5.2 Transformations; 2.6 Analysis of the Alon Data Set; 2.7 Comparison of Normalization Strategies and Discussion; 3 Some Cluster Analysis Methods; 3.1 Introduction; 3.2 Reduction in the Dimension of the Feature Space 3.3 Cluster Analysis3.4 Some Hierarchical Agglomerative Techniques; 3.5 k-Means Clustering; 3.6 Cluster Analysis with No A Priori Metric; 3.7 Clustering via Finite Mixture Models; 3.7.1 Definition; 3.7.2 Advantages of Model-Based Clustering; 3.8 Fitting Mixture Models Via the EM Algorithm; 3.8.1 E-Step; 3.8.2 M-Step; 3.8.3 Choice of Starting Values for the EM Algorithm; 3.9 Clustering Via Normal Mixtures; 3.9.1 Heteroscedastic Components; 3.9.2 Homoscedastic Components; 3.9.3 Spherical Components; 3.9.4 Choice of Root; 3.9.5 Available Software; 3.10 Mixtures of t Distributions 3.11 Mixtures of Factor Analyzers3.12 Choice of Clustering Solution; 3.13 Classification ML Approach; 3.14 Mixture Models for Clinical and Microarray Data; 3.14.1 Unconditional Approach; 3.14.2 Conditional Approach; 3.15 Choice of the Number of Components in a Mixture Model; 3.15.1 Order of a Mixture Model; 3.15.2 Approaches for Assessing Mixture Order; 3.15.3 Bayesian Information Criterion; 3.15.4 Integrated Classification Likelihood Criterion; 3.16 Resampling Approach; 3.17 Other Resampling Approaches for Number of Clusters; 3.17.1 The Gap Statistic 3.17.2 The Clest Method for the Number of Clusters |
Record Nr. | UNINA-9910877596703321 |
McLachlan Geoffrey J. <1946-> | ||
Hoboken, N.J., : Wiley-Interscience, c2004 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|