Advanced Functional Membranes : Materials and Applications
| Advanced Functional Membranes : Materials and Applications |
| Autore | Inamuddin |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Millersville : , : Materials Research Forum LLC, , 2022 |
| Descrizione fisica | 1 online resource (344 pages) |
| Disciplina | 660.2842 |
| Collana | Materials Research Foundations |
| Soggetto topico | Membranes (Technology) |
| ISBN |
9781644901816
1644901811 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9911009292603321 |
Inamuddin
|
||
| Millersville : , : Materials Research Forum LLC, , 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Advanced Functional Piezoelectric Materials and Applications
| Advanced Functional Piezoelectric Materials and Applications |
| Autore | Inamuddin |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Millersville : , : Materials Research Forum LLC, , 2022 |
| Descrizione fisica | 1 online resource (290 pages) |
| Collana | Materials Research Foundations |
| Soggetto topico | Piezoelectric materials |
| ISBN |
9781644902097
9781644902080 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Types, Properties and Characteristics of Piezoelectric Materials -- 1. Introduction -- 1.1 Single crystals -- 1.2 Ceramics -- 1.3 Composites -- 1.4 Polymers -- 1.5 Sensor configuration based on shape and size -- 1.6 Classification based on dimension -- 2. Properties of piezoelectric materials -- 2.1 Basic equations -- 2.2 Curie temperature -- 2.3 Phase transition -- 2.4 High dielectric constant -- 2.5 Sensitivity -- 2.6 Electromechanical Coupling Factor (k) -- 2.7 Resistivity (R) and time constant (RC) -- 2.7 Quality factors (mechanical and electrical) -- 2.8 Figure of Merit (FOM) and strain coefficient -- 2.9 Piezoelectric resonance frequency -- 2.10 Thermal expansion -- 2.11 Ageing -- 3. Characterization of piezoelectric materials -- 3.1 Measurement of piezoelectric coefficient -- 3.2 Measurement of dielectric constant -- 3.3 Measurement of Curie temperature -- 3.4 Etching and poling -- 3.5 Measurement of hysteresis (PE/SE) loops -- Conclusions -- References -- 2 -- Fabrication Approaches for Piezoelectric Materials -- 1. Introduction -- 2. Preparation techniques for piezoelectric ceramics -- 2.1 Synthesis of ceramic powders -- 2.1 Solid-state reaction -- 2.2 Co-precipitation -- 2.3 Alkoxide hydrolysis -- 2.4 The sintering method -- 2.5 Templated grain growth -- 3. Piezoelectric materials in device fabrication -- 4. Bio-piezoelectric materials -- 4.1 Types bio-piezoelectric materials -- 4.2 Synthesis strategies -- 4.2.1 Thin films -- 4.2.2 Nanoplatforms -- 5. Challenges -- 5.1 Piezoelectric ceramics -- 5.2 Bio-piezoelectric materials -- Conclusion -- References -- 3 -- Piezoelectric Materials-based Nanogenerators -- 1. Introduction -- 2. Piezoelectricity and crystallography -- 3. Maxwell's equations and piezoelectric nanogenerator -- 4. Piezoelectric materials for nanogenerators.
4.1 Ceramic -- 4.1.1 Zinc oxide -- 4.1.2 Barium titanate -- 4.1.3 Lead zirconate titanate (PZT) -- 4.2 Polymer -- 4.2.1 PVDF and its copolymer -- 4.2.2 Polylactic acid -- 4.2.3 Cellulose -- 4.3 Ferroelectret -- 4.4 PVDF based composite -- 4.4.1 Ceramic filler -- 4.4.2 Carbon-based filler -- 4.4.3 Metal based filler -- 4.4.4 Other fillers -- 5. Applications of piezoelectric nanogenerator -- 5.1 Power source of electronic devices -- 5.2 Sensing application -- 6. Challenges and future scopes -- Conclusions -- Acknowledgement -- References -- 4 -- Piezoelectric Materials based Phototronics -- 1. Introduction -- 1.1 Piezoelectric effect -- 1.2 Piezotronic effect -- 2. Piezo-phototronic effect -- 3. Piezoelectric semiconductor NWs -- 4. Effect on 2D materials -- 5. Effect on 3rd generation semiconductors -- 6. Piezo-phototronic effect on LED -- 7. Piezo-phototronic effect on solar cell -- 8. Piezo-phototronics in luminescence applications -- 9. Piezo-phototronics in other applications -- References -- 5 -- Piezoelectric Composites and their Applications -- 1. Introduction -- 2. The mechanism of piezoelectricity and principle of PZT-polymer composites -- 3. Piezoelectric materials -- 4 Applications of piezoelectric composite materials -- 4.1 Energy harvesting applications -- 4.2 Medical applications of piezoelectric materials -- 4.2.1 Piezoelectric medical devices -- 4.2.2 Piezoelectric sensors -- 4.2.3 Piezoelectric prosthetic skin -- 4.2.4 Cochlear implants -- 4.2.5 Piezoelectric surgery -- 4.2.6 Ultrasonic dental scaling -- 4.2.7 Microdosing -- 4.2.8 Energy harvesting -- 4.2.9 Catheter applications -- 4.2.10 Neural stimulators -- 4.2.11 Healthcare monitoring -- 5. Structural health monitoring and repair -- Conclusion -- References -- 6 -- Piezoelectric Materials for Biomedical and Energy Harvesting Applications -- 1. Introduction. 1.1 Types of advance piezoelectric functional materials -- 1.1.1 Polymer piezocomposite -- 1.1.2 Ceramics piezocomposite -- 1.1.3 Polymer ceramics piezocomposite -- 2. Applications -- 2.1 Microelectromechanical system (MEMS) devices -- 2.2 MEMS generators for energy harvesting -- 2.3 MEMS sensor -- 2.3.1 Pressure sensor -- 2.3.2 Healthcare sensor -- 2.3.3 Cell and tisusse regenration -- Conclusion -- Reference -- 7 -- Piezoelectric Thin Films and their Applications -- 1. Piezoelectric thin films -- 2. Lead free piezoelectric thin films -- 2.1 AlN thin films -- 2.2 ZnO thin films -- 2.2.1 Synthesis of ZnO thin films -- 2.3 KNN thin films -- 2.3.1 Synthesis of KNN thin films -- 3. Characterization techniques for piezoelectric thin film -- 3.1 Resonance spectrum method -- 3.2 Pneumatic loading method and normal loading method -- 3.3 Characterizations using capacitance measurements -- 4. Applications -- 4.1 Energy harvesting -- 4.2 Actuators -- 4.3 Electronics -- 4.4 Acoustic biosensors -- 4.5 Surface acoustic wave (SAW) biosensors -- 5. Recent developments in piezoelectric thin film devices -- Conclusion -- References -- 8 -- 1. Perovskites -- 2. Lead free perovskites -- 3. Processing of lead-free perovskites -- 4. Piezoelectricity in lead free perovskite -- 4.1 Fundamentals of piezoelectricity -- 5. Different lead-free piezoceramics and their applications -- 5.1 KNN based ceramics -- 5.2 Bismuth sodium titanate based piezoceramics and their applications -- 5.3 BaTiO3 (BT) based piezo-ceramics -- 5.3.1 BaTiO3 ceramics phase boundary -- 5.3.2 Factors in phase boundaries -- 5.3.3 Sintering and curie temperature -- 5.4 Bismuth based piezoceramics -- 5.4.1 Phase boundary in BFO-based ceramics -- 5.4.1.1 Ion substitution -- 5.4.1.2 Addition of ABO3 -- 5.4.2 Temperature stability of strain properties. 5.4.3 Relationship between piezoelectricity and phase boundaries -- 6. Requirements for piezoceramic applications -- 6.1 Actuators -- 6.2 Sensors -- 6.3 Transducers -- 6.3.1 Piezoelectric transducers -- 6.4 Resonators -- Conclusion -- References -- 9 -- Piezoelectric Materials for Sensor Applications -- 1. Introduction -- 2. Piezoelectric mechanism -- 3. Types of piezoelectric materials -- 4. Fabrication methods -- 5. Applications of piezoelectric materials -- 5.1 Applications in wearable and implanted biomedical devices -- 5.2 Piezoelectric materials for energy applications -- 5.3 Piezoelectric materials in tissue engineering -- 5.4 Piezoelectric materials in other applications -- Conclusion and outlook -- References -- back-matter -- Keyword Index -- About the Editors. |
| Record Nr. | UNINA-9911009183203321 |
Inamuddin
|
||
| Millersville : , : Materials Research Forum LLC, , 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Bioanalytical Techniques : Principles and Applications
| Bioanalytical Techniques : Principles and Applications |
| Autore | Inamuddin |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2025 |
| Descrizione fisica | 1 online resource (713 pages) |
| Altri autori (Persone) |
AltalhiTariq
AlosaimiAbeer CruzJorddy Neves |
| ISBN |
1-394-31413-2
1-394-31412-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9911020011603321 |
Inamuddin
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2025 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Biodegradable Materials and Their Applications
| Biodegradable Materials and Their Applications |
| Autore | Inamuddin <1980-> |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2022 |
| Descrizione fisica | 1 online resource (881 pages) |
| Altri autori (Persone) | AltalhiTariq |
| ISBN |
1-119-90530-3
1-119-90528-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Half-Title Page -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Biodegradable Materials in Electronics -- 1.1 Introduction -- 1.2 Biodegradable Materials in Electronics -- 1.2.1 Advantages of Biodegradable Materials -- 1.3 Silk -- 1.4 Polymers -- 1.4.1 Natural Polymers -- 1.4.2 Synthetic Polymers -- 1.5 Cellulose -- 1.6 Paper -- 1.7 Others -- 1.8 Biodegradable Electronic Components -- 1.9 Semiconductors -- 1.10 Substrate -- 1.11 Biodegradable Dielectrics -- 1.12 Insulators and Conductors -- 1.13 Conclusion -- Declaration About Copyright -- References -- 2 Biodegradable Thermoelectric Materials -- 2.1 Introduction -- 2.2 Biopolymer-Based Renewable Composites: An Alternative to Synthetic Materials -- 2.3 Working Principle of Thermoelectric Materials -- 2.4 Biopolymer Composite for Thermoelectric Application -- 2.4.1 Polylactic Acid-Based Thermoelectric Materials -- 2.4.2 Cellulose-Based Biocomposites as Thermoelectric Materials -- 2.4.3 Chitosan-Based Biocomposites as Thermoelectric Materials -- 2.4.4 Agarose-Based Biocomposites as Thermoelectric Materials -- 2.4.5 Starch-Based Biocomposites as Thermoelectric Materials -- 2.4.6 Carrageenan-Based Biocomposites as Thermoelectric Materials -- 2.4.7 Pullulan-Based Composites as Thermoelectric Materials -- 2.4.8 Lignin-Based Biocomposites as Thermoelectric Materials -- 2.5 Heparin-Based Biocomposites as Future Thermoelectric Materials -- 2.6 Conclusions -- References -- 3 Biodegradable Electronics: A Newly Emerging Environmental Technology -- 3.1 Introduction -- 3.2 Properties of Biodegradable Materials in Electronics -- 3.3 Transformational Applications of Biodegradable Materials in Electronics -- 3.3.1 Cellulose -- 3.3.2 Silk -- 3.3.3 Stretchable Hydrogel -- 3.3.4 Conjugated Polymers and Metals -- 3.3.5 Graphene -- 3.3.6 Composites -- 3.4 Biodegradation Mechanisms.
3.5 Conclusions -- Acknowledgements -- References -- 4 Biodegradable and Bioactive Films or Coatings From Fish Waste Materials -- 4.1 Introduction -- 4.2 Fishery Chain Industry -- 4.2.1 Evolution of the Fishery Chain Industry -- 4.2.2 Applications of Fish Waste Materials -- 4.3 Films or Coatings Based on Proteins From Fish Waste Materials -- 4.3.1 Films or Coatings for Food Packaging -- 4.3.2 Development of Protein-Based Films or Coatings -- 4.3.2.1 Fish Proteins and Processes for Obtaining Collagen/Gelatin and Myofibrillar Proteins -- 4.3.2.2 Development of Biodegradable and Bioactive Films or Coating -- 4.3.3 Development of Protein-Based Films or Coatings Incorporated With Additives and/or Plasticizers -- 4.3.3.1 Films or Coatings Incorporated With Organic Additives and/or Plasticizers and Their Applications -- 4.3.3.2 Films or Coatings Incorporated With Inorganic Additives and/or Plasticizers -- 4.4 Conclusion -- References -- 5 Biodegradable Superabsorbent Materials -- 5.1 Introduction -- 5.2 Biohydrogels: Superabsorbent Materials -- 5.3 Polysaccharides: Biopolymers from Renewable Sources -- 5.3.1 Carboxymethylcellulose (CMC) -- 5.3.2 Chitosan (CH) -- 5.3.3 Alginate -- 5.3.4 Carrageenans -- 5.4 Applications of Superabsorbent Biohydrogels (SBHs) Based on Polysaccharides -- 5.5 Conclusion and Future Perspectives -- Acknowledgments -- References -- 6 Bioplastics in Personal Protective Equipment -- 6.1 Introduction -- 6.2 Conventional Personal Protective Equipment -- 6.2.1 Face Masks -- 6.2.1.1 Surgical Mask -- 6.2.1.2 N95 Face Masks -- 6.2.1.3 KN95 Face Masks -- 6.2.1.4 Cloth Face Masks -- 6.2.1.5 Two-Layered Face Mask (or Hygienic) -- 6.2.2 Gloves -- 6.2.2.1 Latex -- 6.2.2.2 Nitrile -- 6.2.2.3 Vinyl -- 6.2.2.4 Foil (Polyethylene) -- 6.3 Biodegradable and Biobased PPE -- 6.3.1 Face Masks -- 6.3.1.1 Polylactic Acid -- 6.3.1.2 Polybutylene Succinate. 6.3.1.3 Polyvinyl Alcohol -- 6.3.2 Gloves -- 6.3.2.1 Butadiene Rubber (BR) -- 6.3.2.2 Polyisoprene Rubber -- 6.4 Environmental Impacts Caused by Personal Protective Equipment Made of Bioplastics -- 6.4.1 Source and Raw Materials -- 6.4.2 End of Life Scenarios -- 6.4.3 Remarks on Biodegradability -- 6.5 International Standards Applied to Biodegradable Plastics and Bioplastics -- 6.6 Conclusions -- References -- 7 Biodegradable Protective Films -- 7.1 Introduction -- 7.1.1 Types of Protective Films -- 7.2 Biodegradable Protective Films -- 7.2.1 Processing of Biodegradable Protective Films -- 7.2.2 Limitations Faced by Biodegradable Protective Films -- References -- 8 No Plastic, No Pollution: Replacement of Plastics in the Equipments of Personal Protection -- 8.1 Introduction -- 8.2 Bioplastics -- 8.3 Biodegradation of Bioplastics -- 8.4 Production of Bioplastics from Plant Sources -- 8.5 Production of Bioplastics from Microbial Resources -- 8.6 What Are PPEs Made Off? -- 8.6.1 Face Masks -- 8.6.2 Face and Eye Shields -- 8.6.3 Gloves -- 8.7 Biodegradable Materials for PPE -- 8.8 Conclusion and Future Perspectives -- References -- 9 Biodegradable Materials in Dentistry -- 9.1 Introduction -- 9.2 Biodegradable Materials -- 9.2.1 Synthetic Polymers -- 9.2.2 Natural Polymers -- 9.2.3 Biodegradable Ceramics -- 9.2.4 Bioactive Glass -- 9.2.5 Biodegradable Metals -- 9.3 Biodegradable Materials in Suturing -- 9.4 Biodegradable Materials in Imaging and Diagnostics -- 9.5 Biodegradable Materials in Oral Maxillofacial and Craniofacial Surgery -- 9.6 Biodegradable Materials in Resorbable Plate and Screw System -- 9.7 Biodegradable Materials in Alveolar Ridge Preservation -- 9.8 Biodegradable Materials of Nanotopography in Cancer Therapy -- 9.9 Biodegradable Materials in Endodontics -- 9.10 Biodegradable Materials in Orthodontics. 9.11 Biodegradable Materials in Periodontics -- 9.12 Conclusion -- References -- 10 Biodegradable and Biocompatible Polymeric Materials for Dentistry Applications -- 10.1 Introduction -- 10.2 Polysaccharides -- 10.2.1 Chitosan -- 10.2.2 Cellulose -- 10.2.3 Starch -- 10.2.4 Alginate -- 10.2.5 Hyaluronic Acid (HA) -- 10.3 Proteins -- 10.3.1 Collagen -- 10.3.2 Fibrin -- 10.3.3 Elastin -- 10.3.4 Gelatins -- 10.3.5 Silk -- 10.4 Biopolyesters -- 10.4.1 Poly (Glycolic Acid) (PGA) -- 10.4.2 Poly (Lactic Acid) PLA -- 10.4.3 Poly (Lactide-co-Glycolide) (PLGA) -- 10.4.4 Polycaprolactone -- 10.4.5 Poly (Propylene Fumarate) -- 10.5 Conclusion -- References -- 11 Biodegradable Biomaterials in Bone Tissue Engineering -- 11.1 Introduction -- 11.2 Essential Characteristics and Considerations in Bone Scaffold Design -- 11.3 Fabrication Technologies -- 11.4 Incorporation of Bioactive Molecules During Scaffold Fabrication -- 11.5 Biocompatibility and Interface Between Biodegradation and New Tissue Formation -- 11.6 Biodegradation of Calcium Phosphate Biomaterials -- 11.7 Biodegradation of Polymeric Biomaterials -- 11.8 Importance of Bone Remodeling -- 11.9 Conclusion -- References -- 12 Biodegradable Elastomer -- 12.1 Introduction -- 12.2 Biodegradation Testing -- 12.3 Biodegradable Elastomers: An Overview -- 12.3.1 Preparation Strategies -- 12.3.2 Biodegradation and Erosion -- 12.4 Application of Biodegradable Elastomers -- 12.4.1 Drug Delivery -- 12.4.2 Tissue Engineering -- 12.4.2.1 Neural and Retinal Applications -- 12.4.2.2 Cardiovascular Applications -- 12.4.2.3 Orthopedic Applications -- 12.5 Conclusions and Perspectives -- References -- 13 Biodegradable Implant Materials -- 13.1 Introduction -- 13.2 Medical Implants -- 13.3 Biomaterials -- 13.3.1 Biomaterial Types -- 13.3.1.1 Polymer Biomaterials -- 13.3.1.2 Metallic Biomaterials -- 13.3.1.3 Ceramic Biomaterials. 13.4 Biodegradable Implant Materials -- 13.4.1 Biodegradable Metals -- 13.4.1.1 Magnesium-Based Biodegradable Materials -- 13.4.1.2 Iron-Based Biodegradable Materials -- 13.4.2 Biodegradable Polymers -- 13.4.2.1 Polyesters -- 13.4.2.2 Polycarbonates -- 13.4.2.3 Polyanhydrides -- 13.4.2.4 Poly(ortho esters) -- 13.4.2.5 Poly(propylene fumarate) -- 13.4.2.6 Poly(phosphazenes) -- 13.4.2.7 Polyphosphoesters -- 13.4.2.8 Polyurethanes -- 13.5 Conclusion -- References -- 14 Current Strategies in Pulp and Periodontal Regeneration Using Biodegradable Biomaterials -- 14.1 Introduction -- 14.2 Biodegradable Materials in Dental Pulp Regeneration -- 14.2.1 Collagen-Based Gels -- 14.2.2 Platelet-Rich Plasma -- 14.2.3 Plasma-Rich Fibrin -- 14.2.4 Gelatin -- 14.2.5 Fibrin -- 14.2.6 Alginate -- 14.2.7 Chitosan -- 14.2.8 Amino Acid Polymers -- 14.2.9 Polymers of Lactic Acid -- 14.2.10 Composite Polymer Scaffolds -- 14.3 Biodegradable Biomaterials and Strategies for Tissue Engineering of Periodontium -- 14.4 Coapplication of Auxiliary Agents With Biodegradable Biomaterials for Periodontal Tissue Engineering -- 14.4.1 Stem Cells Applications in Periodontal Regeneration -- 14.4.2 Bioactive Molecules for Periodontal Regeneration -- 14.4.3 Antimicrobial and Anti-Inflammatory Agents for Periodontal Regeneration -- 14.5 Regeneration of Periodontal Tissues Complex Using Biodegradable Biomaterials -- 14.5.1 PDL Regeneration -- 14.5.2 Cementum and Alveolar Bone Regeneration -- 14.5.3 Integrated Regeneration of Periodontal Complex Structures -- 14.6 Recent Advances in Periodontal Regeneration Using Supportive Techniques During Application of Biodegradable Biomaterials -- 14.6.1 Laser Application in Periodontium Regeneration -- 14.6.2 Gene Therapy in Periodontal Regeneration -- 14.7 Conclusion and Future Remarks -- References. 15 A Review on Health Care Applications of Biopolymers. |
| Record Nr. | UNINA-9910595596803321 |
Inamuddin <1980->
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Biomimicry Materials and Applications
| Biomimicry Materials and Applications |
| Autore | Inamuddin |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2023 |
| Descrizione fisica | 1 online resource (254 pages) |
| Altri autori (Persone) |
AltalhiTariq
AlrogiAshjan |
| ISBN |
1-394-16704-0
1-394-16703-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Biomimetic Optics -- 1.1 Introduction -- 1.2 What is Biomimicry? -- 1.3 Step-by-Step Approach for Designing Biomimetic Optical Materials From Bioorganisms -- 1.3.1 Optical Structure Analysis in Biology -- 1.3.2 The Analysis of Optical Characteristics in Biological Materials -- 1.3.3 Optical Biomimetic Materials Fabrication Strategies -- 1.4 Biological Visual Systems-Animal and Human -- 1.4.1 Simple Eyes -- 1.4.2 Compound Eyes -- 1.4.2.1 Appositional Compound Eyes -- 1.4.2.2 Superpositional Compound Eyes -- 1.5. The Eye's Optical and Neural Components -- 1.5.1 Cornea -- 1.5.2 Pupils -- 1.5.3 Lens -- 1.5.4 Retina -- 1.6 Application of Biomimetic Optics -- 1.6.1 Hybrid Optical Components are Meant to Resemble the Optical System of the Eye -- 1.6.2 Microlens With a Dual-Facet Design -- 1.6.3 Fiber Optics in Nature -- 1.6.4 Bioinspired Optical Device -- 1.6.4.1 Tunable Lenses Inspired by Nature -- 1.6.4.2 X-Ray Telescope -- 1.6.4.3 Bioinspired Sensors -- 1.7 Conclusion -- References -- Chapter 2 Mimicry at the Material-Cell Interface -- 2.1 Cell and Material Interfaces -- 2.2 Host-Microbe Interactions and Interface Mimicry -- 2.3 Alterations in Characteristics and Mimicking of Extracellular Matrix -- 2.4 Mimicry, Manipulations, and Cell Behavior -- 2.5 Single-Cell Transcriptomics and Involution Mimicry -- 2.6 Molecular Mimicry and Disturbed Immune Surveillance -- 2.7 Surface Chemistry, and Cell-Material Interface -- 2.8 Cell Biology and Surface Topography -- 2.9 3D Extracellular Matrix Mimics and Materials Chemistry -- 2.10 Microbe Interactions and Interface Mimicry -- 2.11 Hijacking of the Host Interactome, and Imperfect Mimicry -- 2.12 Vasculogenic Mimicry and Tumor Angiogenesis -- References.
Chapter 3 Bacteriocins of Lactic Acid Bacteria as a Potential Antimicrobial Peptide -- 3.1 Introduction -- 3.2 Bacteriocins -- 3.3 Lactic Acid Bacteria -- 3.4 Classification of LAB Bacteriocins -- 3.4.1 Class I Bacteriocins or Lantibiotics -- 3.4.1.1 Class Ia -- 3.4.1.2 Class Ib -- 3.4.1.3 Class Ic or Antibiotics -- 3.4.1.4 Class Id -- 3.4.1.5 Class Ie -- 3.4.1.6 Class If -- 3.4.2 Class II Bacteriocins -- 3.4.3 Class III Bacteriocins -- 3.5 Mechanisms of LAB Bacteriocins to Inactivate Microbial Growth -- 3.5.1 Action on Cell Wall Synthesis -- 3.5.1.1 Pore Formation -- 3.5.1.2 Inhibition of Peptidoglycan Synthesis -- 3.5.2 Obstruction in Replication and Transcription -- 3.5.3 Inhibition in Protein Synthesis -- 3.5.4 Disruption of Membrane Structure -- 3.5.5 Disruption in Septum Formation -- 3.6 Antimicrobial Properties of LAB Bacteriocins -- 3.6.1 Antiviral Activity -- 3.6.2 Antibacterial Properties -- 3.6.3 Antifungal Activity -- 3.7 Applications -- 3.7.1 Bacteriocins in Packaging Film -- 3.7.2 Potential Use as Biopreservatives -- 3.7.3 Bacteriocins as Antibiofilm -- 3.7.4 Applications in Foods Industries -- 3.8 Conclusion -- Acknowledgment -- References -- Chapter 4 A Review on Emergence of a Nature-Inspired Polymer-Polydopamine in Biomedicine -- 4.1 Introduction -- 4.2 Structure of PDA -- 4.3 Polydopamine as a Biomedical Material -- 4.4 Polydopamine as a Biomedical Adhesive -- 4.5 Availability of Polydopamine and its Biomedical Applications -- 4.6 Polydopamine Coatings of Nanomaterials -- 4.7 Polydopamine-Based Capsules -- 4.8 Polydopamine Nanoparticles and Nanocomposites -- 4.9 Polydopamine Properties -- 4.9.1 Cell Adhesion -- 4.9.2 Mineralization and Bone Regeneration -- 4.9.3 Blood Compatibility -- 4.9.4 Antimicrobial Effect -- 4.10 Dental Applications -- 4.11 Dental Adhesives -- 4.11.1 Tooth Mineralization -- 4.12 Conclusions -- References. Chapter 5 Application of Electroactive Polymer Actuator: A Brief Review -- 5.1 Introduction -- 5.2 Chronological Summary of the Evolution of EAP Actuator -- 5.3 Electroactive Polymer Actuators Groups -- 5.3.1 Ionic Electroactive Polymers -- 5.3.2 Electronic Electroactive Polymers -- 5.4 Application of Electroactive Polymer Actuators -- 5.4.1 Soft Robotic Actuator Applications -- 5.4.2 Underwater Applications -- 5.4.3 Aerospace Applications -- 5.4.4 Energy Harvesting Applications -- 5.4.5 Healthcare and Biomedical Applications -- 5.4.6 Shape Memory Polymer Applications -- 5.4.7 Smart Window Applications -- 5.4.8 Wearable Electronics Applications -- 5.5 Conclusion -- References -- Chapter 6 Bioinspired Hydrogels Through 3D Bioprinting -- 6.1 Introduction -- 6.2 Bioinspiration -- 6.3 3D Bioprinting -- 6.3.1 Inkjet Bioprinting -- 6.3.2 Extrusion Printing -- 6.4 Hydrogels as Inks for 3D Bioprinting -- 6.5 Polymers Used for Bioinspired Hydrogels -- 6.5.1 Alginate -- 6.5.2 Cellulose -- 6.5.3 Chitosan -- 6.5.4 Fibrin -- 6.5.5 Silk -- 6.6 Conclusion -- References -- Chapter 7 Electroactive Polymer Actuator-Based Refreshable Braille Displays -- 7.1 Introduction -- 7.2 Refreshable Braille Display -- 7.3 Electroactive Polymers -- 7.4 EAP-Based Braille Actuator -- 7.5 Conclusions -- References -- Chapter 8 Materials Biomimicked From Natural Ones -- 8.1 Introduction -- 8.2 Damage-Tolerant Ceramics -- 8.2.1 General Considerations -- 8.2.2 Nacre -- 8.2.3 Tooth Enamel -- 8.3 Protein-Based Materials With Tailored Properties -- 8.3.1 General Considerations -- 8.3.2 Dragline Silk -- 8.3.3 Fish Scales -- 8.4 Polymers Fit for Easy Junction/Self-Cleaning -- 8.4.1 General Considerations -- 8.4.2 Gecko for No-Glue Adhesion -- 8.4.3 Blue Mussel for Development of Specific Adhesives -- 8.4.4 Shark Skin for Functional Surfaces. 8.5 Recent Prototype Developments on Materials Biomimicked from Natural Ones -- 8.6 Conclusions -- References -- Chapter 9 Novel Biomimicry Techniques for Detecting Plant Diseases -- 9.1 Introduction -- 9.2 Preharvest Biomimicry Detection Techniques -- 9.2.1 Remote Sensing Technique Approach -- 9.2.2 Machine Vision and Fuzzy Logic Approaches -- 9.2.3 Robotics Approach -- 9.3 Postharvest Biomimicry Detection Techniques -- 9.3.1 Neural Network Approach -- 9.3.2 Support Vector Machine Approach -- 9.4 Prospects and Conclusion -- References -- Chapter 10 Biomimicry for Sustainable Structural Mimicking in Textile Industries -- 10.1 Introduction -- 10.2 Examples of Biomimicry Fabrics -- 10.2.1 Algae Fiber -- 10.2.2 Mushroom Leather -- 10.2.3 Fabric Mimics -- 10.2.4 Bacterial Pigments -- 10.2.5 Orange Fabrics -- 10.2.6 Protein Couture -- 10.2.7 Natural Fiber Fabrics -- 10.3 Fabric Production from Biomaterial -- 10.3.1 Soy Fabric -- 10.3.2 Cotton Fabric -- 10.3.3 Supima Fabric -- 10.3.4 Pima Fabric -- 10.3.5 Wool Fabric -- 10.3.6 Hemp Fabric -- 10.4 Current Methods of Biomimicry Materials -- 10.5 Future of Biomimicry -- 10.6 Benefits of Biomimicry -- 10.6.1 Sustainability -- 10.6.2 Perform Welt -- 10.6.3 Energy Saving -- 10.6.4 Cut-Resistant Costs -- 10.6.5 Eliminate Waste -- 10.6.6 New Product Derivation -- 10.6.7 Disrupt Traditional Thinking -- 10.6.8 Adaptability to Climate -- 10.6.9 Nourish Curiosity -- 10.6.10 Leverage Collaboration -- 10.7 Conclusion -- References -- Index -- EULA. |
| Record Nr. | UNINA-9910830600803321 |
Inamuddin
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2023 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Biomimicry Materials and Applications
| Biomimicry Materials and Applications |
| Autore | Inamuddin |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2023 |
| Descrizione fisica | 1 online resource (254 pages) |
| Disciplina | 610.284 |
| Altri autori (Persone) |
AltalhiTariq
AlrogiAshjan |
| Soggetto topico |
Biomimicry
Materials science |
| ISBN |
9781394167043
1394167040 9781394167036 1394167032 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Biomimetic Optics -- 1.1 Introduction -- 1.2 What is Biomimicry? -- 1.3 Step-by-Step Approach for Designing Biomimetic Optical Materials From Bioorganisms -- 1.3.1 Optical Structure Analysis in Biology -- 1.3.2 The Analysis of Optical Characteristics in Biological Materials -- 1.3.3 Optical Biomimetic Materials Fabrication Strategies -- 1.4 Biological Visual Systems-Animal and Human -- 1.4.1 Simple Eyes -- 1.4.2 Compound Eyes -- 1.4.2.1 Appositional Compound Eyes -- 1.4.2.2 Superpositional Compound Eyes -- 1.5. The Eye's Optical and Neural Components -- 1.5.1 Cornea -- 1.5.2 Pupils -- 1.5.3 Lens -- 1.5.4 Retina -- 1.6 Application of Biomimetic Optics -- 1.6.1 Hybrid Optical Components are Meant to Resemble the Optical System of the Eye -- 1.6.2 Microlens With a Dual-Facet Design -- 1.6.3 Fiber Optics in Nature -- 1.6.4 Bioinspired Optical Device -- 1.6.4.1 Tunable Lenses Inspired by Nature -- 1.6.4.2 X-Ray Telescope -- 1.6.4.3 Bioinspired Sensors -- 1.7 Conclusion -- References -- Chapter 2 Mimicry at the Material-Cell Interface -- 2.1 Cell and Material Interfaces -- 2.2 Host-Microbe Interactions and Interface Mimicry -- 2.3 Alterations in Characteristics and Mimicking of Extracellular Matrix -- 2.4 Mimicry, Manipulations, and Cell Behavior -- 2.5 Single-Cell Transcriptomics and Involution Mimicry -- 2.6 Molecular Mimicry and Disturbed Immune Surveillance -- 2.7 Surface Chemistry, and Cell-Material Interface -- 2.8 Cell Biology and Surface Topography -- 2.9 3D Extracellular Matrix Mimics and Materials Chemistry -- 2.10 Microbe Interactions and Interface Mimicry -- 2.11 Hijacking of the Host Interactome, and Imperfect Mimicry -- 2.12 Vasculogenic Mimicry and Tumor Angiogenesis -- References.
Chapter 3 Bacteriocins of Lactic Acid Bacteria as a Potential Antimicrobial Peptide -- 3.1 Introduction -- 3.2 Bacteriocins -- 3.3 Lactic Acid Bacteria -- 3.4 Classification of LAB Bacteriocins -- 3.4.1 Class I Bacteriocins or Lantibiotics -- 3.4.1.1 Class Ia -- 3.4.1.2 Class Ib -- 3.4.1.3 Class Ic or Antibiotics -- 3.4.1.4 Class Id -- 3.4.1.5 Class Ie -- 3.4.1.6 Class If -- 3.4.2 Class II Bacteriocins -- 3.4.3 Class III Bacteriocins -- 3.5 Mechanisms of LAB Bacteriocins to Inactivate Microbial Growth -- 3.5.1 Action on Cell Wall Synthesis -- 3.5.1.1 Pore Formation -- 3.5.1.2 Inhibition of Peptidoglycan Synthesis -- 3.5.2 Obstruction in Replication and Transcription -- 3.5.3 Inhibition in Protein Synthesis -- 3.5.4 Disruption of Membrane Structure -- 3.5.5 Disruption in Septum Formation -- 3.6 Antimicrobial Properties of LAB Bacteriocins -- 3.6.1 Antiviral Activity -- 3.6.2 Antibacterial Properties -- 3.6.3 Antifungal Activity -- 3.7 Applications -- 3.7.1 Bacteriocins in Packaging Film -- 3.7.2 Potential Use as Biopreservatives -- 3.7.3 Bacteriocins as Antibiofilm -- 3.7.4 Applications in Foods Industries -- 3.8 Conclusion -- Acknowledgment -- References -- Chapter 4 A Review on Emergence of a Nature-Inspired Polymer-Polydopamine in Biomedicine -- 4.1 Introduction -- 4.2 Structure of PDA -- 4.3 Polydopamine as a Biomedical Material -- 4.4 Polydopamine as a Biomedical Adhesive -- 4.5 Availability of Polydopamine and its Biomedical Applications -- 4.6 Polydopamine Coatings of Nanomaterials -- 4.7 Polydopamine-Based Capsules -- 4.8 Polydopamine Nanoparticles and Nanocomposites -- 4.9 Polydopamine Properties -- 4.9.1 Cell Adhesion -- 4.9.2 Mineralization and Bone Regeneration -- 4.9.3 Blood Compatibility -- 4.9.4 Antimicrobial Effect -- 4.10 Dental Applications -- 4.11 Dental Adhesives -- 4.11.1 Tooth Mineralization -- 4.12 Conclusions -- References. Chapter 5 Application of Electroactive Polymer Actuator: A Brief Review -- 5.1 Introduction -- 5.2 Chronological Summary of the Evolution of EAP Actuator -- 5.3 Electroactive Polymer Actuators Groups -- 5.3.1 Ionic Electroactive Polymers -- 5.3.2 Electronic Electroactive Polymers -- 5.4 Application of Electroactive Polymer Actuators -- 5.4.1 Soft Robotic Actuator Applications -- 5.4.2 Underwater Applications -- 5.4.3 Aerospace Applications -- 5.4.4 Energy Harvesting Applications -- 5.4.5 Healthcare and Biomedical Applications -- 5.4.6 Shape Memory Polymer Applications -- 5.4.7 Smart Window Applications -- 5.4.8 Wearable Electronics Applications -- 5.5 Conclusion -- References -- Chapter 6 Bioinspired Hydrogels Through 3D Bioprinting -- 6.1 Introduction -- 6.2 Bioinspiration -- 6.3 3D Bioprinting -- 6.3.1 Inkjet Bioprinting -- 6.3.2 Extrusion Printing -- 6.4 Hydrogels as Inks for 3D Bioprinting -- 6.5 Polymers Used for Bioinspired Hydrogels -- 6.5.1 Alginate -- 6.5.2 Cellulose -- 6.5.3 Chitosan -- 6.5.4 Fibrin -- 6.5.5 Silk -- 6.6 Conclusion -- References -- Chapter 7 Electroactive Polymer Actuator-Based Refreshable Braille Displays -- 7.1 Introduction -- 7.2 Refreshable Braille Display -- 7.3 Electroactive Polymers -- 7.4 EAP-Based Braille Actuator -- 7.5 Conclusions -- References -- Chapter 8 Materials Biomimicked From Natural Ones -- 8.1 Introduction -- 8.2 Damage-Tolerant Ceramics -- 8.2.1 General Considerations -- 8.2.2 Nacre -- 8.2.3 Tooth Enamel -- 8.3 Protein-Based Materials With Tailored Properties -- 8.3.1 General Considerations -- 8.3.2 Dragline Silk -- 8.3.3 Fish Scales -- 8.4 Polymers Fit for Easy Junction/Self-Cleaning -- 8.4.1 General Considerations -- 8.4.2 Gecko for No-Glue Adhesion -- 8.4.3 Blue Mussel for Development of Specific Adhesives -- 8.4.4 Shark Skin for Functional Surfaces. 8.5 Recent Prototype Developments on Materials Biomimicked from Natural Ones -- 8.6 Conclusions -- References -- Chapter 9 Novel Biomimicry Techniques for Detecting Plant Diseases -- 9.1 Introduction -- 9.2 Preharvest Biomimicry Detection Techniques -- 9.2.1 Remote Sensing Technique Approach -- 9.2.2 Machine Vision and Fuzzy Logic Approaches -- 9.2.3 Robotics Approach -- 9.3 Postharvest Biomimicry Detection Techniques -- 9.3.1 Neural Network Approach -- 9.3.2 Support Vector Machine Approach -- 9.4 Prospects and Conclusion -- References -- Chapter 10 Biomimicry for Sustainable Structural Mimicking in Textile Industries -- 10.1 Introduction -- 10.2 Examples of Biomimicry Fabrics -- 10.2.1 Algae Fiber -- 10.2.2 Mushroom Leather -- 10.2.3 Fabric Mimics -- 10.2.4 Bacterial Pigments -- 10.2.5 Orange Fabrics -- 10.2.6 Protein Couture -- 10.2.7 Natural Fiber Fabrics -- 10.3 Fabric Production from Biomaterial -- 10.3.1 Soy Fabric -- 10.3.2 Cotton Fabric -- 10.3.3 Supima Fabric -- 10.3.4 Pima Fabric -- 10.3.5 Wool Fabric -- 10.3.6 Hemp Fabric -- 10.4 Current Methods of Biomimicry Materials -- 10.5 Future of Biomimicry -- 10.6 Benefits of Biomimicry -- 10.6.1 Sustainability -- 10.6.2 Perform Welt -- 10.6.3 Energy Saving -- 10.6.4 Cut-Resistant Costs -- 10.6.5 Eliminate Waste -- 10.6.6 New Product Derivation -- 10.6.7 Disrupt Traditional Thinking -- 10.6.8 Adaptability to Climate -- 10.6.9 Nourish Curiosity -- 10.6.10 Leverage Collaboration -- 10.7 Conclusion -- References -- Index -- EULA. |
| Record Nr. | UNINA-9911019764903321 |
Inamuddin
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2023 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Biosensors Nanotechnology / / edited by Tariq Altalhi
| Biosensors Nanotechnology / / edited by Tariq Altalhi |
| Edizione | [Second edition.] |
| Pubbl/distr/stampa | Hoboken, NJ : , : John Wiley & Sons, Inc. and Scrivener Publishing LLC, , [2023] |
| Descrizione fisica | 1 online resource (510 pages) |
| Disciplina | 610.284 |
| Soggetto topico |
Nanotechnology
Biosensors Health |
| ISBN |
1-394-16713-X
1-394-16712-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910830641603321 |
| Hoboken, NJ : , : John Wiley & Sons, Inc. and Scrivener Publishing LLC, , [2023] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Drug design using machine learning / / edited by Inamuddin, [and three others]
| Drug design using machine learning / / edited by Inamuddin, [and three others] |
| Pubbl/distr/stampa | Hoboken, NJ : , : Wiley, , ℗2022 |
| Descrizione fisica | 1 online resource (378 pages) |
| Disciplina | 929.605 |
| Soggetto topico | Computer-aided design |
| ISBN |
1-394-16725-3
1-394-16724-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Half-Title Page -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Molecular Recognition and Machine Learning to Predict Protein-Ligand Interactions -- 1.1 Introduction -- 1.1.1 Molecular Recognition -- 1.2 Molecular Docking -- 1.2.1 Conformational Search Algorithm -- 1.2.2 Scoring Function with Conventional Methods -- 1.3 Machine Learning -- 1.3.1 Machine Learning in Molecular Docking -- 1.3.2 Machine Learning Challenges in Molecular Docking -- 1.4 Conclusions -- References -- 2 Machine Learning Approaches to Improve Prediction of Target-Drug Interactions -- 2.1 Machine Learning Revolutionizing Drug Discovery -- 2.1.1 Introduction -- 2.1.2 Virtual Screening and Rational Drug Design -- 2.1.3 Small Organic Molecules and Peptides as Drugs -- 2.2 A Brief Summary of Machine Learning Models -- 2.2.1 Support Vector Machines (SVM) -- 2.2.2 Random Forests (RF) -- 2.2.3 Gradient Boosting Decision Tree -- 2.2.4 K-Nearest Neighbor (KNN) -- 2.2.5 Neural Network and Deep Learning -- 2.2.6 Gaussian Process Regression -- 2.2.7 Evaluating Regression Methods -- 2.2.8 Evaluating Classification Methods -- 2.3 Target Validation -- 2.3.1 Ligand Binding Site Prediction (LBS) -- 2.3.2 Classical Approaches -- 2.3.3 Machine Learning Approaches -- 2.3.3.1 SVM-Based Approaches -- 2.3.3.2 Random Forest-Based Approaches -- 2.3.3.3 Deep Learning-Based Approaches -- 2.4 Lead Discovery -- 2.4.1 The Relevance of Predict Binding Affinity -- 2.4.2 The Concept of Docking -- 2.4.3 The Scoring Function -- 2.4.4 Developing of Novels Scoring Functions by Machine Learning -- 2.4.4.1 Random Forests -- 2.4.4.2 Support Vector Machines -- 2.4.4.3 Neural Networks -- 2.4.4.4 Gradient Boosting Decision Tree -- 2.5 Lead Optimization -- 2.5.1 QSAR and Proteochemometrics -- 2.5.2 Machine Learning Algorithms in Deriving Descriptors.
2.6 Peptides in Pharmaceuticals -- 2.6.1 Peptide Natural and Synthetic Sources -- 2.6.2 Applications and Market for Peptides-Based Drugs -- 2.6.3 Challenges to Become a Peptide Into a Drug -- 2.6.4 Improving Peptide Drug Development Using Machine Learning Techniques -- 2.7 Conclusions -- References -- 3 Machine Learning Applications in Rational Drug Discovery -- 3.1 Introduction -- 3.2 The Drug Development and Approval Process -- 3.3 Human-AI Partnership -- 3.4 AI in Understanding the Pathway to Assess the Side Effects -- 3.4.1 Traditional Versus New Strategies in Drug Discovery -- 3.4.2 Target Identification and Authentication -- 3.4.3 Searching the Hit and Lead Molecules with the Help of AI -- 3.4.4 Discretion of a Population for Medical Trials Using AI -- 3.5 Predicting the Side Effects Using AI -- 3.6 AI for Polypharmacology and Repurposing -- 3.7 The Challenge of Keeping Drugs Safe -- 3.8 Conclusion -- Resources -- References -- 4 Deep Learning for the Selection of Multiple Analogs -- 4.1 Introduction -- 4.2 Goals of Analog Design -- 4.3 Deep Learning in Drug Discovery -- 4.4 Chloroquine Analogs -- 4.5 Deep Learning in Medical Field -- 4.5.1 Scientific Study of Skin Diseases -- 4.5.2 Anatomical Laparoscopy -- 4.5.3 Angiography -- 4.5.4 Interpretation of Wound -- 4.5.5 Molecular Docking -- 4.5.6 Breast Cancer Detection -- 4.5.7 Polycystic Organs -- 4.5.8 Bone Tissue -- 4.5.9 Interaction Drug-Target -- 4.5.10 Pancreatic Issue Prediction -- 4.5.11 Prediction of Carcinoma in Cells -- 4.5.12 Determining Parkinson's -- 4.5.13 Segregating Cells -- 4.6 Conclusion -- References -- 5 Drug Repurposing Based on Machine Learning -- 5.1 Introduction -- 5.2 Computational Drug Repositioning Strategies -- 5.2.1 Drug-Based Strategies -- 5.2.2 Disease-Based Strategies -- 5.3 Machine Learning. 5.4 Data Resources Used for Computational Drug Repositioning Through Machine Learning Techniques -- 5.5 Machine Learning Approaches Used for Drug Repurposing -- 5.5.1 Network-Based Approaches -- 5.5.2 Text Mining-Based Approaches -- 5.5.3 Semantics-Based Approaches -- 5.6 Drugs Repurposing Through Machine Learning-Case Studies -- 5.6.1 Psychiatric Disorders -- 5.6.2 Alzheimer's Disease -- 5.6.3 Drug Repurposing for Cancer -- 5.6.4 COVID-19 -- 5.6.5 Herbal Drugs -- 5.7 Conclusion -- References -- 6 Recent Advances in Drug Design With Machine Learning -- 6.1 Introduction -- 6.2 Categorization of Machine Learning Tasks -- 6.2.1 Supervised Learning -- 6.2.2 Unsupervised Learning -- 6.2.3 Semisupervised Learning -- 6.2.4 Reinforcement Learning -- 6.3 Machine Language-Mediated Predictive Models in Drug Design -- 6.3.1 Quantitative Structure-Activity Relationship Models (QSAR) -- 6.3.2 Quantitative Structure-Property Relationship Models (QSPR) -- 6.3.3 Quantitative Structure Toxicity Relationship Models (QSTR) -- 6.3.4 Quantitative Structure Biodegradability Relationship Models (QSBR) -- 6.4 Machine Learning Models -- 6.4.1 Artificial Neural Networks (ANNs) -- 6.4.2 Self-Organizing Map (SOM) -- 6.4.3 Multilayer Perceptrons (MLPs) -- 6.4.4 Counter Propagation Neural Networks (CPNN) -- 6.4.5 Bayesian Neural Networks (BNNs) -- 6.4.6 Support Vector Machines (SVMs) -- 6.4.7 Naive Bayesian Classifier -- 6.4.8 K Nearest Neighbors (KNN) -- 6.4.9 Ensemble Methods -- 6.4.9.1 Boosting -- 6.4.9.2 Bagging -- 6.4.10 Random Forest -- 6.4.11 Deep Learning -- 6.4.12 Synthetic Minority Oversampling Technique -- 6.5 Machine Learning and Docking -- 6.5.1 Scoring Power -- 6.5.2 Ranking Power -- 6.5.3 Docking Power -- 6.5.4 Predicting Docking Score Using Machine Learning -- 6.6 Machine Learning in Chemoinformatics. 6.7 Challenges and Limitations for Machine Learning in Drug Discovery -- 6.8 Conclusion and Future Perspectives -- References -- 7 Loading of Drugs in Biodegradable Polymers Using Supercritical Fluid Technology -- 7.1 Introduction -- 7.2 Supercritical Fluid Technology -- 7.2.1 Supercritical Fluids -- 7.2.2 Physicochemical Properties -- 7.2.3 Carbon Dioxide -- 7.3 Biodegradable Polymers -- 7.3.1 Main Biologically-Derived Polymers Used With SCF Technologies -- 7.3.1.1 Cellulose -- 7.3.1.2 Chitosan -- 7.3.1.3 Alginate -- 7.3.1.4 Collagen -- 7.3.2 Main Synthetic Polymers Used With SCF Technologies -- 7.3.2.1 Polylactic Acid (PLA) -- 7.3.2.2 Poly (Lactic-co-Glycolic Acid) (PLGA) -- 7.3.2.3 Polycaprolactone (PCL) -- 7.3.2.4 Poly (Vinyl Alcohol) (PVA) -- 7.4 Drug Delivery -- 7.4.1 Types of Drugs -- 7.4.2 Influence of Experimental Conditions on the Drug Loading -- 7.5 Conclusion -- Acknowledgments -- References -- 8 Neural Network for Screening Active Sites on Proteins -- 8.1 Introduction -- 8.2 Structural Proteomics -- 8.2.1 PPIs -- 8.2.2 Active Sites in Proteins -- 8.3 Gist Techniques to Study the Active Sites on Proteins -- 8.3.1 In Vitro -- 8.3.1.1 Affinity Purification -- 8.3.1.2 Affinity Chromatography -- 8.3.1.3 Coimmunoprecipitation -- 8.3.1.4 Protein Arrays -- 8.3.1.5 Protein Fragment Complementation -- 8.3.1.6 Phage Display -- 8.3.1.7 X-Ray Crystallography -- 8.3.1.8 Nuclear Magnetic Resonance Spectroscopy (NMR) -- 8.3.2 In Vivo -- 8.3.2.1 In-Silico Two-Hybrid -- 8.3.3 In-Silico and Neural Network -- 8.3.3.1 Data Base -- 8.3.3.2 Sequence-Based Approaches -- 8.3.3.3 Structure-Based Approaches -- 8.3.3.4 Phylogenetic Tree -- 8.3.3.5 Gene Fusion -- 8.4 Neural Networking Algorithms to Study Active Sites on Proteins -- 8.4.1 PDBSiteScan Program -- 8.4.2 Patterns in Nonhomologous Tertiary Structures (PINTS) -- 8.4.3 Genetic Active Site Search (GASS). 8.4.4 Site Map -- 8.4.5 Computed Atlas of Surface Topography of Proteins (CASTp) -- 8.5 Conclusion -- References -- 9 Protein Redesign and Engineering Using Machine Learning -- 9.1 Introduction -- 9.2 Designing Sequence-Function Model Through Machine Learning -- 9.2.1 Training of Model and Evaluation -- 9.2.2 Representation of Proteins by Vector -- 9.2.3 Guiding Exploration by Employing Sequence-Function Prediction -- 9.3 Features Based on Energy -- 9.4 Features Based on Structure -- 9.5 Prediction of Thermostability of Protein with Single Point Mutations -- 9.6 Selection of Features -- 9.6.1 Extraction of Features -- 9.7 Force Field and Score Function -- 9.8 Machine Learning for Prediction of Hot Spots -- 9.8.1 Support Vector Machines -- 9.8.2 Nearest Neighbor -- 9.8.3 Decision Trees -- 9.8.4 Neural Networks -- 9.8.5 Bayesian Networks -- 9.8.6 Ensemble Learning -- 9.9 Deep Learning-Neural Network in Computational Protein Designing -- 9.10 Machine Learning in Engineering of Proteins -- 9.11 Conclusion -- References -- 10 Role of Transcriptomics and Artificial Intelligence Approaches for the Selection of Bioactive Compounds -- 10.1 Introduction -- 10.2 Types of Bioactive Compounds -- 10.2.1 Phenolic Acids -- 10.2.2 Stilbenes -- 10.2.3 Ellagitannins -- 10.2.4 Flavonoids -- 10.2.5 Proanthocyanidin -- 10.2.6 Vitamins -- 10.2.7 Bioactive Peptides -- 10.3 Transcriptomics Approaches for the Selection of Bioactive Compounds -- 10.3.1 Hybrid Transcriptome Sequencing -- 10.3.2 Microarray -- 10.3.3 RNA-Seq -- 10.4 Artificial Intelligence Approaches for the Selection of Bioactive Compounds -- 10.4.1 Machines Learning (ML) Approach for the Selection of Bioactive Compounds -- 10.4.1.1 Evolution of Machine Learning to Deep Learning -- 10.4.1.2 Virtual Screening -- 10.4.1.3 Recent Advances in Machine Learning -- 10.4.1.4 Deep Learning. 10.4.2 De Novo Synthesis of Bioactive Compounds. |
| Record Nr. | UNINA-9910830147803321 |
| Hoboken, NJ : , : Wiley, , ℗2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Electroceramics for High Performance Supercapicitors / / edited by Inamuddin, Tariq Altalhi and Sayed Mohammed Adnan
| Electroceramics for High Performance Supercapicitors / / edited by Inamuddin, Tariq Altalhi and Sayed Mohammed Adnan |
| Edizione | [First edition.] |
| Pubbl/distr/stampa | Hoboken, NJ : , : John Wiley & Sons, Inc., , [2024] |
| Descrizione fisica | 1 online resource (0 pages) |
| Disciplina | 621.381 |
| Soggetto topico |
Electronic ceramics
Supercapacitors |
| ISBN |
1-394-16716-4
1-394-16715-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Lead-Free Energy Storage Ceramics -- 1.1 Introduction -- 1.2 Dielectric Capacitor and Energy Storage -- 1.3 Energy Storage of Dielectric Ceramics Free of Lead -- 1.4 Conclusion and Outlooks -- Acknowledgments -- References -- Chapter 2 Lead-Based Ceramics for High-Performance Supercapacitors -- 2.1 Introduction -- 2.2 General Idea of Ceramics for Supercapacitors -- 2.2.1 Metallic Oxide Ceramics for Supercapacitors -- 2.2.2 Binary Metal Oxides -- 2.2.2.1 Ceramics of Spinal Oxide Material -- 2.2.2.2 Barium Titanate Ceramics -- 2.2.3 Multimetal Oxidized Ceramics -- 2.2.4 Metal Hydroxide-Type Ceramics -- 2.3 Principle Involved in Electroceramics -- 2.3.1 Electrostatic Capacitor -- 2.4 Lead-Based Ceramics -- 2.4.1 Lead-Based Ferroelectrics -- 2.4.2 Lead-Based Relaxor Ferroelectrics -- 2.4.3 Lead-Based Anti-Ferroelectrics -- 2.5 Characteristics of Lead-Based Ceramics -- 2.5.1 Characteristics of Lead Zirconate Titanate -- 2.5.2 Characteristics of Lead Magnesium Niobate -- 2.5.3 Characteristics of Lead Zinc Niobate -- 2.6 Conclusion and Perspectives -- 2.6.1 Up-to-Date Sintering and Molding Process -- 2.6.2 Microscopical and Flexible Ceramics Electrode Materials -- 2.6.3 Improvement of Efficiency of the Ceramic Electrode Materials -- References -- Chapter 3 Ceramic Films for High-Performance Supercapacitors -- 3.1 Introduction -- 3.2 Energy Storage Principles -- 3.3 Factors Optimizing Energy Density -- 3.3.1 The Intrinsic Band Gap (Eg) -- 3.3.2 Electrical Microstructure -- 3.3.3 Density and Grain Size -- 3.4 Ceramics for Supercapacitors -- 3.4.1 Metal Oxide Ceramics -- 3.4.2 Multielemental Oxides -- 3.5 Conclusions and Outlook -- References -- Chapter 4 Ceramic Multilayers and Films for High-Performance Supercapacitors -- 4.1 Introduction.
4.2 Fundamentals of Energy Storage in Electroceramics -- 4.2.1 Electrostatic Capacitors -- 4.2.2 Important Factors Designed for Assessing Energy Storage Characteristics -- 4.3 Important Factors for Maximizing Energy Density -- 4.3.1 Intrinsic Band Gap -- 4.3.2 Electrical Microstructure -- 4.4 Different Types of Electroceramics Capacitors for Energy Storage -- 4.4.1 Pb-Doped Ceramics -- 4.4.1.1 Pb-Doped RFEs -- 4.4.1.2 Lead-Doped Antiferroelectrics -- 4.4.2 Pb-Free Ceramics -- 4.4.2.1 BaTiO3-Based Ceramics -- 4.4.2.2 K0.5Na0.5NbO3-Doped Ceramics -- 4.4.2.3 Na0.5Bi0.5TiO3-Doped Ceramics -- 4.4.2.4 AgNbO3-Based Ceramics -- 4.5 Application of Electroceramics Supercapacitor -- 4.6 Conclusion -- References -- Chapter 5 Superconductors for Energy Storage -- 5.1 Introduction -- 5.1.1 Background -- 5.1.2 Superconducting Properties -- 5.1.3 Synthetic Methodology -- 5.2 Low-Temperature Superconductors -- 5.2.1 Nb-Ti-Based LTS -- 5.2.2 Nb3Sn-Based LTS -- 5.3 High-Temperature Superconductors -- 5.3.1 Cuprate-Based HTS -- 5.3.2 Iron-Based Pnictides (Pn) and Chalcogenides (Ch) as HTS -- 5.3.3 MgB2-Based HTS -- 5.3.4 Hydrides-Based HTS -- 5.4 Superconductors in Energy Applications -- 5.4.1 Superconducting Magnetic Energy Storage -- 5.4.1.1 Use of SMES in the Power Grid: Flexible AC Transmission System (FACTS) -- 5.4.1.2 Use of SMES as Fault Current Limiters -- 5.4.2 Use of Superconductors in Accelerator System -- 5.4.3 Use of Superconductors in Fusion Technologies -- 5.4.4 Challenges Faced During Superconducting Energy Storage -- 5.5 Conclusion -- Acknowledgments -- References -- Chapter 6 Key Factors for Optimizing Energy Density in High-Performance Supercapacitors -- 6.1 Supercapacitor -- 6.2 Electric Double-Layer Capacitor -- 6.3 Pseudo-Capacitor -- 6.4 Hybrid Supercapacitor -- 6.4.1 Electrochemical Performance -- 6.4.2 Capacitance -- 6.4.3 Specific Capacitance. 6.4.4 Energy Density -- 6.4.5 Power Density -- 6.4.6 Cyclic Stability -- 6.5 The Energy Density of Supercapacitor -- 6.5.1 Optimization of High Energy Density -- 6.5.1.1 Pore Size -- 6.5.1.2 Surface Area -- 6.5.1.3 Grain Size -- 6.5.1.4 Functional Groups -- 6.5.1.5 Band Gap -- 6.5.2 Effect of Voltage -- 6.5.3 Asymmetric Supercapacitors -- 6.5.4 Negative Electrode Materials -- 6.5.5 Positive Electrode Materials -- 6.5.6 Battery-Supercapacitor Hybrid (Bsh) Device -- 6.5.6.1 Lithium-Ion BSH -- 6.5.6.2 Na-Ion BSH -- 6.5.6.3 Acidic BSH -- 6.5.6.4 Alkaline BSH -- 6.6 Future Outlook -- 6.7 Conclusion -- References -- Chapter 7 Optimization of Anti-Ferroelectrics -- 7.1 Introduction -- 7.2 Energy Storage Properties -- 7.3 Antiferroelectric for Energy Storage -- 7.3.1 Lead-Based Antiferroelectric -- 7.3.2 Lead-Free Antiferroelectric -- 7.3.3 Challenges -- 7.4 Explosive Energy Conversion -- 7.5 Energy Storage and High-Power Capacitors -- 7.6 Thermal-Electric Energy Interconversion -- 7.7 Optimization -- 7.7.1 Phase Structure Engineering -- 7.7.1.1 Planning Phase in a Structural Engineering Project -- 7.7.1.2 Design Phase -- 7.7.1.3 Construction Phase -- 7.7.2 Grain Size Engineering -- 7.7.3 Domain Engineering -- 7.7.3.1 Phase -- 7.7.3.2 Domain Analysis -- 7.7.3.3 Domain Design -- 7.7.4 Doping -- 7.8 Conclusion -- References -- Chapter 8 Super Capacitive Performance Assessment of Mixed Ferromagnetic Iron and Cobalt Oxides and Their Polymer Composites -- 8.1 Introduction -- 8.1.1 Electrolyte -- 8.1.2 Separator -- 8.1.3 Current Collector -- 8.1.4 Supercapacitor Electrode Materials -- 8.2 Ferromagnetic Electrode Materials -- 8.3 Mixed Ferromagnetic Iron and Cobalt Oxides -- 8.4 Conclusion -- References -- Chapter 9 Transition Metal Oxides with Broaden Potential Window for High-Performance Supercapacitors -- 9.1 Introduction of Transition Metal Oxides (TMOs). 9.2 Redox-Based Materials -- 9.3 Conducting Polymers -- 9.4 Electroactive Metal Oxides or Transition Metal Oxides (TMOs) as Electrodes for SCs -- 9.4.1 MnO2 as Electrode Material for SCs -- 9.4.2 Pseudo-Capacitive Behavior of á-MnO2 by Cation Insertion -- 9.4.3 Na0.5MnO2 Nanosheet Assembled Nanowall Arrays for ASCs -- 9.4.4 FeOx/FeOOH Material as Negative Electrode -- 9.4.5 Carbon-Stabilized Fe3O4@C Nanorod Arrays as an Efficient Anode for SCs -- 9.4.6 Electrochemical Performance of Fe3O4 and Fe3O4@C NRAs as Anode -- 9.4.7 Construction of Na0.5MnO2//Fe3O4@C ASC and Electrochemical Performance -- 9.4.8 Highly Efficient NiCo2S4@Fe2O3//MnO2 ASC -- 9.4.9 Bi2O3 as Negative Electrode with Broaden Potential Window -- 9.5 Conclusion -- References -- Chapter 10 Aqueous Redox-Active Electrolytes -- 10.1 Introduction -- 10.2 Electrolyte Requirements for High-Performance Supercapacitors -- 10.2.1 Conductivity -- 10.2.2 Salt Effect -- 10.2.3 Solvent Effect -- 10.2.4 Electrochemical Stability -- 10.2.5 Thermal Stability -- 10.3 Effect of the Electrolyte on Supercapacitor Performance -- 10.3.1 Aqueous Electrolytes -- 10.3.2 Acidic Electrolytes -- 10.3.2.1 Sulfuric Acid Electrolyte-Based EDLC and Pseudocapacitors -- 10.3.2.2 H2SO4 Electrolyte-Based Hybrid Supercapacitors -- 10.3.3 Alkaline Electrolytes -- 10.3.3.1 Alkaline Electrolyte-Based EDLC and Pseudocapacitors -- 10.3.3.2 Alkaline Electrolyte-Based Hybrid Supercapacitors -- 10.3.4 Neutral Electrolyte -- 10.3.4.1 Neutral Electrolyte-Based EDLC and Pseudocapacitors -- 10.3.4.2 Neutral Electrolyte-Based Hybrid Supercapacitors -- 10.4 Conclusion and Future Research Directions -- References -- Chapter 11 Strategies for Improving Energy Storage Properties -- 11.1 Introduction -- 11.2 Result and Discussion -- 11.2.1 Solid-State Batteries -- 11.2.2 Ultracapacitor -- 11.2.3 Flywheels. 11.2.4 Pumped Hydroelectric Storage Dams -- 11.2.5 Rail Energy Storage -- 11.2.6 Compressed Storage of Air -- 11.2.7 Liquid Air Energy Storage -- 11.2.8 Pumped Heat Electrical Storage -- 11.2.9 Redox Flow Batteries -- 11.2.10 Superconducting Magnetic Energy Storage -- 11.2.11 Methane -- 11.3 Energy Storage Systems Applications -- 11.3.1 Mills -- 11.3.2 Homes -- 11.3.3 Power Stations and Grid Electricity -- 11.3.4 Air Conditioning -- 11.3.5 Transportation -- 11.3.6 Electronics -- 11.4 Energy Storage Systems Economics -- 11.5 Impacts on Environment by Electricity Storage -- 11.6 Future Prospective -- 11.7 Conclusion -- References -- Chapter 12 State-of-the-Art in Electroceramics for Energy Storage -- 12.1 Introduction -- 12.2 Electroceramics for Energy-Storing Devices -- 12.2.1 Bulk-Based Ceramics -- 12.2.2 Lead-Free Ceramics -- 12.3 Ceramic Multilayers and Films -- 12.4 Ceramic Films for Energy Storage in Capacitors -- 12.5 Conclusion -- References -- Chapter 13 Lead-Free Ceramics for High Performance Supercapacitors -- 13.1 Introduction -- 13.2 Ceramics -- 13.2.1 General Classification of Ceramics -- 13.2.1.1 Ceramic-Based Capacitors -- 13.3 Types of Ceramic Capacitors -- 13.4 Overview of Ceramics for Supercapacitors -- 13.4.1 Metal Oxide Ceramics for Supercapacitors -- 13.4.2 Multi-Elemental Oxide Ceramics for Supercapacitors -- 13.4.2.1 Spinel Oxide Ceramics -- 13.5 Lead-Based Ceramics -- 13.6 Lead-Free Ceramics -- 13.6.1 Analysis of Pb-Free Hybrid Materials for Energy Conversion -- 13.7 Comparison of Pb-Based Ceramics and Pb-Free Ceramics -- 13.8 Conclusion -- References -- Index -- EULA. |
| Record Nr. | UNINA-9910747099803321 |
| Hoboken, NJ : , : John Wiley & Sons, Inc., , [2024] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Electromagnetic nanomaterials : properties and applications / / edited by Tariq Altalhi
| Electromagnetic nanomaterials : properties and applications / / edited by Tariq Altalhi |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Hoboken, Beverly, NJ : , : John Wiley & Sons, Inc., , [2023] |
| Descrizione fisica | 1 online resource (389 pages) |
| Disciplina | 620.115 |
| Soggetto topico |
Nanostructured materials
Electromagnetic interference |
| ISBN |
1-394-16707-5
1-394-16706-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Metamaterial-Based Antenna and Absorbers in THz Range -- 1.1 Introduction -- 1.1.1 Terahertz Region -- 1.1.2 Metamaterials -- 1.1.3 Classification of Metamaterials -- 1.1.3.1 Epsilon-Negative Metamaterials -- 1.1.3.2 Mu-Negative Metamaterials -- 1.1.3.3 Double-Negative Metamaterials -- 1.2 Design Approach -- 1.2.1 Resonant Approach -- 1.2.2 Non-Resonant Approach -- 1.2.3 Hybrid Approach -- 1.3 Applications -- 1.3.1 Metamaterial Absorbers -- 1.3.1.1 Switchable Absorbers-Reflectors -- 1.3.1.2 Switchable Absorbers -- 1.3.1.3 Tuneable Absorbers -- 1.3.2 Metamaterial Antenna -- 1.3.2.1 Miniaturization -- 1.3.2.2 Gain and Bandwidth Improvement -- 1.3.2.3 Circular Polarization -- 1.3.2.4 Isolation -- 1.4 Conclusion -- References -- Chapter 2 Chiral Metamaterials -- 2.1 Introduction -- 2.2 Fundamentals of Chiral Metamaterials and Optical Activity Control -- 2.3 Construction of Chiral Metamaterial -- 2.4 Applications -- 2.4.1 Chiral Metamaterials in the Chiral Sensing -- 2.4.2 Reconfigurable Chiral Metamaterial -- 2.4.3 Chiral Metamaterial Absorber -- 2.4.4 Applications of Chiral Metamaterial as Multifunctional Sensors -- 2.4.4.1 Applications of Chiral Metamaterial as Temperature, Humidity, and Moisture Sensors -- 2.5 Conclusion and Future Perspective -- Acknowledgment -- References -- Chapter 3 Metamaterial Perfect Absorbers for Biosensing Applications -- 3.1 Introduction -- 3.1.1 Theoretical Backgrounds -- 3.1.1.1 Impedance Matching Theory -- 3.1.1.2 Interference Theory -- 3.1.2 Metamaterial Designs -- 3.1.2.1 Equivalent Circuit and Impedance Matching in Metamaterial Perfect Absorbers -- 3.1.2.2 Transmission Line Theory -- 3.1.3 Biosensing with Metamaterial Perfect Absorbers -- 3.1.3.1 Refractive Index -- 3.1.3.2 Surface-Enhanced Infrared Absorption.
3.2 Conclusion and Future Work -- References -- Chapter 4 Insights and Applications of Double Positive Medium Metamaterials -- 4.1 Introduction -- 4.2 Insights on the Electromagnetic Metamaterials -- 4.3 Applications of DPS Metamaterials -- 4.4 Conclusion -- Acknowledgments -- References -- Chapter 5 Study on Application of Photonic Metamaterial -- 5.1 Introduction -- 5.2 Types of Metamaterials -- 5.3 Negative Index Metamaterial -- 5.4 Terahertz Metamaterials -- 5.5 Plasmonic Materials -- 5.6 Applications -- 5.6.1 In Optical Field -- 5.6.2 In Medical Devices -- 5.6.3 In Aerospace -- 5.6.4 In Solar Power Management -- 5.7 Conclusion -- References -- Chapter 6 Theoretical Models of Metamaterial -- 6.1 Introduction -- 6.2 Background of Metamaterials -- 6.3 Theoretical Models of Metamaterials -- 6.3.1 Lumped Equivalent Circuit Model -- 6.3.2 Effective Medium Theory -- 6.3.3 Transmission Line Theory -- 6.3.4 Coupled-Mode Theory -- 6.3.5 Interference Theory -- 6.3.6 Casimir-Lifshitz Theory -- 6.4 Conclusion -- References -- Chapter 7 Frequency Bands Metamaterials -- 7.1 Introduction -- 7.2 Frequency Bands Metamaterials -- 7.2.1 EM Metamaterials -- 7.2.2 Metamaterial Response Tuning -- 7.2.2.1 Persistent Tuning -- 7.2.3 Spectroscopic Investigation -- 7.2.4 Optical Metamaterials -- 7.2.5 Optical Materials and Electronic Structures -- 7.2.6 Optical Properties of Metals -- 7.2.7 Metal-Dielectric Composites -- 7.2.8 Acoustic Metamaterials -- 7.2.9 Elastic Metamaterials -- 7.3 Penta Metamaterials -- 7.4 Reconfigurable Metamaterials for Different Geometrics -- 7.4.1 3D Freestanding Reconfigurable Metamaterial -- 7.4.2 Reconfigurable EM Metamaterials -- 7.5 Conclusion -- References -- Chapter 8 Metamaterials for Cloaking Devices -- 8.1 Introduction -- 8.2 What is Cloaking and Invisibility? -- 8.3 Basic Concepts of Cloaking. 8.4 Design and Simulation of Metamaterial Invisibility Cloak -- 8.5 Types of Cloaking -- 8.5.1 Optical Cloaking -- 8.5.2 Acoustic Cloaking -- 8.5.3 Elastic Cloaking -- 8.5.4 Thermal Cloaking -- 8.5.5 Mass Diffusion Cloaking -- 8.5.6 Light Diffusion Cloaking -- 8.5.7 Multifunctional Cloaking -- 8.6 Cloaking Techniques -- 8.6.1 Scattering Cancelation Method -- 8.6.2 Coordinate Transformation Technique -- 8.6.3 Transmission -- 8.6.4 Other Cloaking Techniques -- 8.7 Conclusion -- References -- Chapter 9 Single Negative Metamaterials -- 9.1 Introduction -- 9.2 Classification of Metamaterials -- 9.3 Types of Metamaterials -- 9.3.1 Electromagnetic Metamaterials -- 9.3.2 Negative Refractive Index -- 9.4 Different Classes of Electromagnetic Metamaterials -- 9.4.1 Double Negative Metamaterials -- 9.4.2 Single Negative Metamaterials -- 9.4.3 Chiral Metamaterials -- 9.4.4 Hyperbolic Metamaterials -- 9.5 Applications -- 9.6 Conclusion -- References -- Chapter 10 Negative-Index Metamaterials -- 10.1 Introduction -- 10.2 The Journey from Microwave Frequency to Electromagnetic Radiation -- 10.3 Experimentation to Justify Negative Refraction -- 10.3.1 Reverse Propagation -- 10.3.2 Properties of NIMs -- 10.4 Electromagnetic Response of Materials -- 10.5 Application of NIMs -- 10.6 Conclusions -- Acknowledgments -- References -- Chapter 11 Properties and Applications of Electromagnetic Metamaterials -- 11.1 Introduction -- 11.2 Hyperbolic Metamaterials -- 11.3 Properties of Metamaterials -- 11.4 Application of Metamaterials -- 11.5 Single Negative Metamaterials -- 11.6 Hyperbolic Metamaterials -- 11.7 Classes of Metamaterials -- 11.8 Electromagnetic Metamaterials -- 11.9 Terahertz Metamaterials -- 11.10 Photonic Metamaterials -- 11.11 Tunable Metamaterial -- 11.12 Types of Tunable Metamaterials -- 11.13 Nonlinear Metamaterials -- 11.14 Absorber of Metamaterial. 11.15 Acoustic Metamaterials -- References -- Chapter 12 Plasmonic Metamaterials -- 12.1 Introduction -- 12.2 Negative Refraction and Refractive Indexes -- 12.3 Fundamentals of Plasmonics -- 12.3.1 Surface Plasmon Polaritons -- 12.3.2 Localized Surface Plasmons -- 12.3.3 Applications of Plasmonics -- 12.4 Types of Plasmonics Metamaterials -- 12.4.1 Graphene-Base Plasmonic Metamaterials -- 12.4.2 Nanorod Plasmonic Metamaterials -- 12.4.3 Plasmonic Metal Surfaces -- 12.4.4 Self-Assembled Plasmonic Metamaterials -- 12.4.5 Nonlinear Plasmonic Materials -- 12.4.6 2D-Plasmonic Metamaterials -- 12.5 Applications of Plasmonics Metamaterials -- 12.5.1 Nanochemistry -- 12.5.2 Biosensing -- 12.5.3 Filters -- 12.5.4 Planner Ring Resonator -- 12.5.5 Optical Computing -- 12.5.6 Photovoltaics -- 12.6 Conclusion -- References -- Chapter 13 Nonlinear Metamaterials -- 13.1 Introduction -- 13.2 Nonlinear Effects in Metamaterials -- 13.3 Design of Nonlinear Metamaterials -- 13.3.1 Liquid Crystal-Based Nonlinear Metamaterials -- 13.3.2 Ferrite-Based Tunable Metamaterials -- 13.3.3 Varactor/Capacitor-Loaded Tunable Metamaterials -- 13.3.4 Other Tunable Metamaterials -- 13.4 Nonlinear Properties of Metamaterials -- 13.5 Types of Nonlinear Metamaterials -- 13.5.1 Nonlinear Electric Materials -- 13.5.2 Nonlinear Magnetic Metamaterials -- 13.5.3 Plasmonic Nonlinear Metamaterials -- 13.5.4 Dielectric Nonlinear Metamaterials -- 13.6 Applications -- 13.6.1 Tunable Split-Ring Resonators for Nonlinear Negative-Index Metamaterials -- 13.6.2 SRR Microwave Nonlinear Tunable Metamaterials -- 13.7 Overview of Nonlinear Metamaterials -- 13.8 Conclusion -- References -- Chapter 14 Promising Future of Tunable Metamaterials -- 14.1 Introduction -- 14.1.1 Examples of Metamaterials -- 14.1.1.1 Electromagnetic Metamaterials -- 14.1.1.2 Chiral Metamaterials -- 14.1.1.3 Terahertz Metamaterials. 14.1.1.4 Photonic Metamaterials -- 14.1.1.5 Tunable Metamaterials -- 14.1.1.6 Frequency Selective Surface Based-Metamaterials (FSS) -- 14.1.1.7 Nonlinear Metamaterials -- 14.2 Tuning Methods -- 14.2.1 Tuning by Additional Materials -- 14.2.2 Tuning by Changing the Structural Geometry -- 14.2.3 Tuning by Changing the Constituent Materials -- 14.2.4 Tuning by Changing of the Surrounding Environment -- 14.3 Types of Tunable Metamaterials -- 14.3.1 Thermally Tunable Metamaterials -- 14.3.1.1 Optically Driven Tunable Metamaterials -- 14.3.2 Structurally Deformable Metamaterials -- 14.3.3 Electrically Tunable Metamaterials -- 14.4 Significant Developments -- 14.4.1 Vehicles with Mobile Broadband -- 14.4.2 Transportation Security Administration -- 14.4.3 Tracking Planes, Trains, and Automobiles -- 14.4.4 Holographic Something -- 14.4.5 Wireless Charging with Metamaterials -- 14.4.6 Seeing Around Corners with Radar -- 14.4.7 Manipulating Light -- 14.4.8 Sound-Proof 'Invisible Window' -- 14.4.9 Terahertz Instruments -- 14.5 Future -- 14.6 Conclusion -- References -- Chapter 15 Metamaterials for Sound Filtering -- 15.1 Introduction -- 15.1.1 Types of Metamaterials -- 15.1.1.1 Piezoelectric Metamaterial -- 15.1.1.2 Electromagnetic Metamaterial -- 15.1.1.3 Chiral Metamaterial -- 15.1.1.4 Nonlinear Metamaterial -- 15.1.1.5 Terahertz Metamaterial -- 15.1.1.6 Acoustic Metamaterial -- 15.1.1.7 Photonic Metamaterial -- 15.2 Acoustic Metamaterials -- 15.2.1 Types and Applications of Acoustic Metamaterials -- 15.3 Phononic Crystals -- 15.4 Metamaterials for Sound Filtering -- 15.4.1 Fabrication and Assembly of Metamaterials for Sound Filtering and Attenuation -- 15.4.2 Fabrication of AMM and PC -- 15.4.3 Assembly of AMM and PC -- 15.5 Conclusion -- References -- Chapter 16 Radar Cross-Section Reducing Metamaterials -- 16.1 Introduction. 16.1.1 The Electromagnetic Radiation and Spectrum. |
| Record Nr. | UNINA-9910830305303321 |
| Hoboken, Beverly, NJ : , : John Wiley & Sons, Inc., , [2023] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||