top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Real-Time Ground-Based Flight Data and Cockpit Voice Recorder : Implementation Scenarios and Feasibility Analysis
Real-Time Ground-Based Flight Data and Cockpit Voice Recorder : Implementation Scenarios and Feasibility Analysis
Autore Matalgah Mustafa M
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (188 pages)
Altri autori (Persone) AlqodahMohammed Ali
Soggetto topico Flight recorders
Cockpit voice recorders
Aircraft accidents
ISBN 1-119-98487-4
1-119-98488-2
1-119-98489-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Foreword -- Preface -- Acknowledgments -- Acronyms -- Chapter 1 Introduction -- 1.1 Motivation -- 1.2 Entities Involved in Air Crash Investigations -- 1.2.1 Federal Aviation Administration (FAA) -- 1.2.2 National Transportation Board (NTSB) -- 1.2.3 Operator (Airline) -- 1.2.4 Equipment Manufacturer -- 1.3 Existing Traditional FDR/CVR -- 1.3.1 Traditional FDR/CVR History -- 1.3.2 Flight Data Recorder (FDR) -- 1.3.3 The Cockpit Voice Recorder (CVR) -- 1.3.4 Other Types of Recorders -- 1.3.4.1 Deployable Recorders -- 1.3.4.2 Combined Recorders -- 1.3.4.3 Image Recorders -- 1.4 Real‐Time Data Transmission as a Solution -- 1.5 System Capacity Requirements -- 1.6 Summary -- References -- Chapter 2 State of the Art -- 2.1 Preceding Research -- 2.2 Wireless FDR/CVR Products in Market -- 2.2.1 Honeywell Connected Recorder -- 2.2.1.1 Honeywell Connected Recorder (HCR‐25) Specifications -- 2.2.2 FLYHTStream -- 2.2.2.1 FLYHT AFIRS 228 Family Specifications -- 2.3 Wireless FDR/CVR Challenges -- 2.3.1 The Cost Aspect -- 2.3.2 Industry Factors -- 2.3.3 Lack of Regulations -- 2.4 Summary -- References -- Chapter 3 Aviation Communication Overview -- 3.1 History -- 3.1.1 Wireless Telegraphy Era -- 3.1.2 Analog Radio Communication Era -- 3.1.3 Digital Radio Communication Era -- 3.1.4 Digital Data Link Era -- 3.2 Communication Traffic Classes -- 3.3 Main Actors and Organizations -- 3.3.1 Aviation Authorities -- 3.3.2 Air Transport Industry -- 3.3.3 Aviation Datalink Service Providers -- 3.3.4 Aviation Stakeholders -- 3.3.4.1 ANSPs -- 3.3.4.2 Airlines -- 3.3.4.3 Meteorological Centers -- 3.4 Spectrum Allocation to Aeronautical Services -- 3.5 Air‐to‐Air Communications -- 3.5.1 TCAS Communications -- 3.5.2 VHF Communications -- 3.5.3 ADS‐B Air‐to‐Air Communications.
3.6 Air‐to‐Ground Communications -- 3.6.1 HF Air‐to‐Ground Communications -- 3.6.2 Satellite Communications (SATCOM) -- 3.6.3 VHF Data Broadcast (VDB) Communications -- 3.6.4 ADS‐B/ADS‐R/TIS‐B Air‐to‐Ground Communications -- 3.7 Summary -- References -- Chapter 4 Satellite Data Transfer Implementation -- 4.1 The Iridium Satellite System -- 4.2 Iridium First Generation -- 4.2.1 Technical Description -- 4.2.2 Channels -- 4.2.3 Channel Data Rate -- 4.3 Second Generation -- 4.3.1 Orbit -- 4.3.2 Spacecraft -- 4.3.3 Characteristics and Communication Links -- 4.3.3.1 The Subscriber Links -- 4.3.3.2 The Feeder Links -- 4.3.3.3 The Inter‐Satellite Links -- 4.3.3.4 The Telemetry, Tracking, and Commanding (TT& -- C) Links -- 4.3.4 Band Frequency Reuse -- 4.3.4.1 TDMA Frame Structure -- 4.4 PSTN‐Based Data Transfer Implementation: One Channel per Aircraft -- 4.5 Alternative Satellite Transmission Implementations -- 4.5.1 Fixed Slot Allocation per Aircraft per Burst -- 4.5.1.1 Slots per Burst Data Transfer -- 4.5.2 Single Second Bursts with Variable Slot Assignment per Frame -- 4.5.2.1 Single Second Burst Data Transmission -- 4.6 Data Transfer - Internet Protocol over Satellite Link Data Transmission -- 4.6.1 The Iridium Data Channel -- 4.6.2 Packet and Frame Structure -- 4.6.3 Data Transfer with Internet Protocols -- 4.6.3.1 Setup and Control -- 4.6.3.2 Data Packet Transmissions -- 4.7 Number of Channels Needed to Support 5000 Planes -- 4.8 Expected Availability of Spectrum -- 4.9 Emerging LEO Satellite Constellations -- 4.9.1 Problem Formulation -- 4.9.2 Results -- 4.10 Discussion -- 4.11 Summary -- References -- Chapter 5 VHF Digital Link Implementation -- 5.1 VHF Communications System -- 5.2 VDL Modes -- 5.2.1 VDL Mode 0 -- 5.2.2 VDL Mode 2 -- 5.2.3 VDL Mode 3 -- 5.2.4 VDL Mode 4 -- 5.3 Data Transfer - VDL Mode 4 Implementation.
5.3.1 Consecutive Time Slot Bursts -- 5.3.2 Alternative VDL Mode 4 Transmission Scenarios -- 5.3.2.1 No Buffer and Burst -- 5.3.2.2 Two Second Buffer and Burst -- 5.3.2.3 Three Second Buffer and Burst -- 5.4 Data Transfer - Internet Protocol Over VDL Transmission -- 5.4.1 Data Transfer with Internet Protocols -- 5.4.1.1 Setup and Control -- 5.4.2 Packet and Frame Structure -- 5.4.3 Data Packet Transmissions -- 5.5 Number of Channels Needed to Support 5000 Planes -- 5.6 Expected Availability of Spectrum -- 5.7 Summary -- References -- Chapter 6 Cooperative Data Transmission Implementations -- 6.1 VDL System‐Based Relaying -- 6.2 VHF and Satellite System Cooperation -- 6.3 Aeronautical Ad‐hoc Network (AANET) -- 6.4 Software‐Defined Networking -- 6.5 Summary -- References -- Chapter 7 UAV Wireless Networks and Recorders -- 7.1 UAV Communication Networks -- 7.2 Space‐Air‐Ground Integrated Network for 5G/B5G Wireless Communications -- 7.3 Integrating UAVs Into Aviation Communication -- 7.4 UAV Recorders -- 7.5 Summary -- References -- Chapter 8 Future Aviation Communication -- 8.1 System Wide Information Management (SWIM) -- 8.1.1 SWIM Definition -- 8.1.2 SWIM Principles -- 8.1.3 SWIM Layers -- 8.2 Air‐to‐Ground (A2G) Future Communication -- 8.3 Advancements in Air‐to‐Air (A2A) Communication for Aviation -- 8.3.1 Airborne Collision Avoidance System (ACAS) -- 8.3.2 Airborne Separation Assurance Systems (ASAS) -- 8.3.3 L‐DACS1 A2A Mode -- 8.3.4 Free‐Space Optical (FSO) Communications -- 8.4 Emerging Technologies Shaping Aviation Communication -- 8.4.1 Single‐Pilot Operations (SPOs) -- 8.4.2 Troposcatter Communications -- 8.4.3 Near Vertical Incidence Skywave (NVIS) Communications -- 8.5 Machine Learning in Future Communications -- 8.6 Summary -- References -- Appendix A -- A.1 Useful MATLAB Codes -- A.1.1 Iridium Satellite Constellation Viewer.
A.1.2 Iridium Satellite Constellation Footprints -- A.1.3 Large Satellite Constellation Implementation for Ground‐Based FDR/CVR Recorders -- Index -- EULA.
Record Nr. UNINA-9910830544203321
Matalgah Mustafa M  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Real-Time Ground-Based Flight Data and Cockpit Voice Recorder : Implementation Scenarios and Feasibility Analysis
Real-Time Ground-Based Flight Data and Cockpit Voice Recorder : Implementation Scenarios and Feasibility Analysis
Autore Matalgah Mustafa M
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (188 pages)
Altri autori (Persone) AlqodahMohammed Ali
Soggetto topico Flight recorders
Cockpit voice recorders
Aircraft accidents
ISBN 1-119-98487-4
1-119-98488-2
1-119-98489-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Foreword -- Preface -- Acknowledgments -- Acronyms -- Chapter 1 Introduction -- 1.1 Motivation -- 1.2 Entities Involved in Air Crash Investigations -- 1.2.1 Federal Aviation Administration (FAA) -- 1.2.2 National Transportation Board (NTSB) -- 1.2.3 Operator (Airline) -- 1.2.4 Equipment Manufacturer -- 1.3 Existing Traditional FDR/CVR -- 1.3.1 Traditional FDR/CVR History -- 1.3.2 Flight Data Recorder (FDR) -- 1.3.3 The Cockpit Voice Recorder (CVR) -- 1.3.4 Other Types of Recorders -- 1.3.4.1 Deployable Recorders -- 1.3.4.2 Combined Recorders -- 1.3.4.3 Image Recorders -- 1.4 Real‐Time Data Transmission as a Solution -- 1.5 System Capacity Requirements -- 1.6 Summary -- References -- Chapter 2 State of the Art -- 2.1 Preceding Research -- 2.2 Wireless FDR/CVR Products in Market -- 2.2.1 Honeywell Connected Recorder -- 2.2.1.1 Honeywell Connected Recorder (HCR‐25) Specifications -- 2.2.2 FLYHTStream -- 2.2.2.1 FLYHT AFIRS 228 Family Specifications -- 2.3 Wireless FDR/CVR Challenges -- 2.3.1 The Cost Aspect -- 2.3.2 Industry Factors -- 2.3.3 Lack of Regulations -- 2.4 Summary -- References -- Chapter 3 Aviation Communication Overview -- 3.1 History -- 3.1.1 Wireless Telegraphy Era -- 3.1.2 Analog Radio Communication Era -- 3.1.3 Digital Radio Communication Era -- 3.1.4 Digital Data Link Era -- 3.2 Communication Traffic Classes -- 3.3 Main Actors and Organizations -- 3.3.1 Aviation Authorities -- 3.3.2 Air Transport Industry -- 3.3.3 Aviation Datalink Service Providers -- 3.3.4 Aviation Stakeholders -- 3.3.4.1 ANSPs -- 3.3.4.2 Airlines -- 3.3.4.3 Meteorological Centers -- 3.4 Spectrum Allocation to Aeronautical Services -- 3.5 Air‐to‐Air Communications -- 3.5.1 TCAS Communications -- 3.5.2 VHF Communications -- 3.5.3 ADS‐B Air‐to‐Air Communications.
3.6 Air‐to‐Ground Communications -- 3.6.1 HF Air‐to‐Ground Communications -- 3.6.2 Satellite Communications (SATCOM) -- 3.6.3 VHF Data Broadcast (VDB) Communications -- 3.6.4 ADS‐B/ADS‐R/TIS‐B Air‐to‐Ground Communications -- 3.7 Summary -- References -- Chapter 4 Satellite Data Transfer Implementation -- 4.1 The Iridium Satellite System -- 4.2 Iridium First Generation -- 4.2.1 Technical Description -- 4.2.2 Channels -- 4.2.3 Channel Data Rate -- 4.3 Second Generation -- 4.3.1 Orbit -- 4.3.2 Spacecraft -- 4.3.3 Characteristics and Communication Links -- 4.3.3.1 The Subscriber Links -- 4.3.3.2 The Feeder Links -- 4.3.3.3 The Inter‐Satellite Links -- 4.3.3.4 The Telemetry, Tracking, and Commanding (TT& -- C) Links -- 4.3.4 Band Frequency Reuse -- 4.3.4.1 TDMA Frame Structure -- 4.4 PSTN‐Based Data Transfer Implementation: One Channel per Aircraft -- 4.5 Alternative Satellite Transmission Implementations -- 4.5.1 Fixed Slot Allocation per Aircraft per Burst -- 4.5.1.1 Slots per Burst Data Transfer -- 4.5.2 Single Second Bursts with Variable Slot Assignment per Frame -- 4.5.2.1 Single Second Burst Data Transmission -- 4.6 Data Transfer - Internet Protocol over Satellite Link Data Transmission -- 4.6.1 The Iridium Data Channel -- 4.6.2 Packet and Frame Structure -- 4.6.3 Data Transfer with Internet Protocols -- 4.6.3.1 Setup and Control -- 4.6.3.2 Data Packet Transmissions -- 4.7 Number of Channels Needed to Support 5000 Planes -- 4.8 Expected Availability of Spectrum -- 4.9 Emerging LEO Satellite Constellations -- 4.9.1 Problem Formulation -- 4.9.2 Results -- 4.10 Discussion -- 4.11 Summary -- References -- Chapter 5 VHF Digital Link Implementation -- 5.1 VHF Communications System -- 5.2 VDL Modes -- 5.2.1 VDL Mode 0 -- 5.2.2 VDL Mode 2 -- 5.2.3 VDL Mode 3 -- 5.2.4 VDL Mode 4 -- 5.3 Data Transfer - VDL Mode 4 Implementation.
5.3.1 Consecutive Time Slot Bursts -- 5.3.2 Alternative VDL Mode 4 Transmission Scenarios -- 5.3.2.1 No Buffer and Burst -- 5.3.2.2 Two Second Buffer and Burst -- 5.3.2.3 Three Second Buffer and Burst -- 5.4 Data Transfer - Internet Protocol Over VDL Transmission -- 5.4.1 Data Transfer with Internet Protocols -- 5.4.1.1 Setup and Control -- 5.4.2 Packet and Frame Structure -- 5.4.3 Data Packet Transmissions -- 5.5 Number of Channels Needed to Support 5000 Planes -- 5.6 Expected Availability of Spectrum -- 5.7 Summary -- References -- Chapter 6 Cooperative Data Transmission Implementations -- 6.1 VDL System‐Based Relaying -- 6.2 VHF and Satellite System Cooperation -- 6.3 Aeronautical Ad‐hoc Network (AANET) -- 6.4 Software‐Defined Networking -- 6.5 Summary -- References -- Chapter 7 UAV Wireless Networks and Recorders -- 7.1 UAV Communication Networks -- 7.2 Space‐Air‐Ground Integrated Network for 5G/B5G Wireless Communications -- 7.3 Integrating UAVs Into Aviation Communication -- 7.4 UAV Recorders -- 7.5 Summary -- References -- Chapter 8 Future Aviation Communication -- 8.1 System Wide Information Management (SWIM) -- 8.1.1 SWIM Definition -- 8.1.2 SWIM Principles -- 8.1.3 SWIM Layers -- 8.2 Air‐to‐Ground (A2G) Future Communication -- 8.3 Advancements in Air‐to‐Air (A2A) Communication for Aviation -- 8.3.1 Airborne Collision Avoidance System (ACAS) -- 8.3.2 Airborne Separation Assurance Systems (ASAS) -- 8.3.3 L‐DACS1 A2A Mode -- 8.3.4 Free‐Space Optical (FSO) Communications -- 8.4 Emerging Technologies Shaping Aviation Communication -- 8.4.1 Single‐Pilot Operations (SPOs) -- 8.4.2 Troposcatter Communications -- 8.4.3 Near Vertical Incidence Skywave (NVIS) Communications -- 8.5 Machine Learning in Future Communications -- 8.6 Summary -- References -- Appendix A -- A.1 Useful MATLAB Codes -- A.1.1 Iridium Satellite Constellation Viewer.
A.1.2 Iridium Satellite Constellation Footprints -- A.1.3 Large Satellite Constellation Implementation for Ground‐Based FDR/CVR Recorders -- Index -- EULA.
Record Nr. UNINA-9910877476603321
Matalgah Mustafa M  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui