top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Introduction to Muon Spin Spectroscopy : Applications to Solid State and Material Sciences
Introduction to Muon Spin Spectroscopy : Applications to Solid State and Material Sciences
Autore Amato Alex
Edizione [1st ed.]
Pubbl/distr/stampa Cham : , : Springer International Publishing AG, , 2024
Descrizione fisica 1 online resource (544 pages)
Disciplina 539.72114
Altri autori (Persone) MorenzoniElvezio
Collana Lecture Notes in Physics Series
ISBN 3-031-44959-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Physical Constants, Symbols and Abbreviations -- Values of Important Physical Constants (Grouped by Subject) -- Important Symbols -- Acronyms and Abbreviations -- 1 Fundamentals -- 1.1 The Muon as Elementary Particle -- 1.2 A Brief History of the Muon -- 1.3 Atmospheric Muons -- 1.4 Pion: The Parent Particle -- 1.4.1 Pion Properties -- 1.4.2 Pion Production Reactions -- 1.4.3 The Pion Decay -- 1.5 Muon Properties -- 1.6 The Muon Decay -- 1.6.1 Kinematics -- 1.6.2 Differential Positron Emission -- 1.6.3 Decay of a Muon Ensemble -- 1.7 Muon Magnetic Moment and Spin Precession -- 1.7.1 Muon Magnetic Moment -- 1.7.2 Muon Spin Precession -- 1.8 Muon Beams -- 1.8.1 Proton Accelerators -- 1.8.2 Example of a Proton Accelerator for muSR -- 1.8.3 Surface and Decay Muon Beams -- 1.8.4 Beam Optics and Beamline Elements -- Exercises -- References -- 2 Muon Implantation and Thermalization in Matter -- 2.1 Energy Loss of Particles in Matter -- 2.1.1 Energy Loss by Ionization: Classical Approach -- 2.1.2 Energy Loss: Bethe Formula -- 2.2 Range and Slowing Down Time -- 2.2.1 Range of Muons -- 2.2.2 Thermalization Time -- 2.2.3 Multiple Scattering -- 2.3 Muon States in Matter -- Exercises -- References -- 3 muSR Technique -- 3.1 Key Features of the muSR Technique -- 3.2 The muSR Signal -- 3.3 Experimental Setup -- 3.3.1 Continuous Beam -- 3.3.2 Muon-On-Request Setup -- 3.3.3 Pulsed Beam -- 3.4 Measurement Geometries -- 3.4.1 Zero Field and Longitudinal Field Geometry -- 3.4.2 Transverse Field Geometry -- Exercises -- References -- 4 Polarization Functions -- 4.1 Static Internal Fields -- 4.1.1 Single Valued Field -- 4.1.1.1 Single Crystal -- 4.1.1.2 Polycrystal -- 4.1.2 Continuous Field Distributions -- 4.1.2.1 Gaussian Distribution -- 4.1.2.2 Lorentzian Distribution -- 4.1.2.3 Stretched and Gaussian-Lorentzian Kubo-Toyabe Functions.
4.1.3 Generalizations of the Kubo-Toyabe Functions -- 4.2 Polarization Functions for Applied External Fields -- 4.2.1 Longitudinal Field -- 4.2.2 Transverse Field -- 4.2.3 Some Special Polarization Functions -- 4.3 Dynamical Effects -- 4.3.1 The Strong Collision Approximation -- 4.3.1.1 The Muon Spin Polarization -- 4.3.1.2 Dynamical Effects for Gaussian Distributions in a Longitudinal Field -- 4.3.1.3 Dynamical Effects for Gaussian Distributions in a Transverse Field -- 4.3.1.4 Dynamical Effects for Lorentzian Fields -- 4.3.2 Stretched Exponential Function -- 4.4 A Quantum Mechanical Approach to the Muon Spin Relaxation -- 4.4.1 Redfield Expressions -- 4.4.2 Spectral Density -- Exercises -- References -- 5 Study of Magnetism -- 5.1 Local Magnetic Field in Magnetic Materials -- 5.1.1 The Muon-Electron Interaction -- 5.1.2 Hyperfine Contributions in a Solid -- 5.1.3 Demagnetizing and Lorentz Fields -- 5.1.4 Examples of Local Field Determination -- 5.2 Magnetic Volume Fraction and Magnetic Transitions -- 5.2.1 Examples -- 5.3 Magnetic Fluctuations -- 5.3.1 Examples -- 5.4 Incommensurate Magnetic Structures -- 5.5 Dynamics of Spin Glasses -- 5.6 Magnetic Response in the Paramagnetic or Diamagnetic State: The Knight-Shift -- 5.6.1 Paramagnetism of the Conduction Electrons: Fermi Contact Term Knight-Shift -- 5.6.1.1 Pauli Susceptibility -- 5.6.2 Knight-Shift in Materials with Local Moments -- 5.6.2.1 The Dipolar Field Contribution -- 5.6.2.2 The RKKY-Enhanced Contact Field Contribution -- 5.6.2.3 The Total Knight-Shift -- 5.6.3 Determination of the Muon Stopping Site -- 5.6.4 Angular Dependence of the Knight-Shift -- 5.6.5 Nonlinear Knight-Shift Versus Susceptibility -- 5.7 Depolarization Created by Nuclear Moments -- 5.7.1 Classical Calculation -- 5.7.1.1 The TF Case -- 5.7.1.2 The ZF Case.
5.7.2 Influence of the Quadrupolar Interaction on the Nuclear Dipolar Width -- Exercises -- References -- 6 Study of Superconductivity -- 6.1 Concepts of Superconductivity -- 6.1.1 The Two Characteristic Length Scales of Superconductors -- 6.1.1.1 The Magnetic Penetration Depth -- 6.1.1.2 The Coherence Length -- 6.1.2 Type-I and Type-II Superconductors -- 6.1.3 The Intermediate State -- 6.1.4 Energy Gap and Symmetry of the Pairing State -- 6.1.4.1 Multiple Superconducting Gaps -- 6.2 Vortex State of a Type-II Superconductor -- 6.2.1 Principle of a muSR Experiment in the Vortex State -- 6.2.2 Local Field in the Vortex State -- 6.2.2.1 Field Generated by an Isolated Vortex -- 6.2.2.2 Field Distribution from the London Model -- 6.2.3 Coherence Length and Applied Magnetic Field Dependence -- 6.2.4 Anisotropy of the Magnetic Penetration Depth -- 6.3 Analysis of the muSR -- 6.3.1 Models of Data Analysis -- 6.3.1.1 Single Gaussian Analysis -- 6.3.1.2 Multi-Gaussian Analysis -- 6.3.1.3 Full Model Analysis -- 6.3.1.4 Model Comparison -- 6.4 Interplay of Magnetism and Superconductivity -- 6.5 Study of Vortex Matter -- 6.5.1 Vortex Pinning -- 6.6 Spontaneous Magnetic Field in Superconductors -- 6.7 Study of the Intermediate State -- Exercises -- References -- 7 Muonium -- 7.1 Introduction -- 7.2 Muonium Ground State and Hyperfine Interaction -- 7.2.1 Ionization Energy -- 7.2.2 Isotropic Hyperfine Interaction -- 7.2.3 Hyperfine Splitting in an External Field -- 7.3 Time Evolution of the Muon Polarization in the Muonium State -- 7.3.1 Introduction -- 7.3.2 Longitudinal (and Zero) Field -- 7.3.3 Transverse Field -- 7.3.4 Nuclear Hyperfine Interaction -- 7.3.5 Isotropic Muonium in Solids -- 7.4 Anisotropic Muonium -- 7.5 Shallow Muonium -- 7.6 Muon-Polaron Complexes -- Exercises -- References.
8 Investigations of Thin Films and Heterostructures with Low-Energy Muons -- 8.1 Introduction -- 8.2 Generation of Low-Energy Muons -- 8.2.1 Use of Degraders -- 8.2.2 Laser Resonant Ionization of Muonium -- 8.2.3 Moderation in Thin Layers of Cryosolids -- 8.3 The Low-Energy Muon Apparatus at PSI -- 8.4 Stopping Profiles of Low-Energy Muons in Thin Films -- 8.5 Examples -- 8.5.1 Magnetic Field Profiling at the Surface of Superconductors -- 8.5.1.1 Strong Type-II Superconductors -- 8.5.1.2 Nonlocal Superconductors -- 8.5.2 Heterostructures -- 8.5.3 Studies of Dynamics -- 8.5.4 Thin Films -- Exercise -- References -- 9 Use of Negative Muons: μ-SR and Elemental Analysis -- 9.1 Negative Muon Beams -- 9.2 Implantation of Negative Muons in Matter -- 9.2.1 Muonic Atoms -- 9.3 mu-SR -- 9.3.1 ``Conventional'' mu-SR -- 9.3.2 X-ray Triggered mu-SR -- 9.4 Elemental Analysis -- 9.4.1 Principle -- 9.4.2 Typical Spectra -- 9.4.3 Depth Dependence -- 9.4.4 Capture Probability -- 9.4.5 Determining the Isotopic Ratio -- 9.4.6 Examples -- 9.4.7 Characteristics and Comparison with Other Techniques -- Exercise -- References -- 10 Particle Physics Aspects -- 10.1 Muon Decay and Lepton Numbers -- 10.2 Theory of the Muon Decay -- 10.3 Calculation of the Muon Decay -- 10.3.1 Energy Distribution of the Decay Electron -- 10.3.2 Decay of a Polarized Muon -- 10.3.3 Decay via Intermediate Vector Boson Exchange -- 10.4 Muon Lifetime and Determination of the Fermi Constant -- 10.5 Muon Magnetic Anomaly -- 10.5.1 Experiment -- 10.5.2 Theory -- Exercises -- References -- 11 Conclusions and Outlook -- References -- A Magnetic Moment and Spin -- A.1 Magnetic Moment and Angular Momentum -- A.2 Spin Angular Momentum -- A.2.1 Spin Operators -- A.2.2 Spin 1/2 States and Pauli Matrices -- B Magnetic Multipoles -- C Derivation of the TF Abragam Formula -- D Demagnetizing Field.
E Units of Hyperfine Constants -- F Density Matrix -- F.1 Pure Quantum Mechanical State -- F.2 Mixed Quantum Mechanical State -- F.3 Time Evolution of an Operator -- F.4 Density Matrix of a Spin 1/2 Particle -- F.5 Density Matrix of Muonium -- G Relativistic Concepts -- G.1 Useful Relations of Relativistic Quantum Mechanics -- G.2 Dirac Equation -- G.2.1 Properties of the -Matrices -- G.2.2 Free Particle Solutions of the Dirac Equation -- G.3 Dirac Field Operators -- G.4 Fermi's Golden Rule and Lorentz Invariance -- References -- Solutions of the Exercises -- References -- Index.
Record Nr. UNISA-996587860803316
Amato Alex  
Cham : , : Springer International Publishing AG, , 2024
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Introduction to Muon Spin Spectroscopy : Applications to Solid State and Material Sciences / / by Alex Amato, Elvezio Morenzoni
Introduction to Muon Spin Spectroscopy : Applications to Solid State and Material Sciences / / by Alex Amato, Elvezio Morenzoni
Autore Amato Alex
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (544 pages)
Disciplina 539.7
Collana Lecture Notes in Physics
Soggetto topico Condensed matter
Spectrum analysis
Solid state physics
Nuclear physics
Materials science
Condensed Matter Physics
Spectroscopy
Electronic Devices
Nuclear Physics
Materials Science
ISBN 3-031-44959-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction: the Muon -- Implanting Muons in Matter -- µSR Technique -- Depolarization Functions -- Studying Magnetism with the µSR technique -- µSR in the Superconducting State -- Low Energy Muons: a Tool to Study Thin Films and Heterostructures -- Muonium -- Negative Muons -- Particle and Atomic Physics Aspects -- Annex -- Exercises and Solutions.
Record Nr. UNINA-9910842285303321
Amato Alex  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui