top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Biodegradable Materials and Their Applications
Biodegradable Materials and Their Applications
Autore Inamuddin <1980->
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2022
Descrizione fisica 1 online resource (881 pages)
Altri autori (Persone) AltalhiTariq
ISBN 1-119-90530-3
1-119-90528-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Half-Title Page -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Biodegradable Materials in Electronics -- 1.1 Introduction -- 1.2 Biodegradable Materials in Electronics -- 1.2.1 Advantages of Biodegradable Materials -- 1.3 Silk -- 1.4 Polymers -- 1.4.1 Natural Polymers -- 1.4.2 Synthetic Polymers -- 1.5 Cellulose -- 1.6 Paper -- 1.7 Others -- 1.8 Biodegradable Electronic Components -- 1.9 Semiconductors -- 1.10 Substrate -- 1.11 Biodegradable Dielectrics -- 1.12 Insulators and Conductors -- 1.13 Conclusion -- Declaration About Copyright -- References -- 2 Biodegradable Thermoelectric Materials -- 2.1 Introduction -- 2.2 Biopolymer-Based Renewable Composites: An Alternative to Synthetic Materials -- 2.3 Working Principle of Thermoelectric Materials -- 2.4 Biopolymer Composite for Thermoelectric Application -- 2.4.1 Polylactic Acid-Based Thermoelectric Materials -- 2.4.2 Cellulose-Based Biocomposites as Thermoelectric Materials -- 2.4.3 Chitosan-Based Biocomposites as Thermoelectric Materials -- 2.4.4 Agarose-Based Biocomposites as Thermoelectric Materials -- 2.4.5 Starch-Based Biocomposites as Thermoelectric Materials -- 2.4.6 Carrageenan-Based Biocomposites as Thermoelectric Materials -- 2.4.7 Pullulan-Based Composites as Thermoelectric Materials -- 2.4.8 Lignin-Based Biocomposites as Thermoelectric Materials -- 2.5 Heparin-Based Biocomposites as Future Thermoelectric Materials -- 2.6 Conclusions -- References -- 3 Biodegradable Electronics: A Newly Emerging Environmental Technology -- 3.1 Introduction -- 3.2 Properties of Biodegradable Materials in Electronics -- 3.3 Transformational Applications of Biodegradable Materials in Electronics -- 3.3.1 Cellulose -- 3.3.2 Silk -- 3.3.3 Stretchable Hydrogel -- 3.3.4 Conjugated Polymers and Metals -- 3.3.5 Graphene -- 3.3.6 Composites -- 3.4 Biodegradation Mechanisms.
3.5 Conclusions -- Acknowledgements -- References -- 4 Biodegradable and Bioactive Films or Coatings From Fish Waste Materials -- 4.1 Introduction -- 4.2 Fishery Chain Industry -- 4.2.1 Evolution of the Fishery Chain Industry -- 4.2.2 Applications of Fish Waste Materials -- 4.3 Films or Coatings Based on Proteins From Fish Waste Materials -- 4.3.1 Films or Coatings for Food Packaging -- 4.3.2 Development of Protein-Based Films or Coatings -- 4.3.2.1 Fish Proteins and Processes for Obtaining Collagen/Gelatin and Myofibrillar Proteins -- 4.3.2.2 Development of Biodegradable and Bioactive Films or Coating -- 4.3.3 Development of Protein-Based Films or Coatings Incorporated With Additives and/or Plasticizers -- 4.3.3.1 Films or Coatings Incorporated With Organic Additives and/or Plasticizers and Their Applications -- 4.3.3.2 Films or Coatings Incorporated With Inorganic Additives and/or Plasticizers -- 4.4 Conclusion -- References -- 5 Biodegradable Superabsorbent Materials -- 5.1 Introduction -- 5.2 Biohydrogels: Superabsorbent Materials -- 5.3 Polysaccharides: Biopolymers from Renewable Sources -- 5.3.1 Carboxymethylcellulose (CMC) -- 5.3.2 Chitosan (CH) -- 5.3.3 Alginate -- 5.3.4 Carrageenans -- 5.4 Applications of Superabsorbent Biohydrogels (SBHs) Based on Polysaccharides -- 5.5 Conclusion and Future Perspectives -- Acknowledgments -- References -- 6 Bioplastics in Personal Protective Equipment -- 6.1 Introduction -- 6.2 Conventional Personal Protective Equipment -- 6.2.1 Face Masks -- 6.2.1.1 Surgical Mask -- 6.2.1.2 N95 Face Masks -- 6.2.1.3 KN95 Face Masks -- 6.2.1.4 Cloth Face Masks -- 6.2.1.5 Two-Layered Face Mask (or Hygienic) -- 6.2.2 Gloves -- 6.2.2.1 Latex -- 6.2.2.2 Nitrile -- 6.2.2.3 Vinyl -- 6.2.2.4 Foil (Polyethylene) -- 6.3 Biodegradable and Biobased PPE -- 6.3.1 Face Masks -- 6.3.1.1 Polylactic Acid -- 6.3.1.2 Polybutylene Succinate.
6.3.1.3 Polyvinyl Alcohol -- 6.3.2 Gloves -- 6.3.2.1 Butadiene Rubber (BR) -- 6.3.2.2 Polyisoprene Rubber -- 6.4 Environmental Impacts Caused by Personal Protective Equipment Made of Bioplastics -- 6.4.1 Source and Raw Materials -- 6.4.2 End of Life Scenarios -- 6.4.3 Remarks on Biodegradability -- 6.5 International Standards Applied to Biodegradable Plastics and Bioplastics -- 6.6 Conclusions -- References -- 7 Biodegradable Protective Films -- 7.1 Introduction -- 7.1.1 Types of Protective Films -- 7.2 Biodegradable Protective Films -- 7.2.1 Processing of Biodegradable Protective Films -- 7.2.2 Limitations Faced by Biodegradable Protective Films -- References -- 8 No Plastic, No Pollution: Replacement of Plastics in the Equipments of Personal Protection -- 8.1 Introduction -- 8.2 Bioplastics -- 8.3 Biodegradation of Bioplastics -- 8.4 Production of Bioplastics from Plant Sources -- 8.5 Production of Bioplastics from Microbial Resources -- 8.6 What Are PPEs Made Off? -- 8.6.1 Face Masks -- 8.6.2 Face and Eye Shields -- 8.6.3 Gloves -- 8.7 Biodegradable Materials for PPE -- 8.8 Conclusion and Future Perspectives -- References -- 9 Biodegradable Materials in Dentistry -- 9.1 Introduction -- 9.2 Biodegradable Materials -- 9.2.1 Synthetic Polymers -- 9.2.2 Natural Polymers -- 9.2.3 Biodegradable Ceramics -- 9.2.4 Bioactive Glass -- 9.2.5 Biodegradable Metals -- 9.3 Biodegradable Materials in Suturing -- 9.4 Biodegradable Materials in Imaging and Diagnostics -- 9.5 Biodegradable Materials in Oral Maxillofacial and Craniofacial Surgery -- 9.6 Biodegradable Materials in Resorbable Plate and Screw System -- 9.7 Biodegradable Materials in Alveolar Ridge Preservation -- 9.8 Biodegradable Materials of Nanotopography in Cancer Therapy -- 9.9 Biodegradable Materials in Endodontics -- 9.10 Biodegradable Materials in Orthodontics.
9.11 Biodegradable Materials in Periodontics -- 9.12 Conclusion -- References -- 10 Biodegradable and Biocompatible Polymeric Materials for Dentistry Applications -- 10.1 Introduction -- 10.2 Polysaccharides -- 10.2.1 Chitosan -- 10.2.2 Cellulose -- 10.2.3 Starch -- 10.2.4 Alginate -- 10.2.5 Hyaluronic Acid (HA) -- 10.3 Proteins -- 10.3.1 Collagen -- 10.3.2 Fibrin -- 10.3.3 Elastin -- 10.3.4 Gelatins -- 10.3.5 Silk -- 10.4 Biopolyesters -- 10.4.1 Poly (Glycolic Acid) (PGA) -- 10.4.2 Poly (Lactic Acid) PLA -- 10.4.3 Poly (Lactide-co-Glycolide) (PLGA) -- 10.4.4 Polycaprolactone -- 10.4.5 Poly (Propylene Fumarate) -- 10.5 Conclusion -- References -- 11 Biodegradable Biomaterials in Bone Tissue Engineering -- 11.1 Introduction -- 11.2 Essential Characteristics and Considerations in Bone Scaffold Design -- 11.3 Fabrication Technologies -- 11.4 Incorporation of Bioactive Molecules During Scaffold Fabrication -- 11.5 Biocompatibility and Interface Between Biodegradation and New Tissue Formation -- 11.6 Biodegradation of Calcium Phosphate Biomaterials -- 11.7 Biodegradation of Polymeric Biomaterials -- 11.8 Importance of Bone Remodeling -- 11.9 Conclusion -- References -- 12 Biodegradable Elastomer -- 12.1 Introduction -- 12.2 Biodegradation Testing -- 12.3 Biodegradable Elastomers: An Overview -- 12.3.1 Preparation Strategies -- 12.3.2 Biodegradation and Erosion -- 12.4 Application of Biodegradable Elastomers -- 12.4.1 Drug Delivery -- 12.4.2 Tissue Engineering -- 12.4.2.1 Neural and Retinal Applications -- 12.4.2.2 Cardiovascular Applications -- 12.4.2.3 Orthopedic Applications -- 12.5 Conclusions and Perspectives -- References -- 13 Biodegradable Implant Materials -- 13.1 Introduction -- 13.2 Medical Implants -- 13.3 Biomaterials -- 13.3.1 Biomaterial Types -- 13.3.1.1 Polymer Biomaterials -- 13.3.1.2 Metallic Biomaterials -- 13.3.1.3 Ceramic Biomaterials.
13.4 Biodegradable Implant Materials -- 13.4.1 Biodegradable Metals -- 13.4.1.1 Magnesium-Based Biodegradable Materials -- 13.4.1.2 Iron-Based Biodegradable Materials -- 13.4.2 Biodegradable Polymers -- 13.4.2.1 Polyesters -- 13.4.2.2 Polycarbonates -- 13.4.2.3 Polyanhydrides -- 13.4.2.4 Poly(ortho esters) -- 13.4.2.5 Poly(propylene fumarate) -- 13.4.2.6 Poly(phosphazenes) -- 13.4.2.7 Polyphosphoesters -- 13.4.2.8 Polyurethanes -- 13.5 Conclusion -- References -- 14 Current Strategies in Pulp and Periodontal Regeneration Using Biodegradable Biomaterials -- 14.1 Introduction -- 14.2 Biodegradable Materials in Dental Pulp Regeneration -- 14.2.1 Collagen-Based Gels -- 14.2.2 Platelet-Rich Plasma -- 14.2.3 Plasma-Rich Fibrin -- 14.2.4 Gelatin -- 14.2.5 Fibrin -- 14.2.6 Alginate -- 14.2.7 Chitosan -- 14.2.8 Amino Acid Polymers -- 14.2.9 Polymers of Lactic Acid -- 14.2.10 Composite Polymer Scaffolds -- 14.3 Biodegradable Biomaterials and Strategies for Tissue Engineering of Periodontium -- 14.4 Coapplication of Auxiliary Agents With Biodegradable Biomaterials for Periodontal Tissue Engineering -- 14.4.1 Stem Cells Applications in Periodontal Regeneration -- 14.4.2 Bioactive Molecules for Periodontal Regeneration -- 14.4.3 Antimicrobial and Anti-Inflammatory Agents for Periodontal Regeneration -- 14.5 Regeneration of Periodontal Tissues Complex Using Biodegradable Biomaterials -- 14.5.1 PDL Regeneration -- 14.5.2 Cementum and Alveolar Bone Regeneration -- 14.5.3 Integrated Regeneration of Periodontal Complex Structures -- 14.6 Recent Advances in Periodontal Regeneration Using Supportive Techniques During Application of Biodegradable Biomaterials -- 14.6.1 Laser Application in Periodontium Regeneration -- 14.6.2 Gene Therapy in Periodontal Regeneration -- 14.7 Conclusion and Future Remarks -- References.
15 A Review on Health Care Applications of Biopolymers.
Record Nr. UNINA-9910595596803321
Inamuddin <1980->  
Newark : , : John Wiley & Sons, Incorporated, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biomimicry Materials and Applications
Biomimicry Materials and Applications
Autore Inamuddin
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2023
Descrizione fisica 1 online resource (254 pages)
Altri autori (Persone) AltalhiTariq
AlrogiAshjan
ISBN 1-394-16704-0
1-394-16703-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Biomimetic Optics -- 1.1 Introduction -- 1.2 What is Biomimicry? -- 1.3 Step-by-Step Approach for Designing Biomimetic Optical Materials From Bioorganisms -- 1.3.1 Optical Structure Analysis in Biology -- 1.3.2 The Analysis of Optical Characteristics in Biological Materials -- 1.3.3 Optical Biomimetic Materials Fabrication Strategies -- 1.4 Biological Visual Systems-Animal and Human -- 1.4.1 Simple Eyes -- 1.4.2 Compound Eyes -- 1.4.2.1 Appositional Compound Eyes -- 1.4.2.2 Superpositional Compound Eyes -- 1.5. The Eye's Optical and Neural Components -- 1.5.1 Cornea -- 1.5.2 Pupils -- 1.5.3 Lens -- 1.5.4 Retina -- 1.6 Application of Biomimetic Optics -- 1.6.1 Hybrid Optical Components are Meant to Resemble the Optical System of the Eye -- 1.6.2 Microlens With a Dual-Facet Design -- 1.6.3 Fiber Optics in Nature -- 1.6.4 Bioinspired Optical Device -- 1.6.4.1 Tunable Lenses Inspired by Nature -- 1.6.4.2 X-Ray Telescope -- 1.6.4.3 Bioinspired Sensors -- 1.7 Conclusion -- References -- Chapter 2 Mimicry at the Material-Cell Interface -- 2.1 Cell and Material Interfaces -- 2.2 Host-Microbe Interactions and Interface Mimicry -- 2.3 Alterations in Characteristics and Mimicking of Extracellular Matrix -- 2.4 Mimicry, Manipulations, and Cell Behavior -- 2.5 Single-Cell Transcriptomics and Involution Mimicry -- 2.6 Molecular Mimicry and Disturbed Immune Surveillance -- 2.7 Surface Chemistry, and Cell-Material Interface -- 2.8 Cell Biology and Surface Topography -- 2.9 3D Extracellular Matrix Mimics and Materials Chemistry -- 2.10 Microbe Interactions and Interface Mimicry -- 2.11 Hijacking of the Host Interactome, and Imperfect Mimicry -- 2.12 Vasculogenic Mimicry and Tumor Angiogenesis -- References.
Chapter 3 Bacteriocins of Lactic Acid Bacteria as a Potential Antimicrobial Peptide -- 3.1 Introduction -- 3.2 Bacteriocins -- 3.3 Lactic Acid Bacteria -- 3.4 Classification of LAB Bacteriocins -- 3.4.1 Class I Bacteriocins or Lantibiotics -- 3.4.1.1 Class Ia -- 3.4.1.2 Class Ib -- 3.4.1.3 Class Ic or Antibiotics -- 3.4.1.4 Class Id -- 3.4.1.5 Class Ie -- 3.4.1.6 Class If -- 3.4.2 Class II Bacteriocins -- 3.4.3 Class III Bacteriocins -- 3.5 Mechanisms of LAB Bacteriocins to Inactivate Microbial Growth -- 3.5.1 Action on Cell Wall Synthesis -- 3.5.1.1 Pore Formation -- 3.5.1.2 Inhibition of Peptidoglycan Synthesis -- 3.5.2 Obstruction in Replication and Transcription -- 3.5.3 Inhibition in Protein Synthesis -- 3.5.4 Disruption of Membrane Structure -- 3.5.5 Disruption in Septum Formation -- 3.6 Antimicrobial Properties of LAB Bacteriocins -- 3.6.1 Antiviral Activity -- 3.6.2 Antibacterial Properties -- 3.6.3 Antifungal Activity -- 3.7 Applications -- 3.7.1 Bacteriocins in Packaging Film -- 3.7.2 Potential Use as Biopreservatives -- 3.7.3 Bacteriocins as Antibiofilm -- 3.7.4 Applications in Foods Industries -- 3.8 Conclusion -- Acknowledgment -- References -- Chapter 4 A Review on Emergence of a Nature-Inspired Polymer-Polydopamine in Biomedicine -- 4.1 Introduction -- 4.2 Structure of PDA -- 4.3 Polydopamine as a Biomedical Material -- 4.4 Polydopamine as a Biomedical Adhesive -- 4.5 Availability of Polydopamine and its Biomedical Applications -- 4.6 Polydopamine Coatings of Nanomaterials -- 4.7 Polydopamine-Based Capsules -- 4.8 Polydopamine Nanoparticles and Nanocomposites -- 4.9 Polydopamine Properties -- 4.9.1 Cell Adhesion -- 4.9.2 Mineralization and Bone Regeneration -- 4.9.3 Blood Compatibility -- 4.9.4 Antimicrobial Effect -- 4.10 Dental Applications -- 4.11 Dental Adhesives -- 4.11.1 Tooth Mineralization -- 4.12 Conclusions -- References.
Chapter 5 Application of Electroactive Polymer Actuator: A Brief Review -- 5.1 Introduction -- 5.2 Chronological Summary of the Evolution of EAP Actuator -- 5.3 Electroactive Polymer Actuators Groups -- 5.3.1 Ionic Electroactive Polymers -- 5.3.2 Electronic Electroactive Polymers -- 5.4 Application of Electroactive Polymer Actuators -- 5.4.1 Soft Robotic Actuator Applications -- 5.4.2 Underwater Applications -- 5.4.3 Aerospace Applications -- 5.4.4 Energy Harvesting Applications -- 5.4.5 Healthcare and Biomedical Applications -- 5.4.6 Shape Memory Polymer Applications -- 5.4.7 Smart Window Applications -- 5.4.8 Wearable Electronics Applications -- 5.5 Conclusion -- References -- Chapter 6 Bioinspired Hydrogels Through 3D Bioprinting -- 6.1 Introduction -- 6.2 Bioinspiration -- 6.3 3D Bioprinting -- 6.3.1 Inkjet Bioprinting -- 6.3.2 Extrusion Printing -- 6.4 Hydrogels as Inks for 3D Bioprinting -- 6.5 Polymers Used for Bioinspired Hydrogels -- 6.5.1 Alginate -- 6.5.2 Cellulose -- 6.5.3 Chitosan -- 6.5.4 Fibrin -- 6.5.5 Silk -- 6.6 Conclusion -- References -- Chapter 7 Electroactive Polymer Actuator-Based Refreshable Braille Displays -- 7.1 Introduction -- 7.2 Refreshable Braille Display -- 7.3 Electroactive Polymers -- 7.4 EAP-Based Braille Actuator -- 7.5 Conclusions -- References -- Chapter 8 Materials Biomimicked From Natural Ones -- 8.1 Introduction -- 8.2 Damage-Tolerant Ceramics -- 8.2.1 General Considerations -- 8.2.2 Nacre -- 8.2.3 Tooth Enamel -- 8.3 Protein-Based Materials With Tailored Properties -- 8.3.1 General Considerations -- 8.3.2 Dragline Silk -- 8.3.3 Fish Scales -- 8.4 Polymers Fit for Easy Junction/Self-Cleaning -- 8.4.1 General Considerations -- 8.4.2 Gecko for No-Glue Adhesion -- 8.4.3 Blue Mussel for Development of Specific Adhesives -- 8.4.4 Shark Skin for Functional Surfaces.
8.5 Recent Prototype Developments on Materials Biomimicked from Natural Ones -- 8.6 Conclusions -- References -- Chapter 9 Novel Biomimicry Techniques for Detecting Plant Diseases -- 9.1 Introduction -- 9.2 Preharvest Biomimicry Detection Techniques -- 9.2.1 Remote Sensing Technique Approach -- 9.2.2 Machine Vision and Fuzzy Logic Approaches -- 9.2.3 Robotics Approach -- 9.3 Postharvest Biomimicry Detection Techniques -- 9.3.1 Neural Network Approach -- 9.3.2 Support Vector Machine Approach -- 9.4 Prospects and Conclusion -- References -- Chapter 10 Biomimicry for Sustainable Structural Mimicking in Textile Industries -- 10.1 Introduction -- 10.2 Examples of Biomimicry Fabrics -- 10.2.1 Algae Fiber -- 10.2.2 Mushroom Leather -- 10.2.3 Fabric Mimics -- 10.2.4 Bacterial Pigments -- 10.2.5 Orange Fabrics -- 10.2.6 Protein Couture -- 10.2.7 Natural Fiber Fabrics -- 10.3 Fabric Production from Biomaterial -- 10.3.1 Soy Fabric -- 10.3.2 Cotton Fabric -- 10.3.3 Supima Fabric -- 10.3.4 Pima Fabric -- 10.3.5 Wool Fabric -- 10.3.6 Hemp Fabric -- 10.4 Current Methods of Biomimicry Materials -- 10.5 Future of Biomimicry -- 10.6 Benefits of Biomimicry -- 10.6.1 Sustainability -- 10.6.2 Perform Welt -- 10.6.3 Energy Saving -- 10.6.4 Cut-Resistant Costs -- 10.6.5 Eliminate Waste -- 10.6.6 New Product Derivation -- 10.6.7 Disrupt Traditional Thinking -- 10.6.8 Adaptability to Climate -- 10.6.9 Nourish Curiosity -- 10.6.10 Leverage Collaboration -- 10.7 Conclusion -- References -- Index -- EULA.
Record Nr. UNINA-9910830600803321
Inamuddin  
Newark : , : John Wiley & Sons, Incorporated, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biomimicry Materials and Applications
Biomimicry Materials and Applications
Autore Inamuddin
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2023
Descrizione fisica 1 online resource (254 pages)
Altri autori (Persone) AltalhiTariq
AlrogiAshjan
ISBN 1-394-16704-0
1-394-16703-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Biomimetic Optics -- 1.1 Introduction -- 1.2 What is Biomimicry? -- 1.3 Step-by-Step Approach for Designing Biomimetic Optical Materials From Bioorganisms -- 1.3.1 Optical Structure Analysis in Biology -- 1.3.2 The Analysis of Optical Characteristics in Biological Materials -- 1.3.3 Optical Biomimetic Materials Fabrication Strategies -- 1.4 Biological Visual Systems-Animal and Human -- 1.4.1 Simple Eyes -- 1.4.2 Compound Eyes -- 1.4.2.1 Appositional Compound Eyes -- 1.4.2.2 Superpositional Compound Eyes -- 1.5. The Eye's Optical and Neural Components -- 1.5.1 Cornea -- 1.5.2 Pupils -- 1.5.3 Lens -- 1.5.4 Retina -- 1.6 Application of Biomimetic Optics -- 1.6.1 Hybrid Optical Components are Meant to Resemble the Optical System of the Eye -- 1.6.2 Microlens With a Dual-Facet Design -- 1.6.3 Fiber Optics in Nature -- 1.6.4 Bioinspired Optical Device -- 1.6.4.1 Tunable Lenses Inspired by Nature -- 1.6.4.2 X-Ray Telescope -- 1.6.4.3 Bioinspired Sensors -- 1.7 Conclusion -- References -- Chapter 2 Mimicry at the Material-Cell Interface -- 2.1 Cell and Material Interfaces -- 2.2 Host-Microbe Interactions and Interface Mimicry -- 2.3 Alterations in Characteristics and Mimicking of Extracellular Matrix -- 2.4 Mimicry, Manipulations, and Cell Behavior -- 2.5 Single-Cell Transcriptomics and Involution Mimicry -- 2.6 Molecular Mimicry and Disturbed Immune Surveillance -- 2.7 Surface Chemistry, and Cell-Material Interface -- 2.8 Cell Biology and Surface Topography -- 2.9 3D Extracellular Matrix Mimics and Materials Chemistry -- 2.10 Microbe Interactions and Interface Mimicry -- 2.11 Hijacking of the Host Interactome, and Imperfect Mimicry -- 2.12 Vasculogenic Mimicry and Tumor Angiogenesis -- References.
Chapter 3 Bacteriocins of Lactic Acid Bacteria as a Potential Antimicrobial Peptide -- 3.1 Introduction -- 3.2 Bacteriocins -- 3.3 Lactic Acid Bacteria -- 3.4 Classification of LAB Bacteriocins -- 3.4.1 Class I Bacteriocins or Lantibiotics -- 3.4.1.1 Class Ia -- 3.4.1.2 Class Ib -- 3.4.1.3 Class Ic or Antibiotics -- 3.4.1.4 Class Id -- 3.4.1.5 Class Ie -- 3.4.1.6 Class If -- 3.4.2 Class II Bacteriocins -- 3.4.3 Class III Bacteriocins -- 3.5 Mechanisms of LAB Bacteriocins to Inactivate Microbial Growth -- 3.5.1 Action on Cell Wall Synthesis -- 3.5.1.1 Pore Formation -- 3.5.1.2 Inhibition of Peptidoglycan Synthesis -- 3.5.2 Obstruction in Replication and Transcription -- 3.5.3 Inhibition in Protein Synthesis -- 3.5.4 Disruption of Membrane Structure -- 3.5.5 Disruption in Septum Formation -- 3.6 Antimicrobial Properties of LAB Bacteriocins -- 3.6.1 Antiviral Activity -- 3.6.2 Antibacterial Properties -- 3.6.3 Antifungal Activity -- 3.7 Applications -- 3.7.1 Bacteriocins in Packaging Film -- 3.7.2 Potential Use as Biopreservatives -- 3.7.3 Bacteriocins as Antibiofilm -- 3.7.4 Applications in Foods Industries -- 3.8 Conclusion -- Acknowledgment -- References -- Chapter 4 A Review on Emergence of a Nature-Inspired Polymer-Polydopamine in Biomedicine -- 4.1 Introduction -- 4.2 Structure of PDA -- 4.3 Polydopamine as a Biomedical Material -- 4.4 Polydopamine as a Biomedical Adhesive -- 4.5 Availability of Polydopamine and its Biomedical Applications -- 4.6 Polydopamine Coatings of Nanomaterials -- 4.7 Polydopamine-Based Capsules -- 4.8 Polydopamine Nanoparticles and Nanocomposites -- 4.9 Polydopamine Properties -- 4.9.1 Cell Adhesion -- 4.9.2 Mineralization and Bone Regeneration -- 4.9.3 Blood Compatibility -- 4.9.4 Antimicrobial Effect -- 4.10 Dental Applications -- 4.11 Dental Adhesives -- 4.11.1 Tooth Mineralization -- 4.12 Conclusions -- References.
Chapter 5 Application of Electroactive Polymer Actuator: A Brief Review -- 5.1 Introduction -- 5.2 Chronological Summary of the Evolution of EAP Actuator -- 5.3 Electroactive Polymer Actuators Groups -- 5.3.1 Ionic Electroactive Polymers -- 5.3.2 Electronic Electroactive Polymers -- 5.4 Application of Electroactive Polymer Actuators -- 5.4.1 Soft Robotic Actuator Applications -- 5.4.2 Underwater Applications -- 5.4.3 Aerospace Applications -- 5.4.4 Energy Harvesting Applications -- 5.4.5 Healthcare and Biomedical Applications -- 5.4.6 Shape Memory Polymer Applications -- 5.4.7 Smart Window Applications -- 5.4.8 Wearable Electronics Applications -- 5.5 Conclusion -- References -- Chapter 6 Bioinspired Hydrogels Through 3D Bioprinting -- 6.1 Introduction -- 6.2 Bioinspiration -- 6.3 3D Bioprinting -- 6.3.1 Inkjet Bioprinting -- 6.3.2 Extrusion Printing -- 6.4 Hydrogels as Inks for 3D Bioprinting -- 6.5 Polymers Used for Bioinspired Hydrogels -- 6.5.1 Alginate -- 6.5.2 Cellulose -- 6.5.3 Chitosan -- 6.5.4 Fibrin -- 6.5.5 Silk -- 6.6 Conclusion -- References -- Chapter 7 Electroactive Polymer Actuator-Based Refreshable Braille Displays -- 7.1 Introduction -- 7.2 Refreshable Braille Display -- 7.3 Electroactive Polymers -- 7.4 EAP-Based Braille Actuator -- 7.5 Conclusions -- References -- Chapter 8 Materials Biomimicked From Natural Ones -- 8.1 Introduction -- 8.2 Damage-Tolerant Ceramics -- 8.2.1 General Considerations -- 8.2.2 Nacre -- 8.2.3 Tooth Enamel -- 8.3 Protein-Based Materials With Tailored Properties -- 8.3.1 General Considerations -- 8.3.2 Dragline Silk -- 8.3.3 Fish Scales -- 8.4 Polymers Fit for Easy Junction/Self-Cleaning -- 8.4.1 General Considerations -- 8.4.2 Gecko for No-Glue Adhesion -- 8.4.3 Blue Mussel for Development of Specific Adhesives -- 8.4.4 Shark Skin for Functional Surfaces.
8.5 Recent Prototype Developments on Materials Biomimicked from Natural Ones -- 8.6 Conclusions -- References -- Chapter 9 Novel Biomimicry Techniques for Detecting Plant Diseases -- 9.1 Introduction -- 9.2 Preharvest Biomimicry Detection Techniques -- 9.2.1 Remote Sensing Technique Approach -- 9.2.2 Machine Vision and Fuzzy Logic Approaches -- 9.2.3 Robotics Approach -- 9.3 Postharvest Biomimicry Detection Techniques -- 9.3.1 Neural Network Approach -- 9.3.2 Support Vector Machine Approach -- 9.4 Prospects and Conclusion -- References -- Chapter 10 Biomimicry for Sustainable Structural Mimicking in Textile Industries -- 10.1 Introduction -- 10.2 Examples of Biomimicry Fabrics -- 10.2.1 Algae Fiber -- 10.2.2 Mushroom Leather -- 10.2.3 Fabric Mimics -- 10.2.4 Bacterial Pigments -- 10.2.5 Orange Fabrics -- 10.2.6 Protein Couture -- 10.2.7 Natural Fiber Fabrics -- 10.3 Fabric Production from Biomaterial -- 10.3.1 Soy Fabric -- 10.3.2 Cotton Fabric -- 10.3.3 Supima Fabric -- 10.3.4 Pima Fabric -- 10.3.5 Wool Fabric -- 10.3.6 Hemp Fabric -- 10.4 Current Methods of Biomimicry Materials -- 10.5 Future of Biomimicry -- 10.6 Benefits of Biomimicry -- 10.6.1 Sustainability -- 10.6.2 Perform Welt -- 10.6.3 Energy Saving -- 10.6.4 Cut-Resistant Costs -- 10.6.5 Eliminate Waste -- 10.6.6 New Product Derivation -- 10.6.7 Disrupt Traditional Thinking -- 10.6.8 Adaptability to Climate -- 10.6.9 Nourish Curiosity -- 10.6.10 Leverage Collaboration -- 10.7 Conclusion -- References -- Index -- EULA.
Record Nr. UNINA-9910840832403321
Inamuddin  
Newark : , : John Wiley & Sons, Incorporated, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biosensors Nanotechnology / / edited by Tariq Altalhi
Biosensors Nanotechnology / / edited by Tariq Altalhi
Edizione [Second edition.]
Pubbl/distr/stampa Hoboken, NJ : , : John Wiley & Sons, Inc. and Scrivener Publishing LLC, , [2023]
Descrizione fisica 1 online resource (510 pages)
Disciplina 610.284
Soggetto topico Nanotechnology
Biosensors
Health
ISBN 1-394-16713-X
1-394-16712-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910830641603321
Hoboken, NJ : , : John Wiley & Sons, Inc. and Scrivener Publishing LLC, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Drug design using machine learning / / edited by Inamuddin, [and three others]
Drug design using machine learning / / edited by Inamuddin, [and three others]
Pubbl/distr/stampa Hoboken, NJ : , : Wiley, , ℗2022
Descrizione fisica 1 online resource (378 pages)
Disciplina 929.605
Soggetto topico Computer-aided design
ISBN 1-394-16725-3
1-394-16724-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Half-Title Page -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Molecular Recognition and Machine Learning to Predict Protein-Ligand Interactions -- 1.1 Introduction -- 1.1.1 Molecular Recognition -- 1.2 Molecular Docking -- 1.2.1 Conformational Search Algorithm -- 1.2.2 Scoring Function with Conventional Methods -- 1.3 Machine Learning -- 1.3.1 Machine Learning in Molecular Docking -- 1.3.2 Machine Learning Challenges in Molecular Docking -- 1.4 Conclusions -- References -- 2 Machine Learning Approaches to Improve Prediction of Target-Drug Interactions -- 2.1 Machine Learning Revolutionizing Drug Discovery -- 2.1.1 Introduction -- 2.1.2 Virtual Screening and Rational Drug Design -- 2.1.3 Small Organic Molecules and Peptides as Drugs -- 2.2 A Brief Summary of Machine Learning Models -- 2.2.1 Support Vector Machines (SVM) -- 2.2.2 Random Forests (RF) -- 2.2.3 Gradient Boosting Decision Tree -- 2.2.4 K-Nearest Neighbor (KNN) -- 2.2.5 Neural Network and Deep Learning -- 2.2.6 Gaussian Process Regression -- 2.2.7 Evaluating Regression Methods -- 2.2.8 Evaluating Classification Methods -- 2.3 Target Validation -- 2.3.1 Ligand Binding Site Prediction (LBS) -- 2.3.2 Classical Approaches -- 2.3.3 Machine Learning Approaches -- 2.3.3.1 SVM-Based Approaches -- 2.3.3.2 Random Forest-Based Approaches -- 2.3.3.3 Deep Learning-Based Approaches -- 2.4 Lead Discovery -- 2.4.1 The Relevance of Predict Binding Affinity -- 2.4.2 The Concept of Docking -- 2.4.3 The Scoring Function -- 2.4.4 Developing of Novels Scoring Functions by Machine Learning -- 2.4.4.1 Random Forests -- 2.4.4.2 Support Vector Machines -- 2.4.4.3 Neural Networks -- 2.4.4.4 Gradient Boosting Decision Tree -- 2.5 Lead Optimization -- 2.5.1 QSAR and Proteochemometrics -- 2.5.2 Machine Learning Algorithms in Deriving Descriptors.
2.6 Peptides in Pharmaceuticals -- 2.6.1 Peptide Natural and Synthetic Sources -- 2.6.2 Applications and Market for Peptides-Based Drugs -- 2.6.3 Challenges to Become a Peptide Into a Drug -- 2.6.4 Improving Peptide Drug Development Using Machine Learning Techniques -- 2.7 Conclusions -- References -- 3 Machine Learning Applications in Rational Drug Discovery -- 3.1 Introduction -- 3.2 The Drug Development and Approval Process -- 3.3 Human-AI Partnership -- 3.4 AI in Understanding the Pathway to Assess the Side Effects -- 3.4.1 Traditional Versus New Strategies in Drug Discovery -- 3.4.2 Target Identification and Authentication -- 3.4.3 Searching the Hit and Lead Molecules with the Help of AI -- 3.4.4 Discretion of a Population for Medical Trials Using AI -- 3.5 Predicting the Side Effects Using AI -- 3.6 AI for Polypharmacology and Repurposing -- 3.7 The Challenge of Keeping Drugs Safe -- 3.8 Conclusion -- Resources -- References -- 4 Deep Learning for the Selection of Multiple Analogs -- 4.1 Introduction -- 4.2 Goals of Analog Design -- 4.3 Deep Learning in Drug Discovery -- 4.4 Chloroquine Analogs -- 4.5 Deep Learning in Medical Field -- 4.5.1 Scientific Study of Skin Diseases -- 4.5.2 Anatomical Laparoscopy -- 4.5.3 Angiography -- 4.5.4 Interpretation of Wound -- 4.5.5 Molecular Docking -- 4.5.6 Breast Cancer Detection -- 4.5.7 Polycystic Organs -- 4.5.8 Bone Tissue -- 4.5.9 Interaction Drug-Target -- 4.5.10 Pancreatic Issue Prediction -- 4.5.11 Prediction of Carcinoma in Cells -- 4.5.12 Determining Parkinson's -- 4.5.13 Segregating Cells -- 4.6 Conclusion -- References -- 5 Drug Repurposing Based on Machine Learning -- 5.1 Introduction -- 5.2 Computational Drug Repositioning Strategies -- 5.2.1 Drug-Based Strategies -- 5.2.2 Disease-Based Strategies -- 5.3 Machine Learning.
5.4 Data Resources Used for Computational Drug Repositioning Through Machine Learning Techniques -- 5.5 Machine Learning Approaches Used for Drug Repurposing -- 5.5.1 Network-Based Approaches -- 5.5.2 Text Mining-Based Approaches -- 5.5.3 Semantics-Based Approaches -- 5.6 Drugs Repurposing Through Machine Learning-Case Studies -- 5.6.1 Psychiatric Disorders -- 5.6.2 Alzheimer's Disease -- 5.6.3 Drug Repurposing for Cancer -- 5.6.4 COVID-19 -- 5.6.5 Herbal Drugs -- 5.7 Conclusion -- References -- 6 Recent Advances in Drug Design With Machine Learning -- 6.1 Introduction -- 6.2 Categorization of Machine Learning Tasks -- 6.2.1 Supervised Learning -- 6.2.2 Unsupervised Learning -- 6.2.3 Semisupervised Learning -- 6.2.4 Reinforcement Learning -- 6.3 Machine Language-Mediated Predictive Models in Drug Design -- 6.3.1 Quantitative Structure-Activity Relationship Models (QSAR) -- 6.3.2 Quantitative Structure-Property Relationship Models (QSPR) -- 6.3.3 Quantitative Structure Toxicity Relationship Models (QSTR) -- 6.3.4 Quantitative Structure Biodegradability Relationship Models (QSBR) -- 6.4 Machine Learning Models -- 6.4.1 Artificial Neural Networks (ANNs) -- 6.4.2 Self-Organizing Map (SOM) -- 6.4.3 Multilayer Perceptrons (MLPs) -- 6.4.4 Counter Propagation Neural Networks (CPNN) -- 6.4.5 Bayesian Neural Networks (BNNs) -- 6.4.6 Support Vector Machines (SVMs) -- 6.4.7 Naive Bayesian Classifier -- 6.4.8 K Nearest Neighbors (KNN) -- 6.4.9 Ensemble Methods -- 6.4.9.1 Boosting -- 6.4.9.2 Bagging -- 6.4.10 Random Forest -- 6.4.11 Deep Learning -- 6.4.12 Synthetic Minority Oversampling Technique -- 6.5 Machine Learning and Docking -- 6.5.1 Scoring Power -- 6.5.2 Ranking Power -- 6.5.3 Docking Power -- 6.5.4 Predicting Docking Score Using Machine Learning -- 6.6 Machine Learning in Chemoinformatics.
6.7 Challenges and Limitations for Machine Learning in Drug Discovery -- 6.8 Conclusion and Future Perspectives -- References -- 7 Loading of Drugs in Biodegradable Polymers Using Supercritical Fluid Technology -- 7.1 Introduction -- 7.2 Supercritical Fluid Technology -- 7.2.1 Supercritical Fluids -- 7.2.2 Physicochemical Properties -- 7.2.3 Carbon Dioxide -- 7.3 Biodegradable Polymers -- 7.3.1 Main Biologically-Derived Polymers Used With SCF Technologies -- 7.3.1.1 Cellulose -- 7.3.1.2 Chitosan -- 7.3.1.3 Alginate -- 7.3.1.4 Collagen -- 7.3.2 Main Synthetic Polymers Used With SCF Technologies -- 7.3.2.1 Polylactic Acid (PLA) -- 7.3.2.2 Poly (Lactic-co-Glycolic Acid) (PLGA) -- 7.3.2.3 Polycaprolactone (PCL) -- 7.3.2.4 Poly (Vinyl Alcohol) (PVA) -- 7.4 Drug Delivery -- 7.4.1 Types of Drugs -- 7.4.2 Influence of Experimental Conditions on the Drug Loading -- 7.5 Conclusion -- Acknowledgments -- References -- 8 Neural Network for Screening Active Sites on Proteins -- 8.1 Introduction -- 8.2 Structural Proteomics -- 8.2.1 PPIs -- 8.2.2 Active Sites in Proteins -- 8.3 Gist Techniques to Study the Active Sites on Proteins -- 8.3.1 In Vitro -- 8.3.1.1 Affinity Purification -- 8.3.1.2 Affinity Chromatography -- 8.3.1.3 Coimmunoprecipitation -- 8.3.1.4 Protein Arrays -- 8.3.1.5 Protein Fragment Complementation -- 8.3.1.6 Phage Display -- 8.3.1.7 X-Ray Crystallography -- 8.3.1.8 Nuclear Magnetic Resonance Spectroscopy (NMR) -- 8.3.2 In Vivo -- 8.3.2.1 In-Silico Two-Hybrid -- 8.3.3 In-Silico and Neural Network -- 8.3.3.1 Data Base -- 8.3.3.2 Sequence-Based Approaches -- 8.3.3.3 Structure-Based Approaches -- 8.3.3.4 Phylogenetic Tree -- 8.3.3.5 Gene Fusion -- 8.4 Neural Networking Algorithms to Study Active Sites on Proteins -- 8.4.1 PDBSiteScan Program -- 8.4.2 Patterns in Nonhomologous Tertiary Structures (PINTS) -- 8.4.3 Genetic Active Site Search (GASS).
8.4.4 Site Map -- 8.4.5 Computed Atlas of Surface Topography of Proteins (CASTp) -- 8.5 Conclusion -- References -- 9 Protein Redesign and Engineering Using Machine Learning -- 9.1 Introduction -- 9.2 Designing Sequence-Function Model Through Machine Learning -- 9.2.1 Training of Model and Evaluation -- 9.2.2 Representation of Proteins by Vector -- 9.2.3 Guiding Exploration by Employing Sequence-Function Prediction -- 9.3 Features Based on Energy -- 9.4 Features Based on Structure -- 9.5 Prediction of Thermostability of Protein with Single Point Mutations -- 9.6 Selection of Features -- 9.6.1 Extraction of Features -- 9.7 Force Field and Score Function -- 9.8 Machine Learning for Prediction of Hot Spots -- 9.8.1 Support Vector Machines -- 9.8.2 Nearest Neighbor -- 9.8.3 Decision Trees -- 9.8.4 Neural Networks -- 9.8.5 Bayesian Networks -- 9.8.6 Ensemble Learning -- 9.9 Deep Learning-Neural Network in Computational Protein Designing -- 9.10 Machine Learning in Engineering of Proteins -- 9.11 Conclusion -- References -- 10 Role of Transcriptomics and Artificial Intelligence Approaches for the Selection of Bioactive Compounds -- 10.1 Introduction -- 10.2 Types of Bioactive Compounds -- 10.2.1 Phenolic Acids -- 10.2.2 Stilbenes -- 10.2.3 Ellagitannins -- 10.2.4 Flavonoids -- 10.2.5 Proanthocyanidin -- 10.2.6 Vitamins -- 10.2.7 Bioactive Peptides -- 10.3 Transcriptomics Approaches for the Selection of Bioactive Compounds -- 10.3.1 Hybrid Transcriptome Sequencing -- 10.3.2 Microarray -- 10.3.3 RNA-Seq -- 10.4 Artificial Intelligence Approaches for the Selection of Bioactive Compounds -- 10.4.1 Machines Learning (ML) Approach for the Selection of Bioactive Compounds -- 10.4.1.1 Evolution of Machine Learning to Deep Learning -- 10.4.1.2 Virtual Screening -- 10.4.1.3 Recent Advances in Machine Learning -- 10.4.1.4 Deep Learning.
10.4.2 De Novo Synthesis of Bioactive Compounds.
Record Nr. UNINA-9910830147803321
Hoboken, NJ : , : Wiley, , ℗2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Electroceramics for High Performance Supercapicitors / / edited by Inamuddin, Tariq Altalhi and Sayed Mohammed Adnan
Electroceramics for High Performance Supercapicitors / / edited by Inamuddin, Tariq Altalhi and Sayed Mohammed Adnan
Edizione [First edition.]
Pubbl/distr/stampa Hoboken, NJ : , : John Wiley & Sons, Inc., , [2024]
Descrizione fisica 1 online resource (0 pages)
Disciplina 621.381
Soggetto topico Electronic ceramics
Supercapacitors
ISBN 1-394-16716-4
1-394-16715-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Lead-Free Energy Storage Ceramics -- 1.1 Introduction -- 1.2 Dielectric Capacitor and Energy Storage -- 1.3 Energy Storage of Dielectric Ceramics Free of Lead -- 1.4 Conclusion and Outlooks -- Acknowledgments -- References -- Chapter 2 Lead-Based Ceramics for High-Performance Supercapacitors -- 2.1 Introduction -- 2.2 General Idea of Ceramics for Supercapacitors -- 2.2.1 Metallic Oxide Ceramics for Supercapacitors -- 2.2.2 Binary Metal Oxides -- 2.2.2.1 Ceramics of Spinal Oxide Material -- 2.2.2.2 Barium Titanate Ceramics -- 2.2.3 Multimetal Oxidized Ceramics -- 2.2.4 Metal Hydroxide-Type Ceramics -- 2.3 Principle Involved in Electroceramics -- 2.3.1 Electrostatic Capacitor -- 2.4 Lead-Based Ceramics -- 2.4.1 Lead-Based Ferroelectrics -- 2.4.2 Lead-Based Relaxor Ferroelectrics -- 2.4.3 Lead-Based Anti-Ferroelectrics -- 2.5 Characteristics of Lead-Based Ceramics -- 2.5.1 Characteristics of Lead Zirconate Titanate -- 2.5.2 Characteristics of Lead Magnesium Niobate -- 2.5.3 Characteristics of Lead Zinc Niobate -- 2.6 Conclusion and Perspectives -- 2.6.1 Up-to-Date Sintering and Molding Process -- 2.6.2 Microscopical and Flexible Ceramics Electrode Materials -- 2.6.3 Improvement of Efficiency of the Ceramic Electrode Materials -- References -- Chapter 3 Ceramic Films for High-Performance Supercapacitors -- 3.1 Introduction -- 3.2 Energy Storage Principles -- 3.3 Factors Optimizing Energy Density -- 3.3.1 The Intrinsic Band Gap (Eg) -- 3.3.2 Electrical Microstructure -- 3.3.3 Density and Grain Size -- 3.4 Ceramics for Supercapacitors -- 3.4.1 Metal Oxide Ceramics -- 3.4.2 Multielemental Oxides -- 3.5 Conclusions and Outlook -- References -- Chapter 4 Ceramic Multilayers and Films for High-Performance Supercapacitors -- 4.1 Introduction.
4.2 Fundamentals of Energy Storage in Electroceramics -- 4.2.1 Electrostatic Capacitors -- 4.2.2 Important Factors Designed for Assessing Energy Storage Characteristics -- 4.3 Important Factors for Maximizing Energy Density -- 4.3.1 Intrinsic Band Gap -- 4.3.2 Electrical Microstructure -- 4.4 Different Types of Electroceramics Capacitors for Energy Storage -- 4.4.1 Pb-Doped Ceramics -- 4.4.1.1 Pb-Doped RFEs -- 4.4.1.2 Lead-Doped Antiferroelectrics -- 4.4.2 Pb-Free Ceramics -- 4.4.2.1 BaTiO3-Based Ceramics -- 4.4.2.2 K0.5Na0.5NbO3-Doped Ceramics -- 4.4.2.3 Na0.5Bi0.5TiO3-Doped Ceramics -- 4.4.2.4 AgNbO3-Based Ceramics -- 4.5 Application of Electroceramics Supercapacitor -- 4.6 Conclusion -- References -- Chapter 5 Superconductors for Energy Storage -- 5.1 Introduction -- 5.1.1 Background -- 5.1.2 Superconducting Properties -- 5.1.3 Synthetic Methodology -- 5.2 Low-Temperature Superconductors -- 5.2.1 Nb-Ti-Based LTS -- 5.2.2 Nb3Sn-Based LTS -- 5.3 High-Temperature Superconductors -- 5.3.1 Cuprate-Based HTS -- 5.3.2 Iron-Based Pnictides (Pn) and Chalcogenides (Ch) as HTS -- 5.3.3 MgB2-Based HTS -- 5.3.4 Hydrides-Based HTS -- 5.4 Superconductors in Energy Applications -- 5.4.1 Superconducting Magnetic Energy Storage -- 5.4.1.1 Use of SMES in the Power Grid: Flexible AC Transmission System (FACTS) -- 5.4.1.2 Use of SMES as Fault Current Limiters -- 5.4.2 Use of Superconductors in Accelerator System -- 5.4.3 Use of Superconductors in Fusion Technologies -- 5.4.4 Challenges Faced During Superconducting Energy Storage -- 5.5 Conclusion -- Acknowledgments -- References -- Chapter 6 Key Factors for Optimizing Energy Density in High-Performance Supercapacitors -- 6.1 Supercapacitor -- 6.2 Electric Double-Layer Capacitor -- 6.3 Pseudo-Capacitor -- 6.4 Hybrid Supercapacitor -- 6.4.1 Electrochemical Performance -- 6.4.2 Capacitance -- 6.4.3 Specific Capacitance.
6.4.4 Energy Density -- 6.4.5 Power Density -- 6.4.6 Cyclic Stability -- 6.5 The Energy Density of Supercapacitor -- 6.5.1 Optimization of High Energy Density -- 6.5.1.1 Pore Size -- 6.5.1.2 Surface Area -- 6.5.1.3 Grain Size -- 6.5.1.4 Functional Groups -- 6.5.1.5 Band Gap -- 6.5.2 Effect of Voltage -- 6.5.3 Asymmetric Supercapacitors -- 6.5.4 Negative Electrode Materials -- 6.5.5 Positive Electrode Materials -- 6.5.6 Battery-Supercapacitor Hybrid (Bsh) Device -- 6.5.6.1 Lithium-Ion BSH -- 6.5.6.2 Na-Ion BSH -- 6.5.6.3 Acidic BSH -- 6.5.6.4 Alkaline BSH -- 6.6 Future Outlook -- 6.7 Conclusion -- References -- Chapter 7 Optimization of Anti-Ferroelectrics -- 7.1 Introduction -- 7.2 Energy Storage Properties -- 7.3 Antiferroelectric for Energy Storage -- 7.3.1 Lead-Based Antiferroelectric -- 7.3.2 Lead-Free Antiferroelectric -- 7.3.3 Challenges -- 7.4 Explosive Energy Conversion -- 7.5 Energy Storage and High-Power Capacitors -- 7.6 Thermal-Electric Energy Interconversion -- 7.7 Optimization -- 7.7.1 Phase Structure Engineering -- 7.7.1.1 Planning Phase in a Structural Engineering Project -- 7.7.1.2 Design Phase -- 7.7.1.3 Construction Phase -- 7.7.2 Grain Size Engineering -- 7.7.3 Domain Engineering -- 7.7.3.1 Phase -- 7.7.3.2 Domain Analysis -- 7.7.3.3 Domain Design -- 7.7.4 Doping -- 7.8 Conclusion -- References -- Chapter 8 Super Capacitive Performance Assessment of Mixed Ferromagnetic Iron and Cobalt Oxides and Their Polymer Composites -- 8.1 Introduction -- 8.1.1 Electrolyte -- 8.1.2 Separator -- 8.1.3 Current Collector -- 8.1.4 Supercapacitor Electrode Materials -- 8.2 Ferromagnetic Electrode Materials -- 8.3 Mixed Ferromagnetic Iron and Cobalt Oxides -- 8.4 Conclusion -- References -- Chapter 9 Transition Metal Oxides with Broaden Potential Window for High-Performance Supercapacitors -- 9.1 Introduction of Transition Metal Oxides (TMOs).
9.2 Redox-Based Materials -- 9.3 Conducting Polymers -- 9.4 Electroactive Metal Oxides or Transition Metal Oxides (TMOs) as Electrodes for SCs -- 9.4.1 MnO2 as Electrode Material for SCs -- 9.4.2 Pseudo-Capacitive Behavior of á-MnO2 by Cation Insertion -- 9.4.3 Na0.5MnO2 Nanosheet Assembled Nanowall Arrays for ASCs -- 9.4.4 FeOx/FeOOH Material as Negative Electrode -- 9.4.5 Carbon-Stabilized Fe3O4@C Nanorod Arrays as an Efficient Anode for SCs -- 9.4.6 Electrochemical Performance of Fe3O4 and Fe3O4@C NRAs as Anode -- 9.4.7 Construction of Na0.5MnO2//Fe3O4@C ASC and Electrochemical Performance -- 9.4.8 Highly Efficient NiCo2S4@Fe2O3//MnO2 ASC -- 9.4.9 Bi2O3 as Negative Electrode with Broaden Potential Window -- 9.5 Conclusion -- References -- Chapter 10 Aqueous Redox-Active Electrolytes -- 10.1 Introduction -- 10.2 Electrolyte Requirements for High-Performance Supercapacitors -- 10.2.1 Conductivity -- 10.2.2 Salt Effect -- 10.2.3 Solvent Effect -- 10.2.4 Electrochemical Stability -- 10.2.5 Thermal Stability -- 10.3 Effect of the Electrolyte on Supercapacitor Performance -- 10.3.1 Aqueous Electrolytes -- 10.3.2 Acidic Electrolytes -- 10.3.2.1 Sulfuric Acid Electrolyte-Based EDLC and Pseudocapacitors -- 10.3.2.2 H2SO4 Electrolyte-Based Hybrid Supercapacitors -- 10.3.3 Alkaline Electrolytes -- 10.3.3.1 Alkaline Electrolyte-Based EDLC and Pseudocapacitors -- 10.3.3.2 Alkaline Electrolyte-Based Hybrid Supercapacitors -- 10.3.4 Neutral Electrolyte -- 10.3.4.1 Neutral Electrolyte-Based EDLC and Pseudocapacitors -- 10.3.4.2 Neutral Electrolyte-Based Hybrid Supercapacitors -- 10.4 Conclusion and Future Research Directions -- References -- Chapter 11 Strategies for Improving Energy Storage Properties -- 11.1 Introduction -- 11.2 Result and Discussion -- 11.2.1 Solid-State Batteries -- 11.2.2 Ultracapacitor -- 11.2.3 Flywheels.
11.2.4 Pumped Hydroelectric Storage Dams -- 11.2.5 Rail Energy Storage -- 11.2.6 Compressed Storage of Air -- 11.2.7 Liquid Air Energy Storage -- 11.2.8 Pumped Heat Electrical Storage -- 11.2.9 Redox Flow Batteries -- 11.2.10 Superconducting Magnetic Energy Storage -- 11.2.11 Methane -- 11.3 Energy Storage Systems Applications -- 11.3.1 Mills -- 11.3.2 Homes -- 11.3.3 Power Stations and Grid Electricity -- 11.3.4 Air Conditioning -- 11.3.5 Transportation -- 11.3.6 Electronics -- 11.4 Energy Storage Systems Economics -- 11.5 Impacts on Environment by Electricity Storage -- 11.6 Future Prospective -- 11.7 Conclusion -- References -- Chapter 12 State-of-the-Art in Electroceramics for Energy Storage -- 12.1 Introduction -- 12.2 Electroceramics for Energy-Storing Devices -- 12.2.1 Bulk-Based Ceramics -- 12.2.2 Lead-Free Ceramics -- 12.3 Ceramic Multilayers and Films -- 12.4 Ceramic Films for Energy Storage in Capacitors -- 12.5 Conclusion -- References -- Chapter 13 Lead-Free Ceramics for High Performance Supercapacitors -- 13.1 Introduction -- 13.2 Ceramics -- 13.2.1 General Classification of Ceramics -- 13.2.1.1 Ceramic-Based Capacitors -- 13.3 Types of Ceramic Capacitors -- 13.4 Overview of Ceramics for Supercapacitors -- 13.4.1 Metal Oxide Ceramics for Supercapacitors -- 13.4.2 Multi-Elemental Oxide Ceramics for Supercapacitors -- 13.4.2.1 Spinel Oxide Ceramics -- 13.5 Lead-Based Ceramics -- 13.6 Lead-Free Ceramics -- 13.6.1 Analysis of Pb-Free Hybrid Materials for Energy Conversion -- 13.7 Comparison of Pb-Based Ceramics and Pb-Free Ceramics -- 13.8 Conclusion -- References -- Index -- EULA.
Record Nr. UNINA-9910747099803321
Hoboken, NJ : , : John Wiley & Sons, Inc., , [2024]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Electromagnetic nanomaterials : properties and applications / / edited by Tariq Altalhi
Electromagnetic nanomaterials : properties and applications / / edited by Tariq Altalhi
Edizione [1st ed.]
Pubbl/distr/stampa Hoboken, Beverly, NJ : , : John Wiley & Sons, Inc., , [2023]
Descrizione fisica 1 online resource (389 pages)
Disciplina 620.115
Soggetto topico Nanostructured materials
Electromagnetic interference
ISBN 1-394-16707-5
1-394-16706-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Metamaterial-Based Antenna and Absorbers in THz Range -- 1.1 Introduction -- 1.1.1 Terahertz Region -- 1.1.2 Metamaterials -- 1.1.3 Classification of Metamaterials -- 1.1.3.1 Epsilon-Negative Metamaterials -- 1.1.3.2 Mu-Negative Metamaterials -- 1.1.3.3 Double-Negative Metamaterials -- 1.2 Design Approach -- 1.2.1 Resonant Approach -- 1.2.2 Non-Resonant Approach -- 1.2.3 Hybrid Approach -- 1.3 Applications -- 1.3.1 Metamaterial Absorbers -- 1.3.1.1 Switchable Absorbers-Reflectors -- 1.3.1.2 Switchable Absorbers -- 1.3.1.3 Tuneable Absorbers -- 1.3.2 Metamaterial Antenna -- 1.3.2.1 Miniaturization -- 1.3.2.2 Gain and Bandwidth Improvement -- 1.3.2.3 Circular Polarization -- 1.3.2.4 Isolation -- 1.4 Conclusion -- References -- Chapter 2 Chiral Metamaterials -- 2.1 Introduction -- 2.2 Fundamentals of Chiral Metamaterials and Optical Activity Control -- 2.3 Construction of Chiral Metamaterial -- 2.4 Applications -- 2.4.1 Chiral Metamaterials in the Chiral Sensing -- 2.4.2 Reconfigurable Chiral Metamaterial -- 2.4.3 Chiral Metamaterial Absorber -- 2.4.4 Applications of Chiral Metamaterial as Multifunctional Sensors -- 2.4.4.1 Applications of Chiral Metamaterial as Temperature, Humidity, and Moisture Sensors -- 2.5 Conclusion and Future Perspective -- Acknowledgment -- References -- Chapter 3 Metamaterial Perfect Absorbers for Biosensing Applications -- 3.1 Introduction -- 3.1.1 Theoretical Backgrounds -- 3.1.1.1 Impedance Matching Theory -- 3.1.1.2 Interference Theory -- 3.1.2 Metamaterial Designs -- 3.1.2.1 Equivalent Circuit and Impedance Matching in Metamaterial Perfect Absorbers -- 3.1.2.2 Transmission Line Theory -- 3.1.3 Biosensing with Metamaterial Perfect Absorbers -- 3.1.3.1 Refractive Index -- 3.1.3.2 Surface-Enhanced Infrared Absorption.
3.2 Conclusion and Future Work -- References -- Chapter 4 Insights and Applications of Double Positive Medium Metamaterials -- 4.1 Introduction -- 4.2 Insights on the Electromagnetic Metamaterials -- 4.3 Applications of DPS Metamaterials -- 4.4 Conclusion -- Acknowledgments -- References -- Chapter 5 Study on Application of Photonic Metamaterial -- 5.1 Introduction -- 5.2 Types of Metamaterials -- 5.3 Negative Index Metamaterial -- 5.4 Terahertz Metamaterials -- 5.5 Plasmonic Materials -- 5.6 Applications -- 5.6.1 In Optical Field -- 5.6.2 In Medical Devices -- 5.6.3 In Aerospace -- 5.6.4 In Solar Power Management -- 5.7 Conclusion -- References -- Chapter 6 Theoretical Models of Metamaterial -- 6.1 Introduction -- 6.2 Background of Metamaterials -- 6.3 Theoretical Models of Metamaterials -- 6.3.1 Lumped Equivalent Circuit Model -- 6.3.2 Effective Medium Theory -- 6.3.3 Transmission Line Theory -- 6.3.4 Coupled-Mode Theory -- 6.3.5 Interference Theory -- 6.3.6 Casimir-Lifshitz Theory -- 6.4 Conclusion -- References -- Chapter 7 Frequency Bands Metamaterials -- 7.1 Introduction -- 7.2 Frequency Bands Metamaterials -- 7.2.1 EM Metamaterials -- 7.2.2 Metamaterial Response Tuning -- 7.2.2.1 Persistent Tuning -- 7.2.3 Spectroscopic Investigation -- 7.2.4 Optical Metamaterials -- 7.2.5 Optical Materials and Electronic Structures -- 7.2.6 Optical Properties of Metals -- 7.2.7 Metal-Dielectric Composites -- 7.2.8 Acoustic Metamaterials -- 7.2.9 Elastic Metamaterials -- 7.3 Penta Metamaterials -- 7.4 Reconfigurable Metamaterials for Different Geometrics -- 7.4.1 3D Freestanding Reconfigurable Metamaterial -- 7.4.2 Reconfigurable EM Metamaterials -- 7.5 Conclusion -- References -- Chapter 8 Metamaterials for Cloaking Devices -- 8.1 Introduction -- 8.2 What is Cloaking and Invisibility? -- 8.3 Basic Concepts of Cloaking.
8.4 Design and Simulation of Metamaterial Invisibility Cloak -- 8.5 Types of Cloaking -- 8.5.1 Optical Cloaking -- 8.5.2 Acoustic Cloaking -- 8.5.3 Elastic Cloaking -- 8.5.4 Thermal Cloaking -- 8.5.5 Mass Diffusion Cloaking -- 8.5.6 Light Diffusion Cloaking -- 8.5.7 Multifunctional Cloaking -- 8.6 Cloaking Techniques -- 8.6.1 Scattering Cancelation Method -- 8.6.2 Coordinate Transformation Technique -- 8.6.3 Transmission -- 8.6.4 Other Cloaking Techniques -- 8.7 Conclusion -- References -- Chapter 9 Single Negative Metamaterials -- 9.1 Introduction -- 9.2 Classification of Metamaterials -- 9.3 Types of Metamaterials -- 9.3.1 Electromagnetic Metamaterials -- 9.3.2 Negative Refractive Index -- 9.4 Different Classes of Electromagnetic Metamaterials -- 9.4.1 Double Negative Metamaterials -- 9.4.2 Single Negative Metamaterials -- 9.4.3 Chiral Metamaterials -- 9.4.4 Hyperbolic Metamaterials -- 9.5 Applications -- 9.6 Conclusion -- References -- Chapter 10 Negative-Index Metamaterials -- 10.1 Introduction -- 10.2 The Journey from Microwave Frequency to Electromagnetic Radiation -- 10.3 Experimentation to Justify Negative Refraction -- 10.3.1 Reverse Propagation -- 10.3.2 Properties of NIMs -- 10.4 Electromagnetic Response of Materials -- 10.5 Application of NIMs -- 10.6 Conclusions -- Acknowledgments -- References -- Chapter 11 Properties and Applications of Electromagnetic Metamaterials -- 11.1 Introduction -- 11.2 Hyperbolic Metamaterials -- 11.3 Properties of Metamaterials -- 11.4 Application of Metamaterials -- 11.5 Single Negative Metamaterials -- 11.6 Hyperbolic Metamaterials -- 11.7 Classes of Metamaterials -- 11.8 Electromagnetic Metamaterials -- 11.9 Terahertz Metamaterials -- 11.10 Photonic Metamaterials -- 11.11 Tunable Metamaterial -- 11.12 Types of Tunable Metamaterials -- 11.13 Nonlinear Metamaterials -- 11.14 Absorber of Metamaterial.
11.15 Acoustic Metamaterials -- References -- Chapter 12 Plasmonic Metamaterials -- 12.1 Introduction -- 12.2 Negative Refraction and Refractive Indexes -- 12.3 Fundamentals of Plasmonics -- 12.3.1 Surface Plasmon Polaritons -- 12.3.2 Localized Surface Plasmons -- 12.3.3 Applications of Plasmonics -- 12.4 Types of Plasmonics Metamaterials -- 12.4.1 Graphene-Base Plasmonic Metamaterials -- 12.4.2 Nanorod Plasmonic Metamaterials -- 12.4.3 Plasmonic Metal Surfaces -- 12.4.4 Self-Assembled Plasmonic Metamaterials -- 12.4.5 Nonlinear Plasmonic Materials -- 12.4.6 2D-Plasmonic Metamaterials -- 12.5 Applications of Plasmonics Metamaterials -- 12.5.1 Nanochemistry -- 12.5.2 Biosensing -- 12.5.3 Filters -- 12.5.4 Planner Ring Resonator -- 12.5.5 Optical Computing -- 12.5.6 Photovoltaics -- 12.6 Conclusion -- References -- Chapter 13 Nonlinear Metamaterials -- 13.1 Introduction -- 13.2 Nonlinear Effects in Metamaterials -- 13.3 Design of Nonlinear Metamaterials -- 13.3.1 Liquid Crystal-Based Nonlinear Metamaterials -- 13.3.2 Ferrite-Based Tunable Metamaterials -- 13.3.3 Varactor/Capacitor-Loaded Tunable Metamaterials -- 13.3.4 Other Tunable Metamaterials -- 13.4 Nonlinear Properties of Metamaterials -- 13.5 Types of Nonlinear Metamaterials -- 13.5.1 Nonlinear Electric Materials -- 13.5.2 Nonlinear Magnetic Metamaterials -- 13.5.3 Plasmonic Nonlinear Metamaterials -- 13.5.4 Dielectric Nonlinear Metamaterials -- 13.6 Applications -- 13.6.1 Tunable Split-Ring Resonators for Nonlinear Negative-Index Metamaterials -- 13.6.2 SRR Microwave Nonlinear Tunable Metamaterials -- 13.7 Overview of Nonlinear Metamaterials -- 13.8 Conclusion -- References -- Chapter 14 Promising Future of Tunable Metamaterials -- 14.1 Introduction -- 14.1.1 Examples of Metamaterials -- 14.1.1.1 Electromagnetic Metamaterials -- 14.1.1.2 Chiral Metamaterials -- 14.1.1.3 Terahertz Metamaterials.
14.1.1.4 Photonic Metamaterials -- 14.1.1.5 Tunable Metamaterials -- 14.1.1.6 Frequency Selective Surface Based-Metamaterials (FSS) -- 14.1.1.7 Nonlinear Metamaterials -- 14.2 Tuning Methods -- 14.2.1 Tuning by Additional Materials -- 14.2.2 Tuning by Changing the Structural Geometry -- 14.2.3 Tuning by Changing the Constituent Materials -- 14.2.4 Tuning by Changing of the Surrounding Environment -- 14.3 Types of Tunable Metamaterials -- 14.3.1 Thermally Tunable Metamaterials -- 14.3.1.1 Optically Driven Tunable Metamaterials -- 14.3.2 Structurally Deformable Metamaterials -- 14.3.3 Electrically Tunable Metamaterials -- 14.4 Significant Developments -- 14.4.1 Vehicles with Mobile Broadband -- 14.4.2 Transportation Security Administration -- 14.4.3 Tracking Planes, Trains, and Automobiles -- 14.4.4 Holographic Something -- 14.4.5 Wireless Charging with Metamaterials -- 14.4.6 Seeing Around Corners with Radar -- 14.4.7 Manipulating Light -- 14.4.8 Sound-Proof 'Invisible Window' -- 14.4.9 Terahertz Instruments -- 14.5 Future -- 14.6 Conclusion -- References -- Chapter 15 Metamaterials for Sound Filtering -- 15.1 Introduction -- 15.1.1 Types of Metamaterials -- 15.1.1.1 Piezoelectric Metamaterial -- 15.1.1.2 Electromagnetic Metamaterial -- 15.1.1.3 Chiral Metamaterial -- 15.1.1.4 Nonlinear Metamaterial -- 15.1.1.5 Terahertz Metamaterial -- 15.1.1.6 Acoustic Metamaterial -- 15.1.1.7 Photonic Metamaterial -- 15.2 Acoustic Metamaterials -- 15.2.1 Types and Applications of Acoustic Metamaterials -- 15.3 Phononic Crystals -- 15.4 Metamaterials for Sound Filtering -- 15.4.1 Fabrication and Assembly of Metamaterials for Sound Filtering and Attenuation -- 15.4.2 Fabrication of AMM and PC -- 15.4.3 Assembly of AMM and PC -- 15.5 Conclusion -- References -- Chapter 16 Radar Cross-Section Reducing Metamaterials -- 16.1 Introduction.
16.1.1 The Electromagnetic Radiation and Spectrum.
Record Nr. UNINA-9910830305303321
Hoboken, Beverly, NJ : , : John Wiley & Sons, Inc., , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Essential oils : extraction methods and applications / / Tariq Altalhi, and Jorddy Neves Cruz
Essential oils : extraction methods and applications / / Tariq Altalhi, and Jorddy Neves Cruz
Pubbl/distr/stampa Hoboken, NJ : , : John Wiley & Sons, Inc., , [2023]
Descrizione fisica 1 online resource (1075 pages)
Disciplina 661.806
Soggetto topico Essences and essential oils
ISBN 1-119-82961-5
1-119-82960-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 A Methodological Approach of Plant Essential Oils and their Isolated Bioactive Components for Antiviral Activities -- 1.1 Introduction -- 1.2 General Chemical Properties and Bioactivity -- 1.3 Antiviral Mechanisms -- 1.3.1 Time of Addition Assay -- 1.3.1.1 Pretreatment of Host Cells -- 1.3.1.2 Pretreatment of Virions -- 1.3.1.3 Co-Treatment of Host/Cultured Cells and Virions During Virus Inoculation -- 1.3.1.4 Post-Entry Treatment -- 1.3.2 Thermal Shift Assays -- 1.3.2.1 Viral Attachment Assay -- 1.3.2.2 Viral Fusion Assay (Entry Assay) -- 1.3.3 Morphological Study -- 1.3.4 Protein Inhibition -- 1.3.5 Other Metabolic Anti-Viral Mechanisms -- 1.4 Assessment of Antiviral Activities via In Vitro Assays -- 1.4.1 Determination of Cytotoxicity (Cytopathogenic Reduction Assay) -- 1.4.2 In Vitro Activities on Different Viruses -- 1.4.2.1 Human Herpes Virus -- 1.4.2.2 Influenza Virus -- 1.4.2.3 Non-Enveloped Viruses -- 1.4.2.4 Other Viruses -- 1.5 Activities of Essential Oils in Relation to Their Bioactive Components -- 1.6 Antiviral Activities as Compared to the Polarity of Bioactive Components -- 1.7 In Vivo Studies of Essential Oils for its Antiviral Effect -- 1.7.1 Herpes Simplex Virus -- 1.7.2 Influenza Virus -- 1.7.3 West Nile Virus -- 1.8 Activities In-Respect to the Available Antivirals -- 1.9 Antiviral Essential Oils and Their Bioactive Components Loaded in Nanosystems -- 1.10 Conclusion -- References -- Chapter 2 Essential Oils Used to Inhibit Bacterial Growth in Food -- 2.1 Introduction -- 2.2 Chemistry of Essential Oils -- 2.3 Essential Oils Against Microorganisms in Food Products -- 2.4 Application of Essential Oils in the Food Industry -- 2.5 Essential Oil Extraction Techniques -- 2.6 Conclusions -- References -- Chapter 3 Industrial Application of Essential Oils.
3.1 Introduction -- 3.2 Essential Oils -- 3.2.1 Sources and Chemical Composition -- 3.2.2 Extraction Methods -- 3.2.2.1 Conventional Extraction Methods -- 3.2.2.2 Innovative Extraction Methods -- 3.2.3 Industrial Applications of Essential Oils -- 3.2.3.1 Food Preservation and Active Packaging Systems -- 3.2.3.2 Aromatherapy -- 3.2.3.3 Pharmaceutical and Medicinal Application -- 3.2.3.4 Biopesticide in Insect Pest Management -- Conclusion -- Declaration about Copyright -- References -- Chapter 4 Influence of Biotic and Abiotic Factors on the Production and Composition of Essential Oils -- 4.1 Introduction -- 4.2 Essential Oil Characteristics -- 4.3 Factors Influencing Essential Oils Production and Composition -- 4.4 Abiotic Factors -- 4.4.1 Drought -- 4.4.2 Salinity -- 4.4.3 Temperature -- 4.4.4 Light -- 4.4.5 Nutrients -- 4.4.6 Heavy Metals -- 4.5 Biotic Factors -- 4.6 Concluding Remarks -- Acknowledgements -- References -- Chapter 5 Investigation of Antiviral Effects of Essential Oils -- 5.1 Introduction -- 5.2 Viruses: Structure, Characteristics, and Replication -- 5.3 In Vitro Antiviral Activity and Mechanism of Action Investigations of Essential Oils and Essential Oil Components -- 5.3.1 Investigation of In Vitro Antiviral Activities -- 5.3.1.1 Plaque Reduction Assay -- 5.3.1.2 The Inhibition of Viral Cytopathogenic Effect -- 5.3.2 Mechanisms of Action -- 5.3.2.1 Time-of-Drug-Addition Assay -- 5.3.2.2 Temperature-Shift Assay -- 5.3.2.3 Morphological Alteration -- 5.3.2.4 Protein Inhibition -- 5.3.2.5 Other Mechanisms of Action -- 5.3.3 Selectivity Index (SI) -- 5.4 The Antiviral Efficacy of Essential Oils on Viruses Affecting Different Body Systems -- 5.4.1 Respiratory System -- 5.4.1.1 Influenza Virus -- 5.4.1.2 Adenovirus and Rhinovirus -- 5.4.1.3 Severe Acute Respiratory Syndrome Coronavirus 1 (SARS-COV-1).
5.4.1.4 Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-COV-2) -- 5.4.2 GIT System -- 5.4.2.1 Coxsackie Virus -- 5.4.2.2 Dengue Virus -- 5.4.2.3 Yellow Fever Virus -- 5.4.2.4 Murine Norovirus Type 1 -- 5.4.3 Nervous System -- 5.4.3.1 West Nile Virus -- 5.4.4 Immune System -- 5.4.4.1 HIV -- 5.4.5 Reproductive System -- 5.4.5.1 Human Papilloma Virus (HPV) -- 5.4.6 Other Viruses -- 5.4.6.1 Human Herpes Virus -- 5.4.6.2 Orf Virus -- 5.5 The Antiviral Efficacy of Essential Oils on Phyto-Pathogenic Viruses -- 5.6 The Antiviral Efficacy of the Essential Oils on Animal.Infecting Viruses -- 5.6.1 Virus Affecting Cattle (Bovine Viral Diarrhea Virus) -- 5.6.2 Virus Affecting Cats (Feline Calicivirus F9) -- 5.6.3 Virus Affecting Pigs (Porcine Parvovirus) -- 5.7 Synergistic Effect of Essential Oil Components with Known Antiviral Drugs -- 5.8 Aromatherapy and its Role as an Antiviral Agent -- 5.9 Route of Essential Oil Administration -- 5.10 Nano-Formulated Essential Oils: A Promising Approach to Enhance Antiviral Activity -- 5.11 Safety of Essential Oils -- 5.12 Antiviral Essential Oils: Drawbacks versus Future Perspectives -- 5.13 Summary -- References -- Chapter 6 Mentha sp. Essential Oil and Its Applicability in Brazil -- Introduction -- 6.1 Ethnobotany of the Mentha in Brazil -- 6.2 Chemical Constituents of Mentha Oil -- 6.3 Evaluation of Biological Activities of Mentha Essential Oils -- 6.4 Toxicity of Essential Oils from Mentha Used in Folk Medicine -- 6.5 Final Considerations and Perspectives -- References -- Chapter 7 Microbial Influence on Plants for Enhanced Production of Active Secondary Metabolites -- 7.1 Introduction -- 7.2 Classes of Plants Secondary Metabolites -- 7.2.1 Terpenes -- 7.2.2 Phenolic Compounds -- 7.2.3 Nitrogen-Containing Secondary Metabolites -- 7.2.4 Sulphur Containing Secondary Metabolites.
7.3 Secondary Metabolites Production from Plants -- 7.3.1 In Vivo Production of Secondary Metabolites -- 7.3.2 In Vitro Secondary Metabolites Production -- 7.4 Interaction of Microorganisms in the Rhizosphere -- 7.5 Influence of Bacteria and Fungi on Plants -- 7.5.1 Plant Growth Promoters -- 7.5.1.1 Plant Growth-Promoting Bacteria (PGPR) -- 7.5.1.2 Plant Growth-Promoting Fungi (PGPF) -- 7.5.2 Production of Plant Biomass -- 7.5.3 Bacteria and Fungus as Biofertilizers -- 7.5.4 Role of Bacteria and Fungi as a Phytostimulator -- 7.5.5 Role of Bacteria and Fungi as a Biopesticides -- 7.5.6 Stress Tolerant Activity of Bacteria and Fungi -- Conclusion and Future Perspectives -- References -- Chapter 8 Valorization of Limonene Over Acid Solid Catalysts -- 8.1 Introduction -- 8.2 Limonene Reactions with Alcohols -- 8.3 Hydration and Acetoxylation -- 8.4 Conversion of Limonene into p-Cymene -- 8.5 Conclusions -- References -- Chapter 9 Elucidating the Role of Essential Oils in Pharmaceutical and Industrial Applications -- 9.1 Introduction -- 9.2 Extraction of Volatile Oils from Various Sources -- 9.2.1 Terpenes -- 9.2.2 Hydrocarbons -- 9.3 Role of Essential Oils in Industry -- 9.3.1 Role in Cosmetics and Aromatherapy -- 9.3.1.1 Cosmetic Industry -- 9.3.1.2 Immortelle Essential Oil -- 9.3.1.3 Lavender Essential Oil -- 9.3.1.4 German Chamomile Oil -- 9.3.1.5 Neroli Essential Oil -- 9.3.1.6 Peppermint Essential Oil -- 9.3.1.7 Rosemary Essential Oil -- 9.3.2 Application in Food Industry -- 9.3.2.1 Food Preservation -- 9.3.2.2 Food Packaging -- 9.4 Pharmacological Effects of Essential Oils -- 9.5 Concluding Remarks -- Acknowledgment -- References -- Chapter 10 Uses of Essential Oils in Different Sectors -- 10.1 Introduction -- 10.2 Food and Beverage -- 10.3 Packaging -- 10.4 Cosmetic and Perfumery -- 10.5 Aromatherapy -- 10.6 Medical -- 10.7 Agriculture.
10.8 Textile -- 10.9 Cleaning Household -- 10.10 Safety of Essential Oils -- Conclusion -- References -- Chapter 11 Chemical Composition and Pharmacological Activities of Essential Oils -- 11.1 Introduction -- 11.2 Anticancer -- 11.2.1 Role of Terpenes in Anticancer Activity -- 11.2.2 Role of Aromatic Compounds in Anticancer Activity -- 11.2.3 Mode of Action -- 11.2.4 The Effect of EOs in Different Types of Cancers -- 11.2.5 Multi-Drug Resistance (MDR) -- 11.3 Anti-Inflammatory -- 11.3.1 Terpenoids for Anti-Inflammatory -- 11.3.2 Phenylpropanoids for Anti-Inflammatory -- 11.3.3 Role of Essential Oil for Anti-Inflammatory -- 11.4 Anti-Viral -- 11.4.1 Terpenoids for Anti-Viral Activity -- 11.4.2 Essential Oils for Coronavirus -- 11.4.3 Essential Oil for Anti-Viral Activity -- 11.5 Anti-Fungal -- 11.5.1 Mode of Action -- 11.5.2 Essential Oil for Anti-Fungal Activity -- 11.6 Antidiabetic -- 11.7 Larvicidal Activity -- 11.8 Anti-Bacterial -- Conclusion -- Conflicts of Interest -- Acknowledgements -- References -- Chapter 12 Augmented Stability and Efficacy of Essential Oils Through Encapsulation Approach -- 12.1 Introduction -- 12.2 Various Strategies for Encapsulation of Essential Oils -- 12.2.1 Essential Oils Encapsulated in Liposomes -- 12.2.2 Essential Oils Encapsulated in Cyclodextrin Complexes -- 12.2.3 Essential Oils Encapsulated in Polymeric Complexes -- 12.2.4 Essential Oils Encapsulated in Electrospun Fibers -- 12.2.5 Essential Oils Encapsulated in Microemulsion/Nanoemulsions -- 12.2.6 Essential Oils Encapsulated in Mesoporous Silica Nanoparticles -- 12.3 Conclusions -- References -- Chapter 13 Antimicrobial Effect of Essential Oils for Food Application -- 13.1 Introduction -- 13.2 Biotechnological Strategies for Extracting Essential Oils for Food Application -- 13.3 Methods for Evaluating the EO Inhibitory Activity In Vitro.
13.3.1 Factors Affecting Method Susceptibility.
Record Nr. UNINA-9910731597503321
Hoboken, NJ : , : John Wiley & Sons, Inc., , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Handbook of bioplastics and biocomposites engineering applications / / edited by Inamuddin and Tariq Altalhi
Handbook of bioplastics and biocomposites engineering applications / / edited by Inamuddin and Tariq Altalhi
Edizione [Second edition.]
Pubbl/distr/stampa Hoboken, New Jersey ; ; Beverly, Massachusetts : , : Wiley : , : Scrivener Publishing, , [2023]
Descrizione fisica 1 online resource (683 pages)
Disciplina 620.192323
Soggetto topico Biodegradable plastics
Polymeric composites
Biopolymers - Industrial applications
ISBN 1-119-16014-6
1-119-16018-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part I: Bioplastics, Synthesis and Process Technology -- Chapter 1 An Introduction to Engineering Applications of Bioplastics -- 1.1 Introduction -- 1.2 Classification of Bioplastics -- 1.3 Physical Properties -- 1.3.1 Rheological Properties -- 1.3.2 Optical Properties -- 1.3.3 Mechanical and Thermal Properties -- 1.3.4 Electrical Properties -- 1.4 Applications of Bioplastics in Engineering -- 1.4.1 Bioplastics Applications in Sensors -- 1.4.2 Bioplastics Applications in Energy Sector -- 1.4.3 Bioplastics Applications in Bioengineering -- 1.4.4 Bioplastics Applications in "Green" Electronics -- 1.5 Conclusions -- Acknowledgement -- Dedication -- References -- Chapter 2 Biobased Materials: Types and Sources -- 2.1 Introduction -- 2.2 Biodegradable Biobased Material -- 2.2.1 Polysaccharides -- 2.2.2 Starch -- 2.2.3 Polylactic Acid -- 2.2.4 Cellulose -- 2.2.5 Esters -- 2.2.6 Ether -- 2.2.7 Chitosan -- 2.2.8 Alginate -- 2.2.9 Proteins -- 2.2.10 Gluten -- 2.2.11 Gelatine -- 2.2.12 Casein -- 2.2.13 Lipid -- 2.2.14 Polyhydroxyalkanoates (PHA) -- 2.3 Nonbiodegradable Biobased Material -- 2.3.1 Polyethylene (PE) -- 2.3.2 Polyethylene Terephthalate (PET) -- 2.3.3 Polyamide (PA) -- 2.4 Conclusion -- Acknowledgment -- References -- Chapter 3 Bioplastic From Renewable Biomass -- 3.1 Introduction -- 3.2 Plastics and Bioplastics -- 3.2.1 Plastics -- 3.2.2 Bioplastics -- 3.3 Classification of Bioplastics -- 3.4 Bioplastic Production -- 3.4.1 Biowaste to Bioplastic -- 3.4.1.1 Lipid Rich Waste -- 3.4.2 Milk Industry Waste -- 3.4.3 Sugar Industry Waste -- 3.4.4 Spent Coffee Beans Waste -- 3.4.5 Bioplastic Agro-Forestry Residue -- 3.4.6 Bioplastic from Microorganism -- 3.4.7 Biomass-Based Polymers -- 3.4.7.1 Biomass-Based Monomers for Polymerization Process -- 3.5 Characterization of Bioplastics.
3.6 Applications of Bioplastics -- 3.6.1 Food Packaging -- 3.6.2 Agricultural Applications -- 3.6.3 Biomedical Applications -- 3.7 Bioplastic Waste Management Strategies -- 3.7.1 Recycling of Poly(Lactic Acid ) (PLA) -- 3.7.1.1 Mechanical Recycling of PLA -- 3.7.1.2 Chemical Recycling of PLA -- 3.7.2 Recycling of Poly Hydroxy Alkanoates (PHAs) -- 3.7.3 Landfill -- 3.7.4 Incineration -- 3.7.5 Composting -- 3.7.6 Anaerobic Digestion -- 3.7.6.1 Anaerobic Digestion of Poly(Hydroxyalkanoates) -- 3.7.6.2 Anaerobic Digestion of Poly(Lactic Acid) -- 3.8 Conclusions and Future Prospects -- References -- Chapter 4 Modeling of Natural Fiber-Based Biocomposites -- 4.1 Introduction -- 4.2 Generality of Biocomposites -- 4.2.1 Natural Matrix -- 4.2.2 Natural Reinforcement -- 4.2.3 Natural Fiber Classification -- 4.2.4 Biocomposites Processing -- 4.2.4.1 Extrusion and Injection -- 4.2.4.2 Compression Molding -- 4.2.5 RTM-Resin Transfer Molding -- 4.2.6 Hand Lay-Up Technique -- 4.3 Parameters Affecting the Biocomposites Properties -- 4.3.1 Fiber's Aspect Ratio -- 4.3.2 Fiber/Matrix Interfacial Adhesion -- 4.3.3 Fibers Orientation and Dispersion -- 4.3.3.1 Short Fibers Orientation -- 4.3.3.2 Fiber's Orientation in Simple Shear Flow -- 4.3.3.3 Fiber's Orientation in Elongational Flow -- 4.4 Process Molding of Biocomposites -- 4.4.1 Unidirectional Fibers -- 4.4.1.1 Classical Laminate Theory -- 4.4.1.2 Rule of Mixture -- 4.4.1.3 Halpin-Tsai Model -- 4.4.1.4 Hui-Shia Model -- 4.4.2 Random Fibers -- 4.4.2.1 Hirsch Model -- 4.4.2.2 Self-Consistent Approach (Modified Hirsch Model) -- 4.4.2.3 Tsai-Pagano Model -- 4.5 Conclusion -- References -- Chapter 5 Process Modeling in Biocomposites -- 5.1 Introduction -- 5.2 Biopolymer Composites -- 5.2.1 Natural Fiber-Based Biopolymer Composites -- 5.2.2 Applications of Biopolymer Composites -- 5.2.3 Properties of Biopolymer Composites.
5.3 Classification of Biocomposites -- 5.3.1 PLA Biocomposites -- 5.3.2 Nanobiocomposites -- 5.3.3 Hybrid Biocomposites -- 5.3.4 Natural Fiber-Based Composites -- 5.4 Process Modeling of Biocomposite Models -- 5.4.1 Compression Moulding -- 5.4.2 Injection Moulding -- 5.4.3 Extrusion Method -- 5.5 Formulation of Models -- 5.5.1 Types of Model -- 5.6 Conclusion -- References -- Chapter 6 Microbial Technology in Bioplastic Production and Engineering -- 6.1 Introduction -- 6.2 Fundamental Principles of Microbial Bioplastic Production -- 6.3 Bioplastics Obtained Directly from Microorganisms -- 6.3.1 PHA -- 6.3.2 Poly (ƒÁ-Glutamic Acid) (PGA) -- 6.4 Bioplastics from Microbial Monomers -- 6.4.1 Bioplastics from Aliphatic Monomers -- 6.4.1.1 PLA -- 6.4.1.2 Poly (Butylene Succinate) -- 6.4.1.3 Biopolyamides (Nylons) -- 6.4.1.4 1, 3-Propanediol (PDO) -- 6.4.2 Bioplastics from Aromatic Monomers -- 6.5 Lignocellulosic Biomass for Bioplastic Production -- 6.6 Conclusion -- References -- Chapter 7 Synthesis of Green Bioplastics -- 7.1 Introduction -- 7.2 Bioplastic -- 7.2.1 Polyhydroxyalkanoates (PHAs) -- 7.2.2 Poly(lactic acid) (PLA) -- 7.2.3 Cellulose -- 7.2.4 Starch -- 7.3 Renewable Raw Material to Produce Bioplastic -- 7.3.1 Raw Material from Agriculture -- 7.3.2 Organic Waste as Resources for Bioplastic Production -- 7.3.3 Algae as Resources for Bioplastic Production -- 7.3.4 Wastewater as Resources for Bioplastic Production -- 7.4 Bioplastics Applications -- 7.4.1 Food Industry -- 7.4.2 Agricultural Applications -- 7.4.3 Medical Applications -- 7.4.4 Other Applications -- 7.5 Conclusions -- References -- Chapter 8 Natural Oil-Based Sustainable Materials for a Green Strategy -- 8.1 Introduction -- 8.2 Methodology -- 8.2.1 Entropy Methodology -- 8.2.2 Copras Methodology -- 8.3 Conclusions -- References.
Part II: Applications of Bioplastics in Health and Hygiene -- Chapter 9 Biomedical Applications of Bioplastics -- 9.1 Introduction -- 9.2 Synthesis of Bioplastics -- 9.2.1 Starch-Based Bioplastics -- 9.2.2 Cellulose-Based Bioplastics -- 9.2.3 Chitin and Chitosan -- 9.2.4 Polyhydroxyalkanoates (PHA) -- 9.2.5 Polylactic Acid (PLA) -- 9.2.6 Bioplastics from Microalgae -- 9.3 Properties of Bioplastics -- 9.3.1 Material Strength -- 9.3.2 Electrical, Mechanical, and Optical Behavior of Bioplastic -- 9.4 Biological Properties of Bioplastics -- 9.5 Biomedical Applications of Bioplastics -- 9.5.1 Antimicrobial Property -- 9.5.2 Biocontrol Agents -- 9.5.3 Pharmaceutical Applications of Bioplastics -- 9.5.4 Implantation -- 9.5.5 Tissue Engineering Applications -- 9.5.6 Memory Enhancer -- 9.6 Limitations -- 9.7 Conclusion -- References -- Chapter 10 Applications of Bioplastics in Hygiene Cosmetic -- 10.1 Introduction -- 10.2 The Need to Find an Alternative to Plastic -- 10.3 Bioplastics -- 10.3.1 Characteristic of Bioplastics -- 10.3.2 Types (Classification) -- 10.3.3 Uses of Bioplastics -- 10.4 Resources of Bioplastic -- 10.4.1 Polysaccharides -- 10.4.2 Starch or Amylum -- 10.4.3 Cellulose -- 10.4.3.1 Source of Cellulose -- 10.5 Use of Biodegradable Materials in Packaging -- 10.6 Bionanocomposite -- 10.7 Hygiene Cosmetic Packaging -- 10.8 Conclusion -- References -- Chapter 11 Biodegradable Polymers in Drug Delivery -- 11.1 Introduction -- 11.2 Biodegradable Polymer (BP) -- 11.2.1 Natural -- 11.2.1.1 Polysaccharides -- 11.2.1.2 Proteins -- 11.2.2 Synthetic -- 11.2.2.1 Polyesters -- 11.2.2.2 Polyanhydrides -- 11.2.2.3 Polycarbonates -- 11.2.2.4 Polyphosphazenes -- 11.2.2.5 Polyurethanes -- 11.3 Device Types -- 11.3.1 Three-Dimensional Printing Devices -- 11.3.1.1 Implants -- 11.3.1.2 Tablets -- 11.3.1.3 Microneedles -- 11.3.1.4 Nanofibers -- 11.3.2 Nanocarriers.
11.3.2.1 Nanoparticles -- 11.3.2.2 Dendrimers -- 11.3.2.3 Hydrogels -- 11.4 Applications -- 11.4.1 Intravenous -- 11.4.2 Transdermal -- 11.4.3 Oral -- 11.4.4 Ocular -- 11.5 Existing Materials in the Market -- 11.6 Conclusions and Future Projections -- References -- Chapter 12 Microorganism-Derived Bioplastics for Clinical Applications -- 12.1 Introduction -- 12.2 Types of Bioplastics -- 12.2.1 Poly(3-hydroxybutyrate) (PHB) -- 12.2.2 Polyhydroxyalkanoate -- 12.2.3 Poly-Lactic Acid -- 12.2.4 Poly Lactic-co-Glycolic Acid (PLGA) -- 12.2.5 Poly (.-caprolactone) (PCL) -- 12.3 Properties of Bioplastics -- 12.3.1 Physiochemical, Mechanical, and Biological Properties of Bioplastics -- 12.3.1.1 Polylactic Acid -- 12.3.1.2 Poly Lactic-co-Glycolic Acid -- 12.3.1.3 Polycaprolactone -- 12.3.1.4 Polyhydroxyalkanoates -- 12.3.1.5 Polyethylene Glycol (PEG) -- 12.4 Applications -- 12.4.1 Tissue Engineering -- 12.4.2 Drug Delivery System -- 12.4.3 Implants and Prostheses -- 12.5 Conclusion -- References -- Chapter 13 Biomedical Applications of Biocomposites Derived From Cellulose -- 13.1 Introduction -- 13.2 Importance of Cellulose in the Field of Biocomposite -- 13.3 Classification of Cellulose -- 13.4 Synthesis of Cellulose in Different Form -- 13.4.1 Mechanical Extraction -- 13.4.2 Electrochemical Method -- 13.4.3 Chemical Extraction -- 13.4.4 Enzymatic Hydrolysis -- 13.4.5 Bacterial Production of Cellulose -- 13.5 Formation of Biocomposite Using Different Form of Cellulose -- 13.6 Biocomposites Derived from Cellulose and Their Application -- 13.6.1 Tissue Engineering -- 13.6.2 Wound Dressing -- 13.6.3 Drug Delivery -- 13.6.4 Dental Applications -- 13.6.5 Other Applications -- 13.7 Conclusion -- References -- Chapter 14 Biobased Materials for Biomedical Engineering -- 14.1 Introduction -- 14.2 Biomaterials.
14.3 Biobased Materials for Implants and Tissue Engineering.
Record Nr. UNINA-9910676647403321
Hoboken, New Jersey ; ; Beverly, Massachusetts : , : Wiley : , : Scrivener Publishing, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Sustainable Materials for Electrochemcial Capacitors
Sustainable Materials for Electrochemcial Capacitors
Autore Inamuddin
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2023
Descrizione fisica 1 online resource (467 pages)
Disciplina 621.31/5
Altri autori (Persone) AltalhiTariq
AdnanSayed Mohammed
Soggetto topico Capacitors - Materials
ISBN 1-394-16710-5
1-394-16709-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Sustainable Materials for Electrochemical Supercapacitors: Eco Materials -- 1.1 Introduction -- 1.2 Eco-Carbon-Based Electrode Materials -- 1.3 Eco-Metal Oxide-Based Electrode Materials -- 1.4 Eco-Carbon-Based Material/Metal Oxide Composite Electrode Materials -- 1.5 Conclusion -- References -- Chapter 2 Solid Waste-Derived Carbon Materials for Electrochemical Capacitors -- 2.1 Introduction -- 2.2 Solid Waste as a Source of CNS -- 2.3 Preparation and Activation Methods of Solid Waste-Derived CNS -- 2.4 Effect of Structural and Morphological Diversities on Electrochemical Performance -- 2.5 Environmental Trash-Derived CNS in Electrochemical Capacitors -- 2.6 Challenges and Future Prospects -- 2.7 Conclusions -- References -- Chapter 3 Metal Hydroxides -- 3.1 Introduction -- 3.2 Method to Fabricate Metal Hydroxide -- 3.2.1 Precipitation Strategy -- 3.2.2 Post-Uniting and Metal Cation Consolidation Strategy -- 3.2.3 Ion Exchange Method -- 3.2.4 Sonochemical Method -- 3.2.5 Hydrothermal Method -- 3.2.6 Polyol Synthesis -- 3.3 Properties and Applications of MOHs -- 3.3.1 MOH Flame Retardants -- 3.3.1.1 Alumina Tri-Hydrate (ATH) and Milk of Magnesia -- 3.3.1.2 Utilization of Mg(OH)2 as a Flame Resistance in Plastics -- 3.3.2 MOHs Sludge Can Be Used as Latest Adsorbent -- 3.3.3 Metal Hydroxide MOH Nanostructures -- 3.3.4 MOHs for Supercapacitor Electrode Materials -- 3.3.5 Drugs or Pharmaceutical Applications -- 3.3.5.1 Ca(OH)2 Used in Dental Practice -- 3.3.6 Removal of Toxins from the Water -- 3.3.6.1 Water's Physical and Chemical Characteristics -- 3.3.6.2 Types of Wastewater -- 3.3.6.3 Treatment Techniques of Wastewater -- 3.3.6.4 Metal Hydroxide for Treatment of Wastewater -- 3.4 Examples of Metal Hydroxide -- 3.4.1 Calcium Hydroxide Ca(OH)2.
3.4.1.1 Utilizations of Ca(OH)2 in Dental Detailing of Ca(OH)2 (Glues) -- 3.4.1.2 Materials for Setting the Therapeutic Effect -- 3.4.1.3 Covering of Pits -- 3.4.2 Magnesium Hydroxide Mg(OH)2 -- 3.4.3 Copper Hydroxide -- 3.4.4 Graphene Hydroxide -- 3.4.5 Nickel Hydroxides -- 3.4.6 Aluminum Hydroxide -- 3.4.6.1 Sources of Human Exposure in the Environment -- 3.4.6.2 Natural Levels and Exposure to the Environment and Humans -- 3.4.6.3 Kinetics and Metabolism in Humans -- 3.4.6.4 Animals -- 3.5 Conclusions -- References -- Chapter 4 Porous Organic Polymers: Genres, Chemistry, Synthetic Strategies, and Diversified Applications -- 4.1 Introduction -- 4.2 Family of Porous Organic Materials -- 4.2.1 Covalent Organic Frameworks (COFs) -- 4.2.1.1 Historical Development of Covalent Organic Frameworks COFs -- 4.2.1.2 Chemistry of Covalent Organic Frameworks (COFs) -- 4.2.1.3 Classifications of COFs -- 4.2.1.4 Synthetic Strategy Adopted for COFs Formation -- 4.2.1.5 Characterization COF -- 4.2.1.6 Applications of COF -- 4.2.2 Covalent Triazine Frameworks (CTF) -- 4.2.2.1 Historical Development of CTF -- 4.2.2.2 Chemistry of CTFs -- 4.2.2.3 Synthesize of CTFs -- 4.2.2.4 Characterizations of CTFs -- 4.2.2.5 Applications of CTF -- 4.2.3 Hyper-Cross-Linked Polymers (HCPs) -- 4.2.3.1 Historical Development -- 4.2.3.2 Chemistry of HCPs -- 4.2.3.3 Synthesis of HCPs -- 4.2.3.4 Characterization and Applications of HCP -- 4.2.3.5 Applications of HCPs -- 4.2.4 Conjugated Micro Porous Polymers (CMP) -- 4.2.4.1 Historical Development and Selected Advances of Conjugated Micro Porous Polymers -- 4.2.4.2 Design and Synthetic Strategy Adopted for Synthesizing CMPs -- 4.2.4.3 Characterization of Conjugated Microporous Polymers (CMP) -- 4.2.4.4 Applications of CMPs -- 4.2.5 Porous Aromatic Frameworks (PAFs) -- 4.2.5.1 Historical Development of PAF -- 4.2.5.2 Chemistry of PAF.
4.2.5.3 Design Principles and Synthetic Strategy Adopted to Synthesize PAFs -- 4.2.5.4 Synthesize of PAFs -- 4.2.5.5 PAF Characterization -- 4.2.5.6 Applications -- 4.2.6 Porous Organic Cages -- 4.2.6.1 Characterization of Organic Cages -- 4.3 Conclusions and Perspectives -- References -- Chapter 5 Gel-Type Natural Polymers as Electroconductive Materials -- 5.1 Introduction -- 5.2 Natural Polymers -- 5.2.1 Hydrogels -- 5.2.2 Classification of Hydrogels -- 5.2.3 Composition of Hydrogels -- 5.2.4 Natural Polymers Derived Hydrogels -- 5.2.5 Cellulose-Based Hydrogels -- 5.2.6 Chitosan-Based Hydrogels -- 5.2.7 Xanthan Gum-Based Hydrogels -- 5.2.8 Sea Weed-Derived Polysaccharide-Based Hydrogels -- 5.2.9 Protein-Based Hydrogels -- 5.2.10 DNA-Based Hydrogels -- 5.3 Synthesis Methods for Fabrication of Natural Polymer-Based Hydrogels -- 5.3.1 Natural Polymer-Based Chemically Cross-Linked Hydrogels -- 5.3.2 Grafting Method -- 5.3.3 Radical Polymerization Method -- 5.3.4 Irradiation Method -- 5.3.5 Enzymatic Reaction Method -- 5.4 Natural Polymer-Based Physically Cross-Linked Hydrogels -- 5.4.1 By Freezing and Thawing Cycles -- 5.4.2 By Hydrogen Bonding -- 5.4.3 By Ionic Interactions -- 5.5 Properties of Natural Polymer-Based Hydrogels -- 5.5.1 Mechanical Properties -- 5.5.2 Biodegradability -- 5.5.3 Swelling Characteristics -- 5.6 Stimuli Sensitivity of Hydrogels -- 5.7 Application of Hydrogels as Electrochemical Supercapacitors -- 5.7.1 Types of Supercapacitors -- 5.7.2 Electrochemical Double-Layer Capacitor (EDLC) -- 5.7.3 Pseudo Capacitor -- 5.7.4 Asymmetric or Hybrid Supercapacitors -- 5.8 Conducting Polymer Hydrogels as Electrode Materials -- 5.9 Conducting Polymer Hydrogels as Electrolyte Materials -- 5.10 Conclusion -- References -- Chapter 6 Ionic Liquids for Supercapacitors -- 6.1 Introduction -- 6.2 Brief Introduction of Supercapacitor.
6.2.1 Supercapacitor and Its Classification -- 6.2.2 Electrolyte of Supercapacitor -- 6.3 Ionic Liquids and Its Unique Properties -- 6.4 Application of Ionic Liquids in Supercapacitors -- 6.4.1 Pure Ionic Liquid as Electrolyte -- 6.4.1.1 Aprotic Ionic Liquids -- 6.4.1.2 Proton Ionic Liquids -- 6.4.1.3 Functionalized Ionic Liquids -- 6.4.2 Mixture Electrolyte of Ionic Liquids -- 6.4.2.1 Binary of Ionic Liquids -- 6.4.2.2 Mixed Electrolyte of Organic Solvent and Ionic Liquids -- 6.4.2.3 Mixed Electrolyte of Ionic Liquid and Ionic Salt -- 6.5 Conclusion and Prospective -- Acknowledgments -- References -- Chapter 7 Functional Binders for Electrochemical Capacitors -- 7.1 Introduction -- 7.2 Characteristics of Binder -- 7.3 Method of Fabricating Supercapacitor Electrode -- 7.4 Mechanism of Binding Process -- 7.5 Classification of Binders -- 7.5.1 On the Basis of Origin -- 7.5.2 On the Basis of Reactivity -- 7.6 Characterization Techniques -- 7.7 Conventional Binders and Related Issues -- 7.8 Sustainable Binders -- 7.9 Conclusion -- References -- Chapter 8 Sustainable Substitutes for Fluorinated Electrolytes in Electrochemical Capacitors -- 8.1 Introduction -- 8.2 Fluorinated Electrolytes -- 8.3 Sustainable Substitutes for Fluorinated Electrolytes -- 8.3.1 Aqueous Electrolytes -- 8.3.1.1 Seawater -- 8.3.1.2 Aqueous Solution of Redox-Active Ligands as Electrolytes -- 8.3.2 Organic Electrolytes -- 8.3.3 Solid-State Electrolytes -- 8.4 Performance of Sustainable Electrolytes Compared to Fluorinated Electrolytes -- 8.4.1 Strongly Acidic Electrolytes -- 8.4.2 Strong Alkaline Electrolytes -- 8.4.3 Neutral Electrolytes -- 8.4.4 Organic Electrolytes -- 8.5 Final Remarks -- References -- Chapter 9 Aqueous Redox-Active Electrolytes -- 9.1 Introduction -- 9.2 Effect of the Electrolyte on Supercapacitor Performance -- 9.3 Aqueous Electrolytes.
9.4 Acidic Electrolytes -- 9.4.1 Sulfuric Acid Electrolyte-Based EDLC and Pseudocapacitors -- 9.4.2 H2SO4 Electrolyte-Based Hybrid Supercapacitors -- 9.5 Alkaline Electrolytes -- 9.5.1 Alkaline Electrolyte-Based EDLC and Pseudocapacitors -- 9.5.2 Alkaline Electrolyte-Based Hybrid Supercapacitors -- 9.6 Neutral Electrolyte -- 9.6.1 Neutral Electrolyte-Based EDLC and Pseudocapacitors -- 9.6.2 Neutral Electrolyte-Based Hybrid Supercapacitors -- 9.7 Conclusion and Future Research Directions -- References -- Chapter 10 Biodegradable Electrolytes -- 10.1 Introduction -- 10.2 Classification of Biodegradable Electrolytes -- 10.2.1 Solid Polymer Electrolytes -- 10.2.2 Gel Polymer Electrolytes -- 10.2.3 Composite Polymer Electrolytes -- 10.3 Preparation of Biodegradable Electrolytes -- 10.4 Some Defined Ways to Increase the Ionic Conductivity -- 10.4.1 Polymer Blending -- 10.4.2 Incorporation of Additives -- 10.5 Factors Affecting Ion Conduction of Biodegradable Polymer Electrolytes -- 10.6 Properties of Ideal Biodegradable Electrolyte System -- 10.7 Applications of Biodegradable Electrolytes -- 10.7.1 Biodegradable Electrolytes in Fuel Cells -- 10.7.2 Biodegradable Electrolytes and Batteries -- 10.7.3 Supercapacitors in Terms of Biodegradable Electrolytes -- 10.7.4 Biodegradable Electrolytes in Dye Sensitized Solar Cells -- 10.8 Conclusion -- References -- Chapter 11 Supercapattery: An Electrochemical Energy Storage Device -- 11.1 Introduction -- 11.2 Batteries and Capacitors -- 11.3 Supercapattery Device and Electrode Materials -- 11.3.1 Metal-Based Materials and Their Composites -- 11.3.2 Polymers and their Composites -- 11.3.3 Carbon Materials and Their Composites -- 11.4 Advantages and Challenges of Supercapatteries -- 11.5 Conclusions -- References -- Chapter 12 Ceramic Multilayers and Films for High.Performance Supercapacitors -- 12.1 Introduction.
12.2 Different Types of Ceramic Materials.
Record Nr. UNINA-9910829869003321
Inamuddin  
Newark : , : John Wiley & Sons, Incorporated, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui