Ferroic Materials-Based Technologies |
Autore | Altalhi Tariq |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
Descrizione fisica | 1 online resource (350 pages) |
Altri autori (Persone) | MazumderMohammad Abu Jafar |
Soggetto topico |
Ferromagnetic materials
Ferroelectricity |
ISBN |
9781394238194
1394238193 9781394238187 1394238185 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Ferroic Materials: From Past to Present -- 1.1 Introduction -- 1.2 Types of Ferroic Materials -- 1.2.1 Ferromagnetic Materials -- 1.2.1.1 Past of Ferromagnetic Materials -- 1.2.1.2 Present of Ferromagnetic Materials -- 1.2.2 Ferroelectric Materials -- 1.2.2.1 Past of Ferroelectric Materials -- 1.2.2.2 Present of Ferroelectric Materials -- 1.2.3 Ferroelastic Materials -- 1.2.3.1 Past of Ferroelastic Materials -- 1.2.3.2 Present of Ferroelastic Materials -- 1.2.4 Multiferroic Materials -- 1.2.4.1 Past of Multiferroic Materials -- 1.2.4.2 Present of Multiferroic Materials -- 1.3 Conclusion -- References -- Chapter 2 An Overview of Ferroic Materials -- 2.1 Introduction -- 2.2 Types of Ferroic Materials -- 2.2.1 Primary Ferroics -- 2.2.1.1 Ferromagnetic Materials -- 2.2.1.2 Ferroelectric Materials -- 2.2.1.3 Ferroelastic Materials -- 2.2.2 Secondary Ferroics -- 2.2.2.1 Multiferroics -- 2.2.2.2 Ferroelastoelectric Materials -- 2.2.2.3 Ferromagnetoelastic Materials -- 2.2.2.4 Ferromagnetoelectric Materials -- 2.3 Past of Ferroic Materials -- 2.3.1 Discovery of Magnetism and Electricity -- 2.3.2 Discovery of Ferromagnetism -- 2.3.3 Discovery of Ferroelectricity -- 2.3.4 Discovery of Ferroelasticity -- 2.4 Present of Ferroic Materials -- 2.5 Properties of Ferroic Materials -- 2.6 Scaling of Properties -- 2.7 Recent Advances in Ferroic Materials -- 2.8 Conclusion -- References -- Chapter 3 Future Perspectives of Ferroic/Multiferroic Materials -- 3.1 Introduction -- 3.2 Ferroic and Multiferroic Materials and Types -- 3.2.1 Ferroic Materials -- 3.2.2 Multiferroic Materials -- 3.3 Emerging Ferroic and Multiferroic Materials -- 3.3.1 Introduction to Emerging Ferroic and Multiferroic Materials -- 3.3.2 Examples of Emerging Ferroic and Multiferroic Materials.
3.4 Introduction to Advances in Characterization Techniques of Ferroic/Multiferroic Materials -- 3.4.1 Scanning Probe Microscopy -- 3.4.2 X-Ray Diffraction and Scattering -- 3.4.3 Neutron Scattering -- 3.4.4 Raman Spectroscopy -- 3.5 Applications -- 3.5.1 Magnetoelectric Devices -- 3.5.2 Multiferroic Microwave Phase Shifter -- 3.5.3 Multiferroic Magnetic Recording Read Heads -- 3.5.4 Multi-State Memories and Multiferroic Random Access Memories -- 3.5.5 Photovoltaic Multiferroic Solar Cells -- 3.6 Challenges and Future Directions for Ferroic and Multiferroic Materials -- 3.6.1 Stability and Reliability -- 3.6.2 Integration with Existing Technologies -- 3.6.3 Scalability -- 3.6.4 Novel Applications -- 3.7 Integration of Ferroic and Multiferroic Materials into Current Technology -- 3.7.1 Integration of Multiferroic Materials into Memory Devices -- 3.7.2 Integration of Ferroelectric Materials into Energy Harvesting Devices -- 3.7.3 Integration of Ferroelectric Materials into Sensors -- 3.7.4 Integration of Ferromagnetic Materials into Spintronic Devices -- 3.7.5 Integration of Multiferroic Materials into Microwave Devices -- 3.8 Conclusion -- References -- Chapter 4 Basic Principles and Measurement Techniques of Electrocaloric Effect in Ferroelectric Materials -- 4.1 Introduction -- 4.2 Electrocaloric Effect (ECE) -- 4.2.1 Brief History of ECE -- 4.2.2 Working Principle -- 4.2.3 Theory -- 4.2.3.1 Maxwell Approach -- 4.2.3.2 Landau Phenomenological Approach -- 4.3 Direct and Indirect Measurement Techniques -- 4.3.1 Direct Methods for Measurement of ECE -- 4.3.1.1 Differential Scanning Calorimetry (DSC) -- 4.3.1.2 Fast Infrared Photometry -- 4.3.1.3 Scanning Thermal Microscopy (SThM) -- 4.3.2 Indirect Method -- 4.4 Electrocaloric Effect in Ferroelectric Materials -- 4.4.1 Lead-Based Ferroelectric Materials -- 4.4.1.1 PZT-Based Normal Ferroelectrics. 4.4.1.2 Pb(Mg1/3Nb2/3)O3- PbTiO3 (PMN-PT) Relaxor Ferroelectrics -- 4.4.2 Lead-Free Ferroelectric Materials -- 4.4.2.1 BaTiO3-Based Ceramics -- 4.4.2.2 Ba(Zr0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3 (BCZT)-Based Ferroelectrics -- 4.4.2.3 (K, Na) NbO3 (KNN)-Based Ceramics -- 4.4.2.4 Hafnia and Zirconia-Based Ferroelectric Thin Films -- 4.5 Summary -- References -- Chapter 5 Ferroelectric/Ferroelastoelectric Materials: Preparation, Improvement, and Characterizations -- 5.1 Introduction -- 5.2 Structure and Properties of Ferroelectric and Ferroelastoelectric Materials -- 5.3 Synthesis Methods for Ferroelectric and Ferroelastoelectric Materials -- 5.3.1 Solid-State Reactions -- 5.3.2 Sol-Gel Techniques -- 5.3.3 Hydrothermal Synthesis -- 5.3.4 Chemical Vapor Deposition (CVD) -- 5.3.5 Electrochemical Deposition -- 5.3.6 Pulsed Laser Deposition -- 5.3.7 Molecular Beam Epitaxy -- 5.4 Improvement of Ferroelectric and Ferroelastoelectric Materials -- 5.5 Applications of Ferroelectric and Ferroelastoelectric Materials -- References -- Chapter 6 Elastocaloric Effect in Ferroelectric Materials -- 6.1 Introduction -- 6.1.1 Elastocaloric Effect -- 6.1.1.1 Types of Elastocaloric Effect -- 6.1.2 Force Elasticity and Entropy Elasticity -- 6.1.2.1 Force Elasticity -- 6.1.2.2 Entropy Elasticity -- 6.1.2.3 Relationship between Force Elasticity and Entropy Elasticity -- 6.1.3 Entropy Elastic Stress and Strain Actions for Solid-State Cooling -- 6.1.3.1 Basics of Solid-State Cooling -- 6.1.3.2 Overview of Entropy-Elastic Materials for Cooling -- 6.1.3.3 Entropy and Thermoelectric Performance -- 6.1.3.4 Elastic Stress and Strain Behavior -- 6.1.3.5 Properties and Characteristics of Entropy-Elastic Materials -- 6.1.3.6 Potential Applications of Entropy-Elastic Materials in Cooling Technologies -- 6.2 Ferroelectric Materials -- 6.2.1 Introduction to Ferroelectric Materials. 6.2.1.1 Definition and Characteristics of Ferroelectric Materials -- 6.2.2 Historical Overview -- 6.2.3 Structure and Properties of Ferroelectric Materials -- 6.2.4 Types of Ferroelectric Materials -- 6.2.5 Applications of Ferroelectric Materials -- 6.3 Performance Indicators -- 6.3.1 Elastocaloric Effect (ΔT) -- 6.3.2 Specific Heat Capacity -- 6.3.3 Endurance Limit -- 6.3.4 Inversion Temperature -- 6.3.5 Coefficient of Performance (COP) -- 6.3.6 Other Important Parameters -- 6.4 Challenges and Future Potential -- 6.5 Sustainability and Environmental Impact -- 6.6 Conclusions -- References -- Chapter 7 Effective Flexomagnetic/Flexoelectric Sensitivity in Ferroics/Nanosized Ferroic Materials -- 7.1 Introduction -- 7.2 Basic Mathematical Form for Flexoeffect Contribution in Ferroic Nanomaterials -- 7.3 Symmetry and Definition of the Flexoelectric Coupling -- 7.4 Symmetry and Definition of the Flexomagnetic Coupling -- 7.5 The Chapter Structure and Motivation -- 7.6 Flexocoupling Response in Ferroics -- 7.6.1 Response of Flexoelectric Coupling in Different Ferroics Having Lower and Cubic Symmetry -- 7.7 Flexomagnetic Behavior of Coupling in Ferroics Having Cubic Symmetry -- 7.8 Effective Flexoresponse -- 7.9 Flexoelectricity in Different Materials -- 7.9.1 Flexoelectricity in Biological Materials -- 7.9.2 Flexoelectricity in Liquid Crystal -- 7.9.3 Flexoelectricity in Semiconductors -- 7.10 Conclusion -- References -- Chapter 8 Advancements in Ferroic Thin Films, Multilayers, and Heterostructures -- 8.1 Ferroic Materials -- 8.1.1 Ferroic Thin Films -- 8.1.1.1 Historical Developments of Ferromagnetic Thin Films -- 8.1.1.2 Historical Developments of Ferroelectric Thin Films -- 8.1.1.3 Importance of Thin Films in Ferroic Materials -- 8.1.1.4 Properties of Thin Films in Ferroic Materials -- 8.1.1.5 Recent Research on New Ferroic Thin Film Materials. 8.1.1.6 Characterization Methods for Ferroic Thin Films -- 8.1.2 Ferroic Multilayers -- 8.1.2.1 History of Ferroic Multilayers -- 8.1.2.2 Importance of Ferroic Multilayers -- 8.1.2.3 Properties of Ferroic Multilayers -- 8.1.2.4 Advances in Ferroic Multilayers -- 8.1.2.5 Recent Research -- 8.1.2.6 Characterization Techniques -- 8.1.3 Heterostructures -- 8.1.3.1 Types of Ferroic Heterostructures -- 8.1.3.2 Historical Development -- 8.1.3.3 Properties of Heterostructures -- 8.1.3.4 Characterization Techniques -- 8.2 Conclusion -- References -- Chapter 9 Physics of Multiferroic Materials -- 9.1 Introduction -- 9.2 Origin of Ferromagnetism and Antiferromagnetism -- 9.3 Origin of Ferroelectric Materials -- 9.4 Historical Background and Present -- 9.5 Multiferroicity and Its Origin -- 9.6 Multiferroic Materials -- 9.7 Classification of Multiferroic Materials -- 9.7.1 Single-Phase Multiferroics -- 9.7.1.1 Type I Multiferroics -- 9.7.1.2 Type II Multiferroics -- 9.7.2 Composite Multiferroics -- 9.8 Applications of Multiferroics -- 9.9 Conclusion -- References -- Chapter 10 Overview of Comparison Between Primary Ferroic Crystals with Secondary Ferroic Crystals -- 10.1 Introduction -- 10.2 Formation of Ferroic Domains and Domain Boundaries -- 10.3 Description of Ferroelectricity-Phenomenological Way -- 10.3.1 Proper Ferroelectrics -- 10.3.2 Improper Ferroelectrics -- 10.3.3 Pseudo-Proper Ferroelectrics -- 10.4 Important Term in Primary Ferroics -- 10.4.1 Ferroelectric Materials -- 10.4.2 Ferromagnetic Materials -- 10.4.3 Ferroelastic Materials -- 10.4.4 Ferrotoroidic Materials -- 10.5 Multiferroics -- 10.5.1 Type 1 and Type 2 Multiferroics -- 10.6 Secondary Ferroics -- 10.6.1 Ferrobielectrics and Ferrobimagnetics-Secondary Ferroic Systems -- 10.6.1.1 Ferrobielectrics -- 10.6.1.2 Ferrobimagnetism -- 10.6.1.3 Ferroelastoelectricity -- 10.6.1.4 Ferrobielasticity. 10.6.1.5 Ferromagnetoelectricity. |
Record Nr. | UNINA-9910877544203321 |
Altalhi Tariq | ||
Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Handbook of Water Pollution |
Autore | Altalhi Tariq |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
Descrizione fisica | 1 online resource (554 pages) |
Altri autori (Persone) | AlrooqiArwa |
ISBN |
1-119-90499-4
1-119-90498-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Chapter 1 Introduction to Water Pollution -- 1.1 Pollution -- 1.2 What is Water Pollution? -- 1.3 Prevalence of Water Pollution -- 1.4 Categories of Water Pollution -- 1.4.1 Point Sources -- 1.4.2 Non-Point Sources -- 1.4.3 Transboundary Pollution -- 1.4.4 Problems Caused by Point and Non-Point Sources -- 1.5 Water Pollutants -- 1.5.1 Organic Pollutants -- 1.5.2 Inorganic Pollutants -- 1.5.3 Biological Pollutants -- 1.5.4 Radiological Pollutants -- 1.6 Kinds of Water Pollution -- 1.6.1 Groundwater Pollution -- 1.6.2 Domestic Water Pollution -- 1.6.3 River Water Pollution -- 1.6.4 Surface Water Pollution -- 1.7 Determination of Water Quality Parameters -- 1.7.1 pH -- 1.7.2 Color -- 1.7.3 Turbidity -- 1.7.4 Hardness -- 1.7.5 BOD -- 1.7.6 TDS -- 1.8 Sources of Water Pollution -- 1.8.1 Urbanization -- 1.8.2 Agriculture -- 1.8.3 Industrialization -- 1.8.4 Population Growth -- 1.8.5 Oil Spillage -- 1.9 Effects of Water Pollution on Humans and Animals -- 1.9.1 Diarrheal Diseases -- 1.9.2 Cholera -- 1.9.3 Microcystins -- 1.9.4 Sound Effects of Contamination of Water on Aquatic Animals -- 1.10 Prevention of Water Pollution -- 1.10.1 Strategies -- 1.10.1.1 Water Maintenance -- 1.10.1.2 Wastewater Treatment -- 1.10.1.3 Devices -- 1.10.1.4 Air Pollution Prevention -- 1.10.1.5 Organic Farming -- 1.10.1.6 Stormwater Management -- 1.10.1.7 Plastic Waste Reduction -- 1.10.1.8 Environmental Education -- 1.11 Control and Prevention of Water Pollution by Biotechnology -- 1.12 Conclusion -- References -- Chapter 2 Impact of Water Pollution & -- Perspective Techniques to Mitigate It: An Overview -- Graphical Abstract -- 2.1 Introduction -- 2.2 Causes of Water Pollution -- 2.2.1 Discharge -- 2.2.2 Oil Spill -- 2.2.3 Littering -- 2.2.4 Ship Demolition Waste -- 2.3 Effects of Water Pollution on Plant Growth.
2.4 Techniques of Treating Water Pollution -- 2.4.1 Techniques -- 2.4.1.1 Biofiltration -- 2.4.1.2 Rapid Sand Filter -- 2.4.1.3 Adsorption -- 2.4.1.4 Magnetic Extraction -- 2.4.1.5 Membrane Filtration -- 2.4.1.6 Electrocoagulation -- 2.4.1.7 Activated Sludge -- 2.4.2 Oil Spillage -- 2.4.2.1 Skimming -- 2.4.2.2 Organoclays -- 2.4.2.3 Grease Traps -- 2.4.2.4 Chemical Dispersant/Emulsifier -- 2.4.2.5 In Situ Burning (ISB) -- 2.4.2.6 Magnetic-Nanomaterials -- 2.4.3 Halogenated Aromatic Hydrocarbon -- 2.4.3.1 Bioremediation -- 2.4.3.2 Photocatalytic Degradation -- 2.4.3.3 Electrokinetic Remediation -- 2.4.3.4 Green Nano Remediation -- 2.5 Removal of Pollutants Through Different Nanomaterial -- 2.5.1 Disinfection -- 2.5.1.1 Silver Nanoparticles -- 2.5.1.2 TiO2 Nanoparticles -- 2.5.1.3 Carbon Nano Tubes -- 2.5.2 Desalination -- 2.5.3 Heavy Metal and Ion Removal -- 2.5.4 Organic Pollutant Removal -- 2.5.5 CNTs -- 2.5.6 TiO2 Nanoparticles -- 2.5.7 Zero-Valent Iron -- 2.5.8 Other Nanomaterials -- 2.6 Discussion and Conclusion -- References -- Chapter 3 Pollution of Ground and Surface Waters with Agrochemicals -- 3.1 Introduction -- 3.2 A Recounting of the Global Production and Consumption of Agrochemicals -- 3.2.1 Pesticides -- 3.2.2 Fertilizers -- 3.3 Characteristics of Agrochemicals -- 3.4 Occurrences and Levels of Pollution -- 3.4.1 Pollution of Groundwater -- 3.4.2 Pollution of Surface Waters -- 3.5 Fates of Agrochemicals in Ground and Surface Waters -- 3.6 Emerging Views and Perspectives -- 3.7 Concluding Remarks -- References -- Chapter 4 Fecal Waste Drives Antimicrobial Resistance: Source Tracking, Wastewater Discriminant Analysis and Management -- 4.1 Introduction -- 4.2 Antibiotics/ARB/ARGs: Source Tracking -- 4.3 Fecal Pollution and the Public Health Risks -- 4.3.1 Public Health Risks and Environmental Impacts. 4.4 Fecal Indicator Bacteria and Discriminant Analysis -- 4.5 Management Strategies to Combat Antibiotic Resistance -- 4.5.1 Technologies Towards ARB/ARGs Removal from Wastewater -- 4.6 Conclusion -- Acknowledgments -- References -- Chapter 5 Harmful Effects of Water Pollution -- 5.1 Introduction -- 5.2 Physical Factors -- 5.2.1 Temperature -- 5.2.2 Heat -- 5.2.3 Suspended Solids -- 5.2.4 Colour -- 5.3 Chemical Factors -- 5.3.1 Lowering of Dissolved Oxygen -- 5.3.2 Oxygen Demanding Material in Water Bodies -- 5.3.2.1 Biochemical Oxygen Demand (BOD) -- 5.3.2.2 Chemical Oxygen Demand (COD) -- 5.3.3 Eutrophication -- 5.3.4 Chemicals Affecting Human Health -- 5.3.4.1 Fluoride -- 5.3.4.2 Nitrate -- 5.3.4.3 Petrochemicals and Chlorinated Solvents -- 5.3.4.4 Pesticides -- 5.3.5 Acidity (pH) -- 5.3.6 Nitrification -- 5.3.7 Acid Rain -- 5.3.8 Characteristics of Pollutants in Stationary Water Bodies -- 5.3.9 Nanoparticles -- 5.3.10 Pharmaceuticals and Personal Care Products (PPCPs) -- 5.3.11 Heavy Metals -- 5.3.11.1 Mercury -- 5.3.11.2 Arsenic -- 5.3.11.3 Lead -- 5.3.12 Salts -- 5.3.13 Radioactive Materials -- 5.3.14 Oils and Grease -- 5.3.15 Endocrine Disrupting Chemicals (EDC) -- 5.4 Biological Factors -- 5.4.1 Ecology of Stationary Water Bodies -- 5.4.2 Algal Blooms -- 5.4.3 Pathogenic Organisms -- 5.5 Conclusion -- References -- Chapter 6 Parasites: Sources, Method of Analysis and Treatment -- 6.1 Introduction -- 6.1.1 Pathogens -- 6.2 Method of Analysis -- 6.2.1 Sampling Preparations and Procedures -- 6.2.2 Sampling for Parasites -- 6.3 Methods to Find Concentration of Parasites -- 6.3.1 Sedgwick Rafter Method -- 6.3.2 Method of Centrifuge -- 6.3.3 Method of Using Millipore Filter -- 6.4 Procedures for Enumeration of Parasites -- 6.4.1 Standardizing of Tiles Whipple Micron Meter -- 6.4.1.1 Reporting in Cubic Standard Units. 6.4.2 Drop Method for Counting -- 6.5 Waterborne Protozoan Parasites -- 6.6 Protozoan Parasite Testing in Water -- 6.7 Waterborne Helminths -- 6.8 Water Treatment -- 6.8.1 Chemical Treatment -- 6.8.1.1 Chlorination -- 6.8.1.2 Method of Chloramination -- 6.8.1.3 Method of Applying Chlorine Dioxide -- 6.8.1.4 Ozonation -- 6.8.2 Physical Treatment -- 6.8.2.1 Treatment Using the Ultraviolet (UV) Radiation -- 6.8.3 Treatment Using Mechanical Method -- 6.8.3.1 Method of Membrane Filter -- 6.8.3.2 Radiation -- 6.9 Nanotechnology -- 6.9.1 Silver (Ag) -- 6.9.2 Chitosan -- 6.9.3 Titanium Dioxide (TiO2) -- 6.9.4 Zinc Oxide (ZnO) -- 6.9.5 Fullerenes -- 6.9.6 Nanotubes of Carbon -- 6.10 Conclusions -- References -- Chapter 7 Oils: Source, Method of Analysis and Treatment -- 7.1 Introduction -- 7.2 Oils Causing Pollution and Their Sources -- 7.3 Method of Analysis -- 7.4 Treatment -- 7.4.1 Treatment Requirements -- 7.4.2 Waste Reduction -- 7.4.3 Management of Cutting Fluids -- 7.4.4 Overview of Treatment Methods -- 7.4.5 Physical Treatment -- 7.4.5.1 Gravity Separation Systems (Separators) -- 7.4.5.2 Hydrocyclones -- 7.4.5.3 Air Flotation -- 7.4.5.4 Membrane Filtration -- 7.4.5.5 Activated Carbon Adsorption -- 7.4.5.6 Filtration (Membranes, Meshes, and Fibers) -- 7.4.5.7 Evaporation -- 7.4.6 Chemical Treatment -- 7.4.6.1 Coagulation and Flocculation -- 7.4.6.2 Electrocoagulation -- 7.4.6.3 Oxidation Technologies -- 7.4.7 Biological Treatments -- 7.4.8 Latest Treatment Trends -- 7.4.8.1 Biological Treatment -- 7.4.8.2 Advanced Oxidation Processes (AOPs) -- 7.4.8.3 Membrane Separation Technology -- 7.4.8.4 Coagulation/Flocculation Technology -- 7.4.8.5 Sorption Technology -- 7.4.9 Treatment Costs -- 7.5 Conclusion -- References -- Chapter 8 Phosphate: Sources, Method of Analysis and Treatment -- 8.1 Introduction -- 8.2 Sources of Phosphate Pollution in Water. 8.3 Method of Analysis -- 8.4 Phosphate Removal Treatment -- 8.4.1 Phosphate Removal through Lanthanum and Lanthanum Composite -- 8.4.2 Phosphate Removal by Nanomaterial and Nano Composite -- 8.4.3 Phosphate Removal through Iron and Iron Composite -- 8.4.4 Phosphate Removal by Metal Composite -- 8.4.5 Phosphate Removal by Zirconium and Its Composite -- 8.4.6 Phosphate Removal by Biochar and Biochar-Based Composite -- 8.4.7 Phosphate Removal by Aluminum Oxide Its Composite-Based Absorbent -- 8.4.8 Phosphate Removal by Calcium -- 8.4.9 Phosphate Removal by Organic Metal Framework -- 8.4.10 Phosphate Removal by Waste-Based Adsorbent -- 8.4.11 Phosphate Removal by Clay and Clay Composites -- 8.4.12 Phosphate Removal by Bioremediation -- 8.4.13 Phosphate Removal by Natural Polymer and Its Composite -- 8.4.14 Phosphate Removal by Advanced Methods -- 8.5 Conclusion -- References -- Chapter 9 Endocrine Disruptors: Sources, Method of Analysis and Treatment -- 9.1 Introduction -- 9.1.1 Definition of Endocrine Disruptors -- 9.1.2 Main Endocrine Disruptors -- 9.1.2.1 Classification Based on the EU Regulations for REACH -- 9.1.2.2 Other Classifications -- 9.1.3 Human Exposure to EDCs -- 9.1.4 Impact of EDCs on Human Health -- 9.2 Parabens: Sources, Method of Analysis and Treatment -- 9.2.1 Sources -- 9.2.2 Method of Analysis -- 9.2.3 Treatment of Parabens -- 9.3 Alkylphenol Ethoxylates: Sources, Method of Analysis and Treatment -- 9.3.1 Sources -- 9.3.2 Method of Analysis -- 9.3.3 Treatment -- 9.4 Bisphenols: Sources, Method of Analysis and Treatment -- 9.4.1 Sources -- 9.4.2 Method of Analysis -- 9.4.3 Treatment -- 9.5 Phthalates: Sources, Method of Analysis and Treatment -- 9.5.1 Sources -- 9.5.2 Analysis -- 9.5.3 Treatment of Phthalates -- 9.6 Conclusions -- References -- Chapter 10 Water Pollution by Heavy Metals and Their Impact on Human Health. Abbreviations. |
Record Nr. | UNINA-9910876873503321 |
Altalhi Tariq | ||
Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Sewage and Biomass from Wastewater to Energy : Possibilities and Technology |
Autore | Altalhi Tariq |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
Descrizione fisica | 1 online resource (440 pages) |
Altri autori (Persone) |
LuqmanMohammad
BwapwaJoseph K |
Soggetto topico |
Sewage sludge fuel
Biomass energy |
ISBN |
1-394-20450-7
1-394-20449-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Chapter 1 Thermal/Photocatalytic Conversion of Sewage Sludge and Biomass to Energy -- 1.1 Introduction -- 1.2 Biomass as Energy Sources -- 1.3 Biomass Types and Energy Content -- 1.4 Conversion of Biomass to Energy -- 1.4.1 Thermal Conversion of Biomass to Energy -- 1.4.1.1 Combustion/Incineration -- 1.4.1.2 Hydrothermal Carbonization -- 1.4.1.3 Biomass Pyrolysis -- 1.4.1.4 Noncatalytic Pyrolysis -- 1.4.1.5 Slow Pyrolysis (Carbonization/Torrefaction) -- 1.4.1.6 Rapid/Fast Pyrolysis -- 1.4.1.7 Co-Pyrolysis -- 1.4.1.8 Gasification -- 1.5 Biochemical Conversion -- 1.5.1 Photocatalytic Conversion of Biomass -- 1.5.2 Photocatalytic Hydrogen Production -- 1.5.2.1 Photocatalytic Materials -- 1.6 Conclusion and Future Prospects -- References -- Chapter 2 Sewage Sludge Conversion to Sustainable Energy: Biogas, Methane, Hydrogen, and Biofuels -- 2.1 Introduction -- 2.2 Wastewater: Origins, Characteristics, Types, and Problems -- 2.3 World Situation in Wastewater and Energy -- 2.4 Composition of Wastewater |
Record Nr. | UNINA-9910877824103321 |
Altalhi Tariq | ||
Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Solar Energy Concentrators : Essentials and Applications |
Autore | Altalhi Tariq |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
Descrizione fisica | 1 online resource (324 pages) |
Altri autori (Persone) | LuqmanMohammad |
Soggetto topico |
Solar concentrators
Solar energy |
ISBN |
9781394204533
1394204531 9781394204526 1394204523 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Basics of Solar Energy Concentrators -- 1.1 Introduction -- 1.2 Solar Tracking Systems (STS) -- 1.2.1 Types of Solar Trackers Based on Techniques -- 1.2.2 Passive Solar Tracker -- 1.2.3 Active Solar Tracker Active -- 1.2.3.1 The Single Axis of the Solar Tracker -- 1.2.3.2 Dual-Axis System Solar Tracker -- 1.2.4 Chronological Solar Tracker -- 1.3 Azimuth-Elevation Sun-Tracker -- 1.3.1 Steps of Evaluation of the Azimuth Angle -- 1.3.2 Sun-Tracking Angles -- 1.3.3 Coordinate Transformation -- 1.3.4 The Incident Sunray and Ray/Plane Algorithm -- 1.3.5 Levelized Cost of Electricity (LCOE) -- 1.3.6 Layout Configuration -- 1.3.7 Annual Energy Generation -- 1.4 Solar Radiation Models (SR Model) -- 1.4.1 Global, Direct, Diffuse Model SR -- 1.4.1.1 Ground-Albedo -- 1.4.2 Isotropic Models -- 1.4.3 Anisotropic Models -- 1.4.4 Liu and Jordan Model (LJ) -- 1.4.5 Koronakis Model (K.O.) -- 1.4.6 Hay and Davies Model (HD) -- 1.4.7 Hay and Davies, Klucher, and Reindl Models (HDKR) -- 1.5 The Axis of Symmetry by the Concentrator's Focus on the Radiation Receiver -- 1.5.1 Relationship Between Coordinates of Ray Incidence Points on the Reflecting Surface and the Radiation Receiver -- 1.5.2 For the Upper Semi-Half, the Distribution Ratio of Concentration -- 1.5.3 For the Lower Semi-Half, the Distribution Ratio of the Concentrator -- 1.5.4 Optical Efficiency (çdis) -- 1.5.5 Analysis of Concentrator Design -- 1.6 Computing the Efficiency of Electricity and Heat by Using Different Models -- 1.6.1 Planar Solar Energy Systems -- 1.6.2 Biaxial Models -- 1.6.2.1 Drawback of the Model -- 1.6.3 Annual Direct Irradiation -- 1.7 Conclusion and Outlook -- References -- Chapter 2 Solar Energy Concentrator-Based Theories -- 2.1 Introduction -- 2.1.1 Photovoltaic Energy Conversion.
2.1.2 Solar Energy Concentrator (SEC) -- 2.2 Solar Energy Concentrator-Based Theory -- Conclusion -- Acknowledgement -- References -- Chapter 3 Principles of Solar Energy Concentrators -- 3.1 Solar Energy Concentrator -- 3.1.1 Solar Energy Across the Entire Electromagnetic Spectrum -- 3.2 Components of Solar Concentrators -- 3.2.1 Primary Concentrators -- 3.2.2 Secondary Concentrators -- 3.2.3 Receiving Energy Collectors -- 3.3 Properties of Solar Concentrator Material -- 3.4 Working Principle of Solar Energy Concentrators -- 3.5 Types of Solar Energy Concentrators -- 3.5.1 Parabolic Concentrators -- 3.5.1.1 Parabolic Trough Concentrators -- 3.5.1.2 Parabolic Dish Concentrators -- 3.5.2 Hyperboloid Solar Concentrators -- 3.5.3 Fresnel Lens Concentrators -- 3.5.3.1 Fresnel Lens Imaging Solar Concentrators -- 3.5.3.2 Non-Imaging Solar Concentrators with Fresnel Lenses -- 3.5.4 Compound Parabolic Concentrators (CPCs) -- 3.5.5 Dielectric Totally Internally Reflecting Concentrators (DTIRCs) -- 3.5.6 Flat High-Concentrated Devices -- 3.5.7 Quantum Dot Concentrators (QDCs) -- 3.6 Absorption Coefficients for Selected Carrier Materials -- 3.7 Thermodynamic Limits -- 3.8 Properties of Quantum Dots -- 3.9 Optical Limits of Quantum Dot Concentrators (QDCs) -- 3.9.1 Optical Absorption and Transmission -- 3.9.2 Electrical Power Measurement -- 3.10 Optical Limits of LSCs (Luminescent Solar Concentrators) -- Conclusion -- References -- Chapter 4 Limitations of Solar Concentrators -- 4.1 Solar Concentrator -- 4.2 Luminescent Solar Concentrators -- 4.2.1 Operation of LCs -- 4.3 Ideal Concentrator -- 4.4 Limitation Factors -- 4.5 Photovoltaic Efficiency -- 4.5.1 Construction and Operations -- 4.5.2 Efficiency -- 4.6 Band Gap -- 4.7 Reabsorption Loss -- 4.8 Temperature -- 4.9 Thermal Properties -- 4.10 Concentration Ratio -- 4.11 Acceptance Angle -- 4.12 Economic Aspect. 4.13 Scaling of Solar Concentrators -- 4.14 Future Perspectives -- 4.15 Conclusion -- References -- Chapter 5 An Array of Aspects in the Feasibility of Different Concentrated Solar Power Technologies -- 5.1 Introduction -- 5.2 AHP Technique -- 5.3 Results and Discussion -- 5.4 Conclusions -- References -- Chapter 6 Solar Energy Concentrator Research: Past and Present -- 6.1 Introduction -- 6.2 History -- 6.3 Types of Solar Energy Concentrators -- 6.3.1 Parabolic Trough Concentrators -- 6.3.2 Dish Concentrators -- 6.3.3 Heliostat Solar Concentrators and Central Receiver -- 6.3.4 Fresnel Lens Concentrators -- 6.4 Conclusion -- References -- Chapter 7 Various Storage Possibilities for Concentrated Solar Power -- 7.1 Introduction -- 7.2 Fundamentals of Solar Power Concentration -- 7.3 Types of CSP Technologies -- 7.4 Energy Storage Techniques for CSP Systems -- 7.4.1 How Thermal Energy Storage Functions in CSP -- 7.4.2 Sensible Storage Materials -- 7.4.2.1 Liquid Medium -- 7.4.2.2 Solid Medium -- 7.4.2.3 Gaseous Medium -- 7.4.2.4 Nanofluids -- 7.4.3 Phase Change Materials (PCM) -- 7.4.4 Thermochemical -- 7.4.5 Thermal Battery Energy Storage -- 7.4.6 Hydrogen Energy Storage -- 7.4.7 Compressed Air and Pumped Hydro Energy Storage -- 7.4.7.1 Compressed Air Storage -- 7.4.7.2 Pumped Hydro Energy Storage -- 7.5 Summary -- References -- Chapter 8 Uranyl-Doped PMMA-Based Solar Concentrator -- 8.1 Introduction -- 8.2 Luminescent Solar Cell Concentrators -- 8.3 Kind of Polymer Used in LSCs -- 8.4 Choice of Fluorescent Material -- 8.4.1 Historical Tie-Up of Luminescent Solar Concentrators with Organic Molecules -- 8.5 Photosensitization of Uranium Salt -- 8.6 Effect of Concentration -- 8.7 Effect of Change in pH -- 8.8 Losses in Uranyl-Doped LSC -- 8.8.1 Advantage of Uranyl Doping Compared to Organic Material -- 8.9 Co-Doping of Uranyl-Based LSCs. 8.10 Competitive Rare Earth Metals Used in LSCs -- 8.10.1 Neodymium (Nd3+)-Doped Glasses -- 8.10.2 Neodymium (Nd3+) Co-Doped with Yb3+ -- 8.10.3 Co-Doping of Transition Metal Along with Neodymium (III)- and Ytterbium (III)-Doped Glasses -- 8.10.4 Rare Earth Metal Attached to Organic Ligands -- 8.10.4.1 [Eu(tfn)3(DPEPO)] -- 8.10.4.2 Eu3+-Pyridine-Based Complexes -- 8.10.5 Nb3+ and Yb3+ Incorporated in YAG or GGG -- 8.11 Alternative Applications of ISCs -- 8.11.1 Switchable "Smart" Window -- 8.11.2 Day Lighting -- 8.12 Conclusion -- Acknowledgement -- References -- Chapter 9 Deployment of Solar Energy Concentrators Across the Globe -- 9.1 Introduction -- 9.2 Solar Energy Concentrators -- 9.2.1 Benefits of Using Solar Energy Concentrators -- 9.2.2 Applications of Solar Energy Concentrators -- 9.3 Classification Based on Point or Line Concentration of Sunlight -- 9.3.1 Point Solar Concentrators -- 9.3.1.1 Heliostat Field Collectors (HFCs) -- 9.3.1.2 Parabolic Dish Collectors (PDCs) -- 9.3.2 Line Solar Concentrators -- 9.3.2.1 Linear Fresnel Solar Reflectors (LFRs) -- 9.3.2.2 Parabolic Trough Collectors (PTCs) -- 9.4 Classification Based on Optical Principle -- 9.4.1 Reflector -- 9.4.2 Refractor -- 9.4.3 Hybrid -- 9.4.4 Luminescent -- 9.5 Deployment of Solar Energy Concentrators -- 9.6 SWOT Analysis of Deployment of Solar Energy Concentrators -- 9.6.1 Strengths -- 9.6.2 Weaknesses -- 9.6.3 Opportunities -- 9.6.4 Threats -- 9.6.5 Economics of Solar Energy Concentrators -- 9.6.6 Policies and Regulations -- 9.6.7 Market Outlook of Solar Concentrators -- 9.6.8 Competitive Environment for Solar Concentrators -- 9.6.9 Market Segmentation Research for Solar Concentrators -- 9.6.9.1 Solar Power Towers -- 9.6.9.2 Based on End-User -- 9.7 Based on Application -- 9.8 Conclusion Solar Power Towers -- References. Chapter 10 Molten Salt Thermal Storage Systems for Solar Energy Concentrators -- 10.1 Introduction -- 10.2 Molten Salt as a Thermal Storage System -- 10.3 Working Operation of Molten Salt Storage Systems -- 10.4 Strategies for Concentrating Solar Power -- 10.4.1 Stationary Solar Collectors -- 10.4.2 Sun-Tracking Solar Collectors -- 10.5 CSE Technology and Molten Salt Solar Power Storage Impediments -- 10.6 Applications of CSE and Recent Development in Molten Salt -- 10.7 Conclusion -- References -- Chapter 11 Production of Synthetic Fuels Using Concentrated Solar Thermal Energy -- 11.1 Introduction -- 11.2 What is Synthetic Fuel? -- 11.3 What is Concentrated Solar Thermal Energy? -- 11.4 Solar Hydrogen Production -- 11.4.1 Approaches to Solar Hydrogen Production -- 11.4.1.1 Photocatalytic Water Splitting (PC Water Splitting) -- 11.4.1.2 Photo-Electrochemical -- 11.4.1.3 Photovoltaic-Electrochemical (PV-EC) Water Splitting -- 11.4.1.4 Solar Thermo Chemical (STC) Water Splitting -- 11.4.1.5 Photothermal Catalytic H2 Synthesis (from Fossil Fuels) -- 11.4.1.6 Photobiological (PB) H2 Production -- 11.5 Hydrogen Production by S-I Thermo-Chemical Cycle Using Solar Thermal Energy -- 11.5.1 Chemical Reactions Involved in S-I Cycle -- 11.5.2 Advantages and Disadvantages of the S-I Cycle -- 11.6 Thermodynamic Analysis of Direct Water Decomposition -- 11.7 Recent Advances for H2 Production -- 11.7.1 From Overall Photocatalytic Water Splitting Hydrogen Production -- 11.7.2 H2 Production from PEC Water Splitting -- 11.7.3 H2 Production from PV-EC Overall Water Splitting -- 11.7.4 Hydrogen (H2) Production by STC Water Splitting -- 11.7.5 Development of New STC Cycles -- 11.7.6 Solar Thermal Technology at Higher Temperature -- 11.7.7 Nanomaterials -- 11.7.8 Advanced Reactor Design. 11.8 Methanol Production Principle by H2 Produced with Concentrated Solar Thermal Energy. |
Record Nr. | UNINA-9910877823103321 |
Altalhi Tariq | ||
Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Solid-Gaseous Biofuels Production |
Autore | Altalhi Tariq |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
Descrizione fisica | 1 online resource (582 pages) |
ISBN |
1-394-20481-7
1-394-20480-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Biofuel Production: Past to Present Technologies -- 1.1 Introduction -- 1.2 Types of Biofuels -- 1.2.1 Solid Biofuels -- 1.2.2 Liquid Biofuels -- 1.2.3 Gaseous Biofuels -- 1.3 Different Generation of Biomass for Biofuel Production -- 1.3.1 First Generation -- 1.3.2 Second Generation -- 1.3.3 Third Generation -- 1.3.4 Fourth Generation -- 1.4 Conversion Strategies for Biofuel Production -- 1.4.1 Thermochemical -- 1.4.2 Biochemical Conversion -- 1.5 Roadway to Biofuel Production Technologies -- 1.6 Conclusions -- References -- Chapter 2 Biorefineries for the Sustainable Generation of Algal Biofuels -- 2.1 Introduction -- 2.2 Biorefinery Concept -- 2.3 Algal Biomass -- 2.4 Biofuels and Processing of Algal Biomass for Biofuel Production -- 2.4.1 Biofuels -- 2.4.2 Processing of Algae Biomass to Produce Biofuels -- 2.5 Other Bioproducts Obtained from Algal Biomass -- 2.6 Current Situation Regarding Energy Consumption -- 2.6.1 Current Status of Algal Biofuels -- 2.6.1.1 Fuel Demand and Industry Growth -- 2.6.1.2 Algae Biofuel Highlights -- 2.6.1.3 Algae Biorefineries in the Production of Competitive Biofuels -- 2.7 Challenges and Future Perspectives -- 2.8 Conclusion -- References -- Chapter 3 Biofuel Production from Waste Materials -- 3.1 Introduction -- 3.2 Biofuel From Waste Materials -- 3.2.1 Bioethanol -- 3.2.2 Biohydrogen -- 3.2.3 Biodiesel -- 3.2.4 Biogas -- 3.3 Conclusion -- Acknowledgments -- References -- Chapter 4 Essentials of Liquefied Biomethane Gas (LBG) -- 4.1 Introduction -- 4.2 Biogas Upgradation Technologies -- 4.2.1 Physiochemical Methods -- 4.2.1.1 Physical Absorption -- 4.2.1.2 Chemical Absorption -- 4.2.2 Membrane Separation -- 4.2.2.1 Gas-Liquid -- 4.2.2.2 Gas-Gas -- 4.2.3 Cryogenic Separation -- 4.2.4 Biological Methods.
4.2.4.1 Chemoautotrophic Upgradation -- 4.2.4.2 Photoautotrophic Upgradation -- 4.3 Methods to Produce Liquid Biomethane -- 4.3.1 Pure Refrigerant Cycles -- 4.3.2 Mixed Refrigerant Cycles -- 4.3.2.1 Single Mixed Refrigerant (SMR) Cycles -- 4.3.2.2 Dual Mixed Refrigerant (DMR) -- 4.3.2.3 Propane Precooled Mixed Refrigerant (C3/MR) Cycle -- 4.3.2.4 Integrated Mixed Refrigerant Cascade Cycle (IMRC) -- 4.3.3 Gas Expansion Cycles -- 4.3.3.1 Single N2 Expander -- 4.3.3.2 Dual N2 Expander -- 4.3.4 Cryogenic Liquid Vaporization -- 4.4 Application -- 4.4.1 In Fuel Cell -- 4.4.2 Transportation Fuel -- 4.4.3 Iron and Steel Industry (ISI) -- 4.4.4 Fuel for Maritime Shipping -- 4.4.5 Sustainable Energy Transition -- 4.5 Challenges and Prospects -- References -- Chapter 5 Exploring Cost-Effective Pathways for Future Biofuel Production -- 5.1 Introduction -- 5.1.1 The Primary Types of Biofuels -- 5.1.2 Generations of Biofuels Based of Feedstock and Production Technology -- 5.1.3 Pre-Treatment of Feedstocks for Biofuel Production -- 5.1.4 Methods for Conversion of Feedstock into Biofuel -- 5.1.5 Challenges in Biofuel Production -- 5.2 Emerging Technologies for Cost-Effective Biofuel Production -- 5.2.1 Valorization of Non-Edible and Waste Materials as Feedstock for Biofuel Production -- 5.2.2 The Use of Algae as Feedstocks for Biofuel Generation -- 5.2.3 Development of Effective Catalysis, Pathways, and Organisms for Enhanced Biofuel Production Through Genetic Engineering, Metabolic Engineering, and Synthetic Biology Approaches -- 5.2.4 Nanotechnology in Biofuel Production -- 5.2.5 Optimization of Biofuel Production Conditions -- 5.2.6 Advanced Fermentation and Integrated Biorefineries -- 5.2.7 Future Perspective with Policy and Regulatory Support for Biofuel Production -- 5.3 Conclusion -- References -- Chapter 6 Generation of Hydrogen Using Cyanobacteria. 6.1 Introduction to Hydrogen Production by Cyanobacteria -- 6.2 Hydrogen Production Mechanisms by Cyanobacteria -- 6.2.1 Biophotochemical Processes -- 6.2.2 Fermentation Processes -- 6.3 Economic and Environmental Analysis of Hydrogen Production by Cyanobacteria -- 6.4 Setbacks of Hydrogen Production by Cyanobacteria -- 6.5 Hydrogen Patents' Overview -- 6.6 Conclusion -- References -- Chapter 7 Microstructural Engineering for Bioenergy Production -- 7.1 Introduction -- 7.2 Biomass Microstructure and Characterization -- 7.3 Microbial Engineering for Bioenergy Production -- 7.4 Plant Cell Wall Engineering for Bioenergy Production -- 7.5 Nanotechnology for Bioenergy Production -- 7.6 Microstructural Engineering for Bioreactors and Processing -- 7.7 Conclusion -- References -- Chapter 8 Lignocellulosic Biomass as Feedstock for Biofuels: The State of the Science, Prospects, and Challenges -- 8.1 Introduction -- 8.2 Structural Chemistry of Lignocellulosic Biomass -- 8.2.1 Cellulose -- 8.2.2 Hemicellulose -- 8.2.3 Lignin -- 8.3 Sources of Lignocellulosic Biomass -- 8.4 Energy Content in Lignocellulosic Biomass -- 8.5 Challenges in Bioconversion of Lignocellulosic Biomass into Biofuels -- 8.5.1 Crystallinity -- 8.5.2 Degree of Polymerization -- 8.5.3 Surface Accessibility -- 8.5.4 Presence of Hemicellulose and Lignin -- 8.5.5 Enzyme Inhibitors and Toxic Byproducts -- 8.6 Pretreatment of Lignocellulosic Biomass -- 8.6.1 Physical Pretreatment -- 8.6.2 Chemical Pretreatment -- 8.6.3 Biological Pretreatment -- 8.6.4 Hybrid Pretreatment -- 8.7 Bioconversion of Lignocellulosic Biomass into Biofuels -- 8.7.1 Separated Hydrolysis and Fermentation (SHF) -- 8.7.2 Simultaneous Saccharification and Fermentation (SSF) -- 8.7.3 Simultaneous Saccharification and Cofermentation (SSCF) -- 8.7.4 Consolidated Bioprocess (CBP) -- 8.8 Lignocellulosic Biomass-Based Biorefineries. 8.9 Conclusion -- References -- Chapter 9 Limitations of the First- and Second-Generation Solid-Gaseous Biofuels in a Time of Climate Emergency -- 9.1 Introduction: Global Population, Energy Consumption, and Climate Emergency -- 9.2 Feedstock Diversification of the First- and Second-Generation Biofuels for Sustainable Bioenergy Production -- 9.3 Considerations for the First- and Second-Generation Solid-Gaseous Biofuels Amidst the Climate Emergency -- 9.4 Conclusions and Future Perspectives -- References -- Chapter 10 Advancements in Microbial Fermentation of Agro and Food Processing Wastes for Generation of Biofuel -- 10.1 Introduction -- 10.2 Types of Agro and Food Processing Wastes -- 10.2.1 Agro Wastes -- 10.2.2 Food Processing Wastes -- 10.3 Pretreatments and Conditioning -- 10.3.1 Physical Pretreatment -- 10.3.2 Chemical Pretreatment -- 10.3.3 Physico-Chemical Pretreatment -- 10.3.4 Biological Pretreatment -- 10.4 Supplementation of Wastes -- 10.5 Fermentation Technologies -- 10.6 Ethanol Production from Wastes -- 10.7 Butanol Production from Wastes -- 10.8 Conclusion and Future Perspective -- References -- Chapter 11 Biofuel Prospects by 2030, Based on Existing Production and Future Projections -- 11.1 Introduction -- 11.2 Biofuel Generations -- 11.2.1 First Generation -- 11.2.2 Second Generation -- 11.2.3 Third Generation -- 11.3 Biofuel Demand: Current Situation and Perspectives -- 11.3.1 United States -- 11.3.2 The European Union -- References -- Chapter 12 Microstructural Maneuvering for Bioenergy Production -- 12.1 Introduction -- 12.2 Microstructural Maneuvering in Carbon-Based Products for Bioenergy -- 12.3 Bioenergy from Different Biomasses -- 12.3.1 Bioenergy from Agricultural Products -- 12.3.1.1 Bioenergy Production from Agricultural Crop Residues -- 12.3.1.2 Ethanol Production from Crops and Its Uses as a Bioenergy. 12.3.1.3 Biodiesel Production -- 12.3.2 Industrial Wastes as a Source of the Bioenergy -- 12.3.2.1 The Paper and Pulp Industry Waste Utilization -- 12.3.3 Municipal and Household Waste -- 12.3.3.1 Bioenergy Production Using Food Waste -- 12.3.3.2 Bioenergy Production Using Yard Waste -- 12.3.3.3 Bioenergy Production Using Plastic Waste -- 12.3.3.4 Wastewater as a Source of the Bioenergy -- 12.4 Microstructural Amendments in Coal-Derived Material for Bioenergy Production -- 12.4.1 Active Carbon -- 12.4.1.1 Pyrolysis -- 12.4.1.2 Thermal Treatment -- 12.4.1.3 Microwave Activation -- 12.4.1.4 The Uses of Active Carbon as Bioenergy -- 12.4.2 Carbon Nanotubes -- 12.4.2.1 Different Methods for Producing Carbon Nanotubes -- 12.4.2.2 Bioenergy Applications of CNTs -- 12.4.3 Graphene -- 12.4.4 Fullerene -- 12.4.5 Carbon Dots and Spheres -- 12.5 Summary -- References -- Chapter 13 Nanotechnology-Based Alternatives for Sustainable Biofuel and Bioenergy Production -- 13.1 An Overview -- 13.2 Role of Nanomaterials in Biofuels and Bioenergy Generation from Biomass -- 13.3 Factors Influencing Nanoparticle Performance in Biofuel Production -- 13.3.1 Synthetic Methodology -- 13.3.2 Temperature of Nanoparticle Synthesis -- 13.3.3 Size of Nanoparticles -- 13.4 Research on Different Types of Nanomaterial for Biofuels and Bioenergy Production -- 13.4.1 Biogas -- 13.4.2 Bioethanol -- 13.4.3 Biodiesel -- 13.4.4 Biohydrogen -- 13.5 Application of Nanomaterial Materials for Biofuels and Bioenergy -- 13.5.1 Biohydrogen Production -- 13.5.2 Biodiesel Production -- 13.5.3 Biogas Production -- 13.5.4 Bioethanol Production -- 13.6 Challenges of Nanomaterial Materials for Biofuels and Bioenergy -- 13.7 Conclusion and Future Prospects -- References -- Chapter 14 New Insights Into Valuable Strategies for Generating Algal Biofuels -- 14.1 Introduction. 14.2 Algal Cultivation Strategies. |
Record Nr. | UNINA-9910878995103321 |
Altalhi Tariq | ||
Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Toxic Effects of Micro- and Nanoplastics : Environment, Food and Human Health |
Autore | Altalhi Tariq |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
Descrizione fisica | 1 online resource (604 pages) |
Altri autori (Persone) | FernandesVirgínia Cruz |
Soggetto topico |
Microplastics
Environmental aspects |
ISBN |
9781394238163
1394238169 9781394238149 1394238142 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Aging Process of Microplastics in the Environment -- 1.1 Introduction -- 1.2 Impact of MPs on the Environment -- 1.3 Pristine and Aged Microplastics -- 1.4 Influence of Aging Processes in the Properties of MPs -- 1.4.1 Physical Properties -- 1.4.2 Chemical Properties -- 1.5 Simulation in the Laboratory of the Different Aging Effects -- 1.5.1 Radiation -- 1.5.2 Chemical Oxidation and Advanced Oxidation Process (AOP) -- 1.5.3 Mechanical Stress -- 1.5.4 Biodegradation -- 1.6 Conclusion -- Acknowledgments -- References -- Chapter 2 Life Cycle Assessment (LCA) of Bioplastics -- 2.1 Introduction -- 2.1.1 Life Cycle Assessment -- 2.1.2 Specialized LCA Software -- 2.2 Purpose and Approach of this Chapter -- 2.3 Development of Life Cycle Assessments for Bioplastics -- 2.3.1 Functional Unit and Scope Definition -- 2.3.2 Conventional Plastics vs. Bioplastics Analyses -- 2.3.3 Primary Applications for Which LCA was Performed -- 2.3.4 Evaluation Methods and Impact Categories Analyzed -- 2.3.5 End of Life (EoL) Scenarios -- 2.4 Discussion -- 2.4.1 Evaluation Methods and Impact Categories -- 2.4.2 End of Life (EoL) -- 2.5 Concluding Remarks -- References -- Chapter 3 Micro- and Nanoplastics-An Invisible Threat to Human Health -- 3.1 Introduction -- 3.2 Routes of Exposure -- 3.2.1 Inhalation -- 3.2.2 Dermal Contact -- 3.2.3 Ingestion -- 3.3 Phenomenon of Microplastics in Nourishment and Nutrients -- 3.3.1 Sodium Chloride -- 3.3.2 Marine Organisms (Crawfish, Mussel, Oyster): Techniques Used for Microplastic Identification -- 3.3.3 Canned and Prepackaged Foods -- 3.3.4 Soil Biome -- 3.4 Impact of Microplastics and Nanoplastics on Mammalian Health -- 3.5 Nanoplastics and Microplastics: Effects on Environment and Marine Life -- 3.6 Conclusions -- Acknowledgments.
Conflict of Interest -- References -- Chapter 4 Microplastics and Nanoplastics and Related Chemicals: The Physical-Chemical Interactions -- 4.1 Introduction to Micro- and Nanoplastics -- 4.2 Sources and Distribution of Micro- and Nanoplastics -- 4.3 Ecological Impacts of Micro- and Nanoplastics -- 4.4 Food Contamination and Human Exposure to Micro- and Nanoplastics -- 4.5 Toxicological Effects of Micro- and Nanoplastics on Human Health -- 4.5.1 Sources and Routes of Exposure -- 4.5.1.1 Ingestion -- 4.5.1.2 Inhalation -- 4.5.1.3 Dermal Exposure -- 4.5.2 Toxicological Effects -- 4.5.2.1 Inflammation and Immune Response -- 4.5.2.2 Genotoxicity and Carcinogenicity -- 4.5.2.3 Endocrine Disruption -- 4.6 Conclusions and Recommendations for Mitigating the Toxic Effects of Micro- and Nanoplastics -- 4.6.1 Reduce Plastic Production and Use -- 4.6.2 Improving Waste Management -- 4.6.3 Enhance Public Awareness -- 4.6.4 Develop and Implement Testing Protocols -- 4.6.5 Future Research -- References -- Chapter 5 Microplastics and Nanoplastics: Sources, Distribution, Behaviors, and Fate -- List of Abbreviations -- 5.1 Micro- and Nanoplastics: Principles and Sources -- 5.2 Micro- and Nanoplastic Behavior -- 5.2.1 Physiochemical Properties of MNPs: Toxicity and Reactivity -- 5.2.1.1 Petrochemical-Based Plastics -- 5.2.1.2 Bio-MNPs as a New Cause of Concern -- 5.2.1.3 Biological and Environmental Hazards of MNPs: The Effects on Biodiversity -- 5.3 Micro- and Nanoplastics' Distribution and Fate: From Terrestrial and Aquatic Environments to the Human Body -- 5.3.1 Terrestrial Environments -- 5.3.2 Aquatic Environments -- 5.3.3 Air and Atmosphere -- 5.3.4 Wastewater Treatment Plants -- 5.3.5 Cells and Organs -- 5.4 The Effect of Abiotic and Biotic Factors on MNPs' Behavior and Fate -- 5.5 Conclusions and Future Perspectives -- References. Chapter 6 Microplastics and Nanoplastics in Food -- 6.1 Introduction -- 6.2 Sources of Micro-Nanoplastics Affecting Food -- 6.2.1 Micro-Nanoplastics in Seafood -- 6.2.2 Micro-Nanoplastics in Water and Beverages -- 6.2.3 Micro-Nanoplastics in Meat -- 6.2.4 Micro-Nanoplastics in Fruits and Vegetables -- 6.2.5 Micro-Nanoplastics in Other Food Sources -- 6.3 Impact of Micro-Nanoplastics -- 6.4 Direct Impact on Human Health -- 6.4.1 Oxidative Stress and Apoptosis -- 6.4.2 Autophagy -- 6.4.3 Damage to Different Body Cells -- 6.4.4 Inflammation -- 6.5 Affecting the Food Chain -- 6.6 Detection of Micro-Nanoplastics in Food -- 6.7 Conclusion -- References -- Chapter 7 Microplastics: Properties, Effect on the Environment and Removal Methods -- 7.1 An Insight Into Microplastics (MPs) -- 7.2 Microplastic Definitions -- 7.3 Properties of MPs -- 7.4 Primary and Secondary Microplastics -- 7.5 Microbeads -- 7.6 Impacts of MPs -- 7.6.1 Ecological Impacts -- 7.6.2 Chemical Impacts -- 7.6.3 Socio-Economic Impact -- 7.6.4 Removal of MPs -- 7.6.5 Chemical Method -- 7.6.6 Absorption and Filtration -- 7.6.7 Biological Method of Removal of MPs -- 7.7 Global Initiatives -- 7.7.1 United Nations Sustainable Development Goal (SDG 14) -- 7.8 Conclusion -- References -- Chapter 8 Identification, Quantification, and Presence of Microplastics and Nanoplastics in Beverages Around the World -- 8.1 Introduction -- 8.1.1 Water Consumption Around the World -- 8.1.2 Water in the Beverage Industry -- 8.1.3 Water Quality and Water Pollution -- 8.2 Methodology -- 8.3 Results -- 8.3.1 Countries where Studies were Performed -- 8.3.2 Techniques for Identification and Extraction of Microplastics -- 8.3.2.1 Selection of the Type of Beverages -- 8.3.2.2 Sample Preparation -- 8.3.2.3 Digestion -- 8.3.2.4 Filtration -- 8.3.2.5 Visual Identification and Characterization. 8.3.2.6 Quality Control and Contamination Prevention -- 8.4 Microplastic Concentrations in Beverages -- 8.5 Microplastic Characterization in Beverages -- 8.5.1 Microplastic Sizes -- 8.5.2 Microplastic Types -- 8.5.3 Microplastic Colors -- 8.5.4 Microplastic Chemical Composition -- 8.6 Human Exposure -- 8.7 Conclusions -- References -- Chapter 9 Microplastics and Nanoplastics in Terrestrial Systems -- 9.1 Introduction -- 9.2 Micro/Nanoplastics in Soil -- 9.2.1 Source of Micro/Nano Plastics in Soils -- 9.2.2 Effect of Micro/Nanoplastics -- 9.2.2.1 Effect of Micro/Nanoplastics on the Physical and Chemical Properties of Soil -- 9.2.2.2 Effect of Micro/Nanoplastics on Soil Microorganisms -- 9.2.2.3 Effect of Micro/Nanoplastics on Soil Fauna -- 9.2.3 Degradation and Transport of Micro/Nanoplastics -- 9.3 Micro/Nanoplastics in Plants -- 9.3.1 Source of Micro/Nanoplastics -- 9.3.1.1 Plastic Mulching -- 9.3.1.2 Packaging -- 9.3.1.3 Irrigation Water -- 9.3.1.4 Sewage Treatment Plants (STPs) -- 9.3.1.5 Wastewater Treatment Plant (WWTP) -- 9.3.1.6 Air-Borne -- 9.3.1.7 Others -- 9.3.2 Migration or Uptake of Micro/Nanoplastics From Soil and Atmosphere -- 9.3.2.1 Uptake Pathways of Micro/Nanoplastics -- 9.3.3 Accumulation and Translocation -- 9.3.4 Effect of Micro- and Nano Plastics -- 9.3.4.1 Inhibitory Effect -- 9.3.4.2 Blocking Pores or Light -- 9.3.4.3 Mechanical Damage to Roots -- 9.3.4.4 Hindering Gene Expression -- 9.3.4.5 Release of Additives -- 9.3.4.6 Adsorption or Transport of Contaminant -- 9.3.4.7 Alteration of Soil Properties -- 9.3.4.8 Effect on Soil Microbes -- 9.3.4.9 Stimulatory Effect -- 9.3.4.10 Soil Microbial Community and Root Symbionts -- 9.4 Micro/Nanoplastics in Terrestrial Organism -- 9.4.1 Effect of Micro/Nanoplastics on Terrestrial Living Things -- 9.4.1.1 Ingestion -- 9.4.1.2 Gastrointestinal Tract. 9.4.1.3 Microplastics on Respiratory Pathways -- 9.4.1.4 Interaction of Microplastics on Gut Microbiota -- 9.4.1.5 Endocrine System -- 9.5 Conclusion -- References -- Chapter 10 Microplastics in Cosmetics and Personal Care Products -- 10.1 Introduction -- 10.1.1 Personal Care Products (PCPs) and Cosmetics -- 10.1.1.1 Consumption and Categorization -- 10.1.1.2 Microbeads in PCPs and Cosmetics -- 10.1.1.3 Environmental Effects of Microplastics -- 10.2 Methodology -- 10.3 Results -- 10.4 Characterization of Microplastics in PCPs and Cosmetics -- 10.4.1 Types of Samples -- 10.4.2 Per Country of Origin -- 10.4.3 Forms of Microplastics -- 10.4.4 Colors of Microplastics Found in PCPs and Cosmetics -- 10.4.5 Sizes of Microplastics -- 10.4.6 Types of Polymers -- 10.4.7 Experimental Methods Used to Extract and Analyze Microplastics -- 10.4.7.1 Extraction Method -- 10.4.7.2 Particle Size Analysis Method -- 10.4.7.3 Polymer Type Analysis Methods -- 10.5 Interaction Between Microplastics from PCPs and Other Substances -- 10.6 Toxicity of Microplastics from Personal Care Products and Cosmetics -- 10.6.1 Toxicity of Different Types of MP -- 10.6.2 Effects in Different Organism's Groups -- 10.6.2.1 Bacteria -- 10.6.2.2 Plants -- 10.6.2.3 Phytoplankton -- 10.6.2.4 Algae -- 10.6.2.5 Animals -- 10.6.2.6 Humans (Cells) -- 10.7 Worldwide Bans on Microbeads in PCPs and Cosmetics -- 10.8 Conclusions -- References -- Chapter 11 Study on Microplastic Content in Cosmetic Products and Their Detrimental Effect on Human Health -- 11.1 Introduction -- 11.2 Cosmetic Products in India -- 11.3 Source of Plastics and Microplastics -- 11.4 Uptake and Bio-Accumulation of Microplastics -- 11.5 Effect of Microplastic Exposure on Human Health -- 11.5.1 Oxidative Stress and Apoptosis -- 11.5.2 Inflammation -- 11.5.3 Metabolic Homeostasis. 11.6 Alternatives of Microplastics in Cosmetic Products. |
Record Nr. | UNINA-9910877813803321 |
Altalhi Tariq | ||
Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Wind Energy Storage and Conversion : From Basics to Utilities |
Autore | Altalhi Tariq |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
Descrizione fisica | 1 online resource (272 pages) |
Altri autori (Persone) | LuqmanMohammad |
ISBN |
1-394-20456-6
1-394-20455-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Wind Energy: From Past to Present Technology -- 1.1 Introduction -- 1.2 Historical Background -- 1.3 Use of Wind Energy in Specific Countries -- 1.4 Wind Technology -- 1.4.1 Wind Energy Conversion System (WECS) -- 1.4.2 Electric Generator -- 1.4.3 Evolution of Power Electronics -- 1.4.4 Energy Storage Technology -- 1.5 Horizontal-Axis Wind Turbines (HAWTs) -- 1.5.1 History -- 1.5.2 Design -- 1.5.3 Components -- 1.5.4 Working Principle -- 1.5.5 Applications -- 1.6 Vertical Axis Wind Turbine (VAWT) -- 1.6.1 Working Principle -- 1.7 Current Technologies in Wind Power Generation -- 1.7.1 Buoyant Airborne Turbine (BAT) -- 1.7.2 Offshore Floating Wind Technology -- 1.8 Advantages -- 1.9 Disadvantages of Wind Energy -- 1.10 Conclusion -- References -- Chapter 2 Environmental Consequences of Wind Energy Technologies -- 2.1 Introduction -- 2.2 Impact of Wind Energy on the Environment -- 2.3 Key Environmental White Paper Issues Related to Wind Power -- 2.4 Individual Effects on Population Impacts -- 2.5 Comprehending the Overall Effects of Wind Power on Wildlife -- 2.6 Considerations for the Environment when Making Choices -- 2.7 Wind Power and Risk Management -- 2.8 Concerns About Using Wind Energy -- 2.9 Conclusion -- References -- Chapter 3 Important Issues and Future Opportunities for Huge Wind Turbines -- 3.1 Introduction -- 3.1.1 Visual Impact -- 3.1.2 Noise -- 3.1.3 Wildlife -- 3.1.4 Intermittent Energy Generation -- 3.2 Worldwide Wind Energy Forecast -- 3.2.1 Canada -- 3.2.2 Russia -- 3.2.3 India -- 3.2.4 United States of America -- 3.2.5 China -- 3.2.6 Germany -- 3.3 Increased Wind Penetrating Techniques -- 3.3.1 Energy Storage Systems -- 3.3.2 Advanced Forecasting Tools -- 3.3.3 Bucket Foundation.
3.3.4 Advantages of Bucket Foundation -- 3.3.5 Limitations of Bucket Foundation -- 3.3.6 Monopile Foundation -- 3.3.7 Jacket Foundation -- 3.3.8 Floating Foundation -- 3.3.9 Tripod Foundation -- 3.4 India's Perspective for Wind Energy -- 3.4.1 Intermittency and Variability -- 3.4.2 Land Acquisition -- 3.4.3 Transmission Constraints -- 3.4.4 Limited Wind Resource Data -- 3.4.5 Financing Constraints -- 3.4.6 Environmental and Social Impacts -- 3.4.7 Policy and Regulatory Uncertainty -- 3.5 Progress of Technology -- 3.5.1 Larger and More Efficient Turbines -- 3.5.2 Advancements in Turbine Design -- 3.5.3 Improvements in Manufacturing and Installation -- 3.6 Conclusion -- References -- Chapter 4 Wind Hybrid Power Technologies -- 4.1 Introduction -- 4.2 Types of Hybrid Power Systems -- 4.3 Wind Hybrid Power Technologies -- 4.3.1 Wind Diesel Hybrid Power Technology -- 4.3.2 Wind Solar Hybrid Power Technology (WSHPT) -- 4.3.3 Wind Hydrogen Hybrid Power Technology (WHHPT) -- 4.3.4 Wind-Hydro Hybrid Power Technology (WHHPT) -- 4.3.5 Wind-Photovoltaic (PV) Hybrid Power Technology -- 4.4 Summary -- References -- Chapter 5 Theories Based on Technological Advances for Wind Energy -- 5.1 Introduction -- 5.2 Theoretical Background -- 5.2.1 Basic Principles of Wind Energy Conversion -- 5.2.2 Aerodynamics of Wind Turbines -- 5.2.3 Control Systems for Wind Turbines -- 5.3 Theories Based on Technological Advances -- 5.3.1 Wind Turbine Design Theory -- 5.3.1.1 Rotor Blade Design Theory -- 5.3.1.2 Aerodynamic Design Theory -- 5.3.2 Power Control Theory -- 5.3.2.1 Maximum Power Point Tracking Theory -- 5.3.2.2 Load Control Theory -- 5.3.3 Wind Farm Layout Theory -- 5.3.3.1 Turbine Placement Theory -- 5.3.3.2 Wake Effect Theory -- 5.3.4 Grid Integration Theory -- 5.3.4.1 Power Quality Theory -- 5.3.4.2 Stability Theory. 5.4 Advancements in Wind Energy Technologies -- 5.5 Future Research Directions -- 5.6 Conclusion -- References -- Chapter 6 Wind Energy Hybrid Power Generation System with Hydrogen Storage -- 6.1 Introduction -- 6.2 Hydrogen Storage Systems -- 6.2.1 Solid-State Hydrogen Storage in Materials -- 6.3 Wind Energy Systems -- 6.4 Wind Energy Hybrid Power Generation System with Hydrogen Storage -- 6.4.1 Design and Optimization of a Wind Energy Hybrid Power Generation System with Hydrogen Storage -- 6.5 Conclusion -- References -- Chapter 7 Technologies Based on Reusable Wind Turbine Blades -- 7.1 Introduction -- 7.2 Wind Power Generation and the Importance of Wind Turbine Blades -- 7.2.1 Global Demand for Clean and Sustainable Energy -- 7.2.2 Role of Wind Turbines in Wind Power Generation -- 7.2.3 Impact of Wind Turbine Blades on Performance and Viability -- 7.3 Conventional Wind Turbine Blade Materials and Limitations -- 7.3.1 Overview of Conventional Blade Materials -- 7.3.2 Limitations in Terms of Recyclability and Environmental Impact -- 7.4 Advancements in Materials Engineering for Reusable Wind Turbine Blades -- 7.4.1 Composite Materials in Blade Design -- 7.4.2 Bio-Based Resins for Sustainable Blades -- 7.4.3 Additive Manufacturing Techniques for Blade Production -- 7.5 Challenges in Implementing Reusable Blade Technologies -- 7.5.1 Structural Integrity of Reusable Blades -- 7.5.2 Fatigue Resistance and Durability -- 7.5.3 Manufacturing Scalability and Cost-Effectiveness -- 7.6 Implications of Reusable Wind Turbine Blades -- 7.6.1 Cost Reduction and Enhanced Energy Production -- 7.6.2 Environmental Benefits and Reduction of Carbon Emissions -- 7.6.3 Policy Frameworks and Industry Collaboration -- 7.7 Testing, Modeling, and Simulation for Reliable Reusable Blade Designs -- 7.7.1 Importance of Rigorous Testing. 7.7.2 Modeling and Simulation Techniques for Design Optimization -- 7.8 Future Prospects and Research Directions -- 7.8.1 Interdisciplinary Approaches for Sustainable Innovation -- 7.8.2 Collaboration Among Researchers, Engineers, and Stakeholders -- 7.8.3 Potential Directions for Future Research -- 7.9 Conclusion -- References -- Chapter 8 Wind Turbine Assessment: A Step-by-Step Approach -- 8.1 Introduction -- 8.2 Analytic Hierarchy Strategy -- 8.3 Results and Discussion -- 8.4 Conclusions -- References -- Chapter 9 Effect of Aerodynamics on Wind Turbine Design -- 9.1 Introduction -- 9.2 Air Properties Affecting Wind Turbines -- 9.3 Classical Blade Element Momentum Theory -- 9.4 Aerodynamic Performance Testing -- 9.4.1 Wind Tunnel Testing and Field Testing -- 9.4.2 Performance Testing of a Counter-Rotating Wind Turbine System -- 9.5 Effect of Aerodynamics on Wind Turbine Design Parameters -- 9.5.1 Solidity -- 9.5.2 Number of Blades -- 9.5.3 Different Ratios -- 9.5.3.1 Chord/Radius Ratio (c/R) -- 9.5.3.2 Height-to-Radius Ratio (H/R) -- 9.5.3.3 Blade Aspect Ratio (H/c) -- 9.5.4 Pitch -- 9.5.5 Strut Connection Point -- 9.5.6 Blade Reynolds Number (Re) -- 9.5.7 Strut Effects -- 9.5.8 Strut Arrangement -- 9.6 Wind Turbine Loads -- 9.7 Conclusions -- References -- Index -- Also of Interest -- EULA. |
Record Nr. | UNINA-9910877031203321 |
Altalhi Tariq | ||
Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|