top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
One-Dimensional Superconductivity in Nanowires [[electronic resource]]
One-Dimensional Superconductivity in Nanowires [[electronic resource]]
Autore Altomare Fabio
Pubbl/distr/stampa Hoboken, : Wiley, 2013
Descrizione fisica 1 online resource (345 p.)
Disciplina 620.115
Altri autori (Persone) ChangAlbert M
Soggetto topico Low-dimensional semiconductors
Nanostructured materials
Nanowires
Nanowires - Electric properties
Superconductivity
ISBN 3-527-64904-2
1-299-44876-3
3-527-64907-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto One Dimensional Superconductivity in Nanowires; Contents; Preface; Abbreviations and Symbols; Color Plates; Part One Theoretical Aspects of Superconductivity in 1D Nanowires; 1 Superconductivity: Basics and Formulation; 1.1 Introduction; 1.2 BCS Theory; 1.3 Bogoliubov-de Gennes Equations - Quasiparticle Excitations; 1.4 Ginzburg-Landau Theory; 1.4.1 Time-Dependent Ginzburg-Landau Theory; 1.5 Gorkov Green's Functions, Eilenberger-Larkin-Ovchinnikov Equations, and the Usadel Equation; 1.6 Path Integral Formulation; References; 2 1D Superconductivity: Basic Notions; 2.1 Introduction
2.2 Shape Resonances - Oscillations in Superconductivity Properties 2.2.1 Early Treatments of Shape Resonances in 2D Films; 2.2.2 Bogoliubov-de Gennes Equations, Finite Temperature, and Parabolic-Band Approximation for Realistic Materials; 2.2.3 Numerical Solutions and Thin Film Shape Resonances; 2.2.4 1D Nanowires - Shape Resonances and Size Oscillations; 2.3 Superconductivity in Carbon Nanotubes - Single-Walled Bundles and Individual Multiwalled Nanotubes; 2.4 Phase Slips; 2.4.1 Finite Voltage in a Superconducting Wire and Phase Slip; 2.4.2 Phase Slip in a Josephson Junction
2.4.3 Langer-Ambegaokar Free Energy Minima in the Ginzburg-Landau Approximation 2.4.4 Transition Rate and Free Energy Barrier; 2.4.5 Free Energy Barrier for a Phase Slip in the Ginzburg-Landau Theory; 2.4.6 Physical Scenario of a Thermally-Activated Phase Slip; 2.4.7 McCumber-Halperin Estimate of the Attempt Frequency; References; 3 Quantum Phase Slips and Quantum Phase Transitions; 3.1 Introduction; 3.2 Zaikin-Golubev Theory; 3.2.1 Derivation of the Low Energy Effective Action; 3.2.2 Core Contribution to the QPS Action; 3.2.3 Hydrodynamic Contribution to the Phase-Slip Action
3.2.4 Quantum Phase-Slip Rate 3.2.5 Quantum Phase-Slip Interaction and Quantum-Phase Transitions; 3.2.6 Wire Resistance and Nonlinear Voltage-Current Relations; 3.3 Short-Wire Superconductor-Insulator Transition: Büchler, Geshkenbein and Blatter Theory; 3.4 Refael, Demler, Oreg, Fisher Theory - 1D Josephson Junction Chains and Nanowires; 3.4.1 Discrete Model of 1D Josephson Junction Chains; 3.4.2 Resistance of the Josephson Junctions and the Nanowire; 3.4.3 Mean Field Theory of the Short-Wire SIT; 3.5 Khlebnikov-Pryadko Theory - Momentum Conservation
3.5.1 Gross-Pitaevskii Model and Quantum Phase Slips 3.5.2 Disorder Averaging, Quantum Phase Transition and Scaling for the Resistance and Current-Voltage Relations; 3.5.3 Short Wires - Linear QPS Interaction and Exponential QPS Rate; 3.6 Quantum Criticality and Pair-Breaking - Universal Conductance and Thermal Transport in Short Wires; References; 4 Duality; 4.1 Introduction; 4.2 Mooij-Nazarov Theory of Duality - QPS Junctions; 4.2.1 QPS Junction Voltage-Charge Relationship and Shapiro Current Steps; 4.2.2 QPS Qubits
4.3 Khlebnikov Theory of Interacting Phase Slips in Short Wires: Quark Confinement Physics
Record Nr. UNINA-9910139022303321
Altomare Fabio  
Hoboken, : Wiley, 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
One-Dimensional Superconductivity in Nanowires
One-Dimensional Superconductivity in Nanowires
Autore Altomare Fabio
Edizione [1st ed.]
Pubbl/distr/stampa Hoboken, : Wiley, 2013
Descrizione fisica 1 online resource (345 p.)
Disciplina 620.115
Altri autori (Persone) ChangAlbert M
Soggetto topico Low-dimensional semiconductors
Nanostructured materials
Nanowires
Nanowires - Electric properties
Superconductivity
ISBN 3-527-64904-2
1-299-44876-3
3-527-64907-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto One Dimensional Superconductivity in Nanowires; Contents; Preface; Abbreviations and Symbols; Color Plates; Part One Theoretical Aspects of Superconductivity in 1D Nanowires; 1 Superconductivity: Basics and Formulation; 1.1 Introduction; 1.2 BCS Theory; 1.3 Bogoliubov-de Gennes Equations - Quasiparticle Excitations; 1.4 Ginzburg-Landau Theory; 1.4.1 Time-Dependent Ginzburg-Landau Theory; 1.5 Gorkov Green's Functions, Eilenberger-Larkin-Ovchinnikov Equations, and the Usadel Equation; 1.6 Path Integral Formulation; References; 2 1D Superconductivity: Basic Notions; 2.1 Introduction
2.2 Shape Resonances - Oscillations in Superconductivity Properties 2.2.1 Early Treatments of Shape Resonances in 2D Films; 2.2.2 Bogoliubov-de Gennes Equations, Finite Temperature, and Parabolic-Band Approximation for Realistic Materials; 2.2.3 Numerical Solutions and Thin Film Shape Resonances; 2.2.4 1D Nanowires - Shape Resonances and Size Oscillations; 2.3 Superconductivity in Carbon Nanotubes - Single-Walled Bundles and Individual Multiwalled Nanotubes; 2.4 Phase Slips; 2.4.1 Finite Voltage in a Superconducting Wire and Phase Slip; 2.4.2 Phase Slip in a Josephson Junction
2.4.3 Langer-Ambegaokar Free Energy Minima in the Ginzburg-Landau Approximation 2.4.4 Transition Rate and Free Energy Barrier; 2.4.5 Free Energy Barrier for a Phase Slip in the Ginzburg-Landau Theory; 2.4.6 Physical Scenario of a Thermally-Activated Phase Slip; 2.4.7 McCumber-Halperin Estimate of the Attempt Frequency; References; 3 Quantum Phase Slips and Quantum Phase Transitions; 3.1 Introduction; 3.2 Zaikin-Golubev Theory; 3.2.1 Derivation of the Low Energy Effective Action; 3.2.2 Core Contribution to the QPS Action; 3.2.3 Hydrodynamic Contribution to the Phase-Slip Action
3.2.4 Quantum Phase-Slip Rate 3.2.5 Quantum Phase-Slip Interaction and Quantum-Phase Transitions; 3.2.6 Wire Resistance and Nonlinear Voltage-Current Relations; 3.3 Short-Wire Superconductor-Insulator Transition: Büchler, Geshkenbein and Blatter Theory; 3.4 Refael, Demler, Oreg, Fisher Theory - 1D Josephson Junction Chains and Nanowires; 3.4.1 Discrete Model of 1D Josephson Junction Chains; 3.4.2 Resistance of the Josephson Junctions and the Nanowire; 3.4.3 Mean Field Theory of the Short-Wire SIT; 3.5 Khlebnikov-Pryadko Theory - Momentum Conservation
3.5.1 Gross-Pitaevskii Model and Quantum Phase Slips 3.5.2 Disorder Averaging, Quantum Phase Transition and Scaling for the Resistance and Current-Voltage Relations; 3.5.3 Short Wires - Linear QPS Interaction and Exponential QPS Rate; 3.6 Quantum Criticality and Pair-Breaking - Universal Conductance and Thermal Transport in Short Wires; References; 4 Duality; 4.1 Introduction; 4.2 Mooij-Nazarov Theory of Duality - QPS Junctions; 4.2.1 QPS Junction Voltage-Charge Relationship and Shapiro Current Steps; 4.2.2 QPS Qubits
4.3 Khlebnikov Theory of Interacting Phase Slips in Short Wires: Quark Confinement Physics
Record Nr. UNINA-9910822475803321
Altomare Fabio  
Hoboken, : Wiley, 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui