top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
A Parametric Approach to Nonparametric Statistics / / by Mayer Alvo, Philip L. H. Yu
A Parametric Approach to Nonparametric Statistics / / by Mayer Alvo, Philip L. H. Yu
Autore Alvo Mayer
Edizione [1st ed. 2018.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Descrizione fisica 1 online resource (XIV, 279 p. 15 illus. in color.)
Disciplina 519.54
Collana Springer Series in the Data Sciences
Soggetto topico Probabilities
Statistics 
Probability Theory and Stochastic Processes
Statistical Theory and Methods
ISBN 3-319-94153-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto I. Introduction and Fundamentals -- Introduction -- Fundamental Concepts in Parametric Inference -- II. Modern Nonparametric Statistical Methods -- Smooth Goodness of Fit Tests -- One-Sample and Two-Sample Problems -- Multi-Sample Problems -- Tests for Trend and Association -- Optimal Rank Tests -- Efficiency -- III. Selected Applications -- Multiple Change-Point Problems -- Bayesian Models for Ranking Data -- Analysis of Censored Data -- A. Description of Data Sets.
Record Nr. UNINA-9910300139903321
Alvo Mayer  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Statistical inference and machine learning for big data / / Mayer Alvo
Statistical inference and machine learning for big data / / Mayer Alvo
Autore Alvo Mayer
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (442 pages)
Disciplina 005.7
Collana Springer series in the data sciences
Soggetto topico Big data
Machine learning
Mathematical statistics
Dades massives
Aprenentatge automàtic
Estadística matemàtica
Soggetto genere / forma Llibres electrònics
ISBN 9783031067846
9783031067839
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgments -- Contents -- List of Acronyms -- List of Nomenclatures -- List of Figures -- List of Tables -- I. Introduction to Big Data -- 1. Examples of Big Data -- 1.1. Multivariate Data -- 1.2. Categorical Data -- 1.3. Environmental Data -- 1.4. Genetic Data -- 1.5. Time Series Data -- 1.6. Ranking Data -- 1.7. Social Network Data -- 1.8. Symbolic Data -- 1.9. Image Data -- II. Statistical Inference for Big Data -- 2. Basic Concepts in Probability -- 2.1. Pearson System of Distributions -- 2.2. Modes of Convergence -- 2.3. Multivariate Central Limit Theorem -- 2.4. Markov Chains -- 3. Basic Concepts in Statistics -- 3.1. Parametric Estimation -- 3.2. Hypothesis Testing -- 3.3. Classical Bayesian Statistics -- 4. Multivariate Methods -- 4.1. Matrix Algebra -- 4.2. Multivariate Analysis as a Generalization of Univariate Analysis -- 4.2.1. The General Linear Model -- 4.2.2. One Sample Problem -- 4.2.3. Two-Sample Problem -- 4.3. Structure in Multivariate Data Analysis -- 4.3.1. Principal Component Analysis -- 4.3.2. Factor Analysis -- 4.3.3. Canonical Correlation -- 4.3.4. Linear Discriminant Analysis -- 4.3.5. Multidimensional Scaling -- 4.3.6. Copula Methods -- 5. Nonparametric Statistics -- 5.1. Goodness-of-Fit Tests -- 5.2. Linear Rank Statistics -- 5.3. U Statistics -- 5.4. Hoeffding's Combinatorial Central Limit Theorem -- 5.5. Nonparametric Tests -- 5.5.1. One-Sample Tests of Location -- 5.5.2. Confidence Interval for the Median -- 5.5.3. Wilcoxon Signed Rank Test -- 5.6. Multi-Sample Tests -- 5.6.1. Two-Sample Tests for Location -- 5.6.2. Multi-Sample Test for Location -- 5.6.3. Tests for Dispersion -- 5.7. Compatibility -- 5.8. Tests for Ordered Alternatives -- 5.9. A Unified Theory of Hypothesis Testing -- 5.9.1. Umbrella Alternatives -- 5.9.2. Tests for Trend in Proportions -- 5.10. Randomized Block Designs.
5.11. Density Estimation -- 5.11.1. Univariate Kernel Density Estimation -- 5.11.2. The Rank Transform -- 5.11.3. Multivariate Kernel Density Estimation -- 5.12. Spatial Data Analysis -- 5.12.1. Spatial Prediction -- 5.12.2. Point Poisson Kriging of Areal Data -- 5.13. Efficiency -- 5.13.1. Pitman Efficiency -- 5.13.2. Application of Le Cam's Lemmas -- 5.14. Permutation Methods -- 6. Exponential Tilting and Its Applications -- 6.1. Neyman Smooth Tests -- 6.2. Smooth Models for Discrete Distributions -- 6.3. Rejection Sampling -- 6.4. Tweedie's Formula: Univariate Case -- 6.5. Tweedie's Formula: Multivariate Case -- 6.6. The Saddlepoint Approximation and Notions of Information -- 7. Counting Data Analysis -- 7.1. Inference for Generalized Linear Models -- 7.2. Inference for Contingency Tables -- 7.3. Two-Way Ordered Classifications -- 7.4. Survival Analysis -- 7.4.1. Kaplan-Meier Estimator -- 7.4.2. Modeling Survival Data -- 8. Time Series Methods -- 8.1. Classical Methods of Analysis -- 8.2. State Space Modeling -- 9. Estimating Equations -- 9.1. Composite Likelihood -- 9.2. Empirical Likelihood -- 9.2.1. Application to One-Sample Ranking Problems -- 9.2.2. Application to Two-Sample Ranking Problems -- 10. Symbolic Data Analysis -- 10.1. Introduction -- 10.2. Some Examples -- 10.3. Interval Data -- 10.3.1. Frequency -- 10.3.2. Sample Mean and Sample Variance -- 10.3.3. Realization In SODAS -- 10.4. Multi-nominal Data -- 10.4.1. Frequency -- 10.5. Symbolic Regression -- 10.5.1. Symbolic Regression for Interval Data -- 10.5.2. Symbolic Regression for Modal Data -- 10.5.3. Symbolic Regression in SODAS -- 10.6. Cluster Analysis -- 10.7. Factor Analysis -- 10.8. Factorial Discriminant Analysis -- 10.9. Application to Parkinson's Disease -- 10.9.1. Data Processing -- 10.9.2. Result Analysis -- 10.9.2.1. Viewer -- 10.9.2.2. Descriptive Statistics.
10.9.2.3. Symbolic Regression Analysis -- 10.9.2.4. Symbolic Clustering -- 10.9.2.5. Principal Component Analysis -- 10.9.3. Comparison with Classical Method -- 10.10. Application to Cardiovascular Disease Analysis -- 10.10.1. Results of the Analysis -- 10.10.2. Comparison with the Classical Method -- III. Machine Learning for Big Data -- 11. Tools for Machine Learning -- 11.1. Regression Models -- 11.2. Simple Linear Regression -- 11.2.1. Least Squares Method -- 11.2.2. Statistical Inference on Regression Coefficients -- 11.2.3. Verifying the Assumptions on the Error Terms -- 11.3. Multiple Linear Regression -- 11.3.1. Multiple Linear Regression Model -- 11.3.2. Normal Equations -- 11.3.3. Statistical Inference on Regression Coefficients -- 11.3.4. Model Fit Evaluation -- 11.4. Regression in Machine Learning -- 11.4.1. Optimization for Linear Regression in Machine Learning -- 11.4.1.1. Gradient Descent -- 11.4.1.2. Feature Standardization -- 11.4.1.3. Computing Cost on a Test Set -- 11.5. Classification Models -- 11.5.1. Logistic Regression -- 11.5.1.1. Optimization with Maximal Likelihood for Logistic Regression -- 11.5.1.2. Statistical Inference -- 11.5.2. Logistic Regression for Binary Classification -- 11.5.2.1. Kullback-Leibler Divergence -- 11.5.3. Logistic Regression with Multiple Response Classes -- 11.5.4. Regularization for Regression Models in Machine Learning -- 11.5.4.1. Ridge Regression -- 11.5.4.2. Lasso Regression -- 11.5.4.3. The Choice of Regularization Method -- 11.5.5. Support Vector Machines (SVM) -- 11.5.5.1. Introduction -- 11.5.5.2. Finding the Optimal Hyperplane -- 11.5.5.3. SVM for Nonlinearly Separable Data Sets -- 11.5.5.4. Illustrating SVM -- 12. Neural Networks -- 12.1. Feed-Forward Networks -- 12.1.1. Motivation -- 12.1.2. Introduction to Neural Networks -- 12.1.3. Building a Deep Feed-Forward Network.
12.1.4. Learning in Deep Networks -- 12.1.4.1. Quantitative Model -- 12.1.4.2. Binary Classification Model -- 12.1.5. Generalization -- 12.1.5.1. A Machine Learning Approach to Generalization -- 12.2. Recurrent Neural Networks -- 12.2.1. Building a Recurrent Neural Network -- 12.2.2. Learning in Recurrent Networks -- 12.2.3. Most Common Design Structures of RNNs -- 12.2.4. Deep RNN -- 12.2.5. Bidirectional RNN -- 12.2.6. Long-Term Dependencies and LSTM RNN -- 12.2.7. Reduction for Exploding Gradients -- 12.3. Convolution Neural Networks -- 12.3.1. Convolution Operator for Arrays -- 12.3.1.1. Properties of the Convolution Operator -- 12.3.2. Convolution Layers -- 12.3.3. Pooling Layers -- 12.4. Text Analytics -- 12.4.1. Introduction -- 12.4.2. General Architecture -- IV. Computational Methods for Statistical Inference -- 13. Bayesian Computation Methods -- 13.1. Data Augmentation Methods -- 13.2. Metropolis-Hastings Algorithm -- 13.3. Gibbs Sampling -- 13.4. EM Algorithm -- 13.4.1. Application to Ranking -- 13.4.2. Extension to Several Populations -- 13.5. Variational Bayesian Methods -- 13.5.1. Optimization of the Variational Distribution -- 13.6. Bayesian Nonparametric Methods -- 13.6.1. Dirichlet Prior -- 13.6.2. The Poisson-Dirichlet Prior -- 13.6.3. Simulation of Bayesian Posterior Distributions -- 13.6.4. Other Applications -- Bibliography -- Index.
Record Nr. UNINA-9910633928903321
Alvo Mayer  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Statistical inference and machine learning for big data / / Mayer Alvo
Statistical inference and machine learning for big data / / Mayer Alvo
Autore Alvo Mayer
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (442 pages)
Disciplina 005.7
Collana Springer series in the data sciences
Soggetto topico Big data
Machine learning
Mathematical statistics
Dades massives
Aprenentatge automàtic
Estadística matemàtica
Soggetto genere / forma Llibres electrònics
ISBN 9783031067846
9783031067839
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgments -- Contents -- List of Acronyms -- List of Nomenclatures -- List of Figures -- List of Tables -- I. Introduction to Big Data -- 1. Examples of Big Data -- 1.1. Multivariate Data -- 1.2. Categorical Data -- 1.3. Environmental Data -- 1.4. Genetic Data -- 1.5. Time Series Data -- 1.6. Ranking Data -- 1.7. Social Network Data -- 1.8. Symbolic Data -- 1.9. Image Data -- II. Statistical Inference for Big Data -- 2. Basic Concepts in Probability -- 2.1. Pearson System of Distributions -- 2.2. Modes of Convergence -- 2.3. Multivariate Central Limit Theorem -- 2.4. Markov Chains -- 3. Basic Concepts in Statistics -- 3.1. Parametric Estimation -- 3.2. Hypothesis Testing -- 3.3. Classical Bayesian Statistics -- 4. Multivariate Methods -- 4.1. Matrix Algebra -- 4.2. Multivariate Analysis as a Generalization of Univariate Analysis -- 4.2.1. The General Linear Model -- 4.2.2. One Sample Problem -- 4.2.3. Two-Sample Problem -- 4.3. Structure in Multivariate Data Analysis -- 4.3.1. Principal Component Analysis -- 4.3.2. Factor Analysis -- 4.3.3. Canonical Correlation -- 4.3.4. Linear Discriminant Analysis -- 4.3.5. Multidimensional Scaling -- 4.3.6. Copula Methods -- 5. Nonparametric Statistics -- 5.1. Goodness-of-Fit Tests -- 5.2. Linear Rank Statistics -- 5.3. U Statistics -- 5.4. Hoeffding's Combinatorial Central Limit Theorem -- 5.5. Nonparametric Tests -- 5.5.1. One-Sample Tests of Location -- 5.5.2. Confidence Interval for the Median -- 5.5.3. Wilcoxon Signed Rank Test -- 5.6. Multi-Sample Tests -- 5.6.1. Two-Sample Tests for Location -- 5.6.2. Multi-Sample Test for Location -- 5.6.3. Tests for Dispersion -- 5.7. Compatibility -- 5.8. Tests for Ordered Alternatives -- 5.9. A Unified Theory of Hypothesis Testing -- 5.9.1. Umbrella Alternatives -- 5.9.2. Tests for Trend in Proportions -- 5.10. Randomized Block Designs.
5.11. Density Estimation -- 5.11.1. Univariate Kernel Density Estimation -- 5.11.2. The Rank Transform -- 5.11.3. Multivariate Kernel Density Estimation -- 5.12. Spatial Data Analysis -- 5.12.1. Spatial Prediction -- 5.12.2. Point Poisson Kriging of Areal Data -- 5.13. Efficiency -- 5.13.1. Pitman Efficiency -- 5.13.2. Application of Le Cam's Lemmas -- 5.14. Permutation Methods -- 6. Exponential Tilting and Its Applications -- 6.1. Neyman Smooth Tests -- 6.2. Smooth Models for Discrete Distributions -- 6.3. Rejection Sampling -- 6.4. Tweedie's Formula: Univariate Case -- 6.5. Tweedie's Formula: Multivariate Case -- 6.6. The Saddlepoint Approximation and Notions of Information -- 7. Counting Data Analysis -- 7.1. Inference for Generalized Linear Models -- 7.2. Inference for Contingency Tables -- 7.3. Two-Way Ordered Classifications -- 7.4. Survival Analysis -- 7.4.1. Kaplan-Meier Estimator -- 7.4.2. Modeling Survival Data -- 8. Time Series Methods -- 8.1. Classical Methods of Analysis -- 8.2. State Space Modeling -- 9. Estimating Equations -- 9.1. Composite Likelihood -- 9.2. Empirical Likelihood -- 9.2.1. Application to One-Sample Ranking Problems -- 9.2.2. Application to Two-Sample Ranking Problems -- 10. Symbolic Data Analysis -- 10.1. Introduction -- 10.2. Some Examples -- 10.3. Interval Data -- 10.3.1. Frequency -- 10.3.2. Sample Mean and Sample Variance -- 10.3.3. Realization In SODAS -- 10.4. Multi-nominal Data -- 10.4.1. Frequency -- 10.5. Symbolic Regression -- 10.5.1. Symbolic Regression for Interval Data -- 10.5.2. Symbolic Regression for Modal Data -- 10.5.3. Symbolic Regression in SODAS -- 10.6. Cluster Analysis -- 10.7. Factor Analysis -- 10.8. Factorial Discriminant Analysis -- 10.9. Application to Parkinson's Disease -- 10.9.1. Data Processing -- 10.9.2. Result Analysis -- 10.9.2.1. Viewer -- 10.9.2.2. Descriptive Statistics.
10.9.2.3. Symbolic Regression Analysis -- 10.9.2.4. Symbolic Clustering -- 10.9.2.5. Principal Component Analysis -- 10.9.3. Comparison with Classical Method -- 10.10. Application to Cardiovascular Disease Analysis -- 10.10.1. Results of the Analysis -- 10.10.2. Comparison with the Classical Method -- III. Machine Learning for Big Data -- 11. Tools for Machine Learning -- 11.1. Regression Models -- 11.2. Simple Linear Regression -- 11.2.1. Least Squares Method -- 11.2.2. Statistical Inference on Regression Coefficients -- 11.2.3. Verifying the Assumptions on the Error Terms -- 11.3. Multiple Linear Regression -- 11.3.1. Multiple Linear Regression Model -- 11.3.2. Normal Equations -- 11.3.3. Statistical Inference on Regression Coefficients -- 11.3.4. Model Fit Evaluation -- 11.4. Regression in Machine Learning -- 11.4.1. Optimization for Linear Regression in Machine Learning -- 11.4.1.1. Gradient Descent -- 11.4.1.2. Feature Standardization -- 11.4.1.3. Computing Cost on a Test Set -- 11.5. Classification Models -- 11.5.1. Logistic Regression -- 11.5.1.1. Optimization with Maximal Likelihood for Logistic Regression -- 11.5.1.2. Statistical Inference -- 11.5.2. Logistic Regression for Binary Classification -- 11.5.2.1. Kullback-Leibler Divergence -- 11.5.3. Logistic Regression with Multiple Response Classes -- 11.5.4. Regularization for Regression Models in Machine Learning -- 11.5.4.1. Ridge Regression -- 11.5.4.2. Lasso Regression -- 11.5.4.3. The Choice of Regularization Method -- 11.5.5. Support Vector Machines (SVM) -- 11.5.5.1. Introduction -- 11.5.5.2. Finding the Optimal Hyperplane -- 11.5.5.3. SVM for Nonlinearly Separable Data Sets -- 11.5.5.4. Illustrating SVM -- 12. Neural Networks -- 12.1. Feed-Forward Networks -- 12.1.1. Motivation -- 12.1.2. Introduction to Neural Networks -- 12.1.3. Building a Deep Feed-Forward Network.
12.1.4. Learning in Deep Networks -- 12.1.4.1. Quantitative Model -- 12.1.4.2. Binary Classification Model -- 12.1.5. Generalization -- 12.1.5.1. A Machine Learning Approach to Generalization -- 12.2. Recurrent Neural Networks -- 12.2.1. Building a Recurrent Neural Network -- 12.2.2. Learning in Recurrent Networks -- 12.2.3. Most Common Design Structures of RNNs -- 12.2.4. Deep RNN -- 12.2.5. Bidirectional RNN -- 12.2.6. Long-Term Dependencies and LSTM RNN -- 12.2.7. Reduction for Exploding Gradients -- 12.3. Convolution Neural Networks -- 12.3.1. Convolution Operator for Arrays -- 12.3.1.1. Properties of the Convolution Operator -- 12.3.2. Convolution Layers -- 12.3.3. Pooling Layers -- 12.4. Text Analytics -- 12.4.1. Introduction -- 12.4.2. General Architecture -- IV. Computational Methods for Statistical Inference -- 13. Bayesian Computation Methods -- 13.1. Data Augmentation Methods -- 13.2. Metropolis-Hastings Algorithm -- 13.3. Gibbs Sampling -- 13.4. EM Algorithm -- 13.4.1. Application to Ranking -- 13.4.2. Extension to Several Populations -- 13.5. Variational Bayesian Methods -- 13.5.1. Optimization of the Variational Distribution -- 13.6. Bayesian Nonparametric Methods -- 13.6.1. Dirichlet Prior -- 13.6.2. The Poisson-Dirichlet Prior -- 13.6.3. Simulation of Bayesian Posterior Distributions -- 13.6.4. Other Applications -- Bibliography -- Index.
Record Nr. UNISA-996499866303316
Alvo Mayer  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Statistical Methods for Ranking Data / / by Mayer Alvo, Philip L.H. Yu
Statistical Methods for Ranking Data / / by Mayer Alvo, Philip L.H. Yu
Autore Alvo Mayer
Edizione [1st ed. 2014.]
Pubbl/distr/stampa New York, NY : , : Springer New York : , : Imprint : Springer, , 2014
Descrizione fisica 1 online resource (276 p.)
Disciplina 006.312
519.5
Collana Frontiers in Probability and the Statistical Sciences
Soggetto topico Statistics
Mathematical statistics - Data processing
Data mining
Statistical Theory and Methods
Statistics and Computing
Data Mining and Knowledge Discovery
ISBN 1-4939-1471-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Exploratory Analysis of Ranking Data -- Correlation Analysis of Paired Ranking Data -- Testing for randomness, agreement and interaction -- Block Designs -- General Theory of Hypothesis Testing -- Testing for Ordered Alternatives -- Probability Models for Ranking Data -- Probit Models for Ranking Data -- Decision Tree Models for Ranking Data -- Extension of Distance-Based Models for Ranking Data -- Appendix A: Ranking Data Sets -- Appendix B: Limit Theorems -- Appendix C: Review on Decision Trees.
Record Nr. UNINA-9910299984503321
Alvo Mayer  
New York, NY : , : Springer New York : , : Imprint : Springer, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui