Vai al contenuto principale della pagina
| Autore: |
Ali S. Wazed
|
| Titolo: |
Hybrid Materials for Piezoelectric Energy Harvesting and Conversion
|
| Pubblicazione: | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
| ©2024 | |
| Edizione: | 1st ed. |
| Descrizione fisica: | 1 online resource (355 pages) |
| Disciplina: | 621.381044 |
| Soggetto topico: | Piezoelectric materials |
| Energy harvesting | |
| Altri autori: |
BairagiSatyaranjan
Ul IslamShahid
|
| Nota di contenuto: | Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Preface -- Chapter 1 Introduction to Hybrid Piezoelectric Materials -- 1.1 Introduction -- 1.2 The Concept of Piezoelectricity -- 1.2.1 History of Piezoelectricity -- 1.2.2 The Piezoelectric Effect -- 1.3 Comparison between Piezoelectric Materials -- 1.4 Piezoelectric Material Types -- 1.4.1 Inorganic Piezoelectric Materials -- 1.4.1.1 Single Crystal‐Based Piezoelectric Materials -- 1.4.1.2 Ceramic‐Based Piezoelectric Materials -- 1.4.2 Organic Piezo Materials -- 1.4.2.1 PVDF -- 1.4.2.2 Polylactic Acid (PLA) -- 1.4.3 Hybrid Piezoelectric Materials -- 1.4.3.1 PVDF-PZT systems -- 1.4.3.2 BaTiO3/PVDF -- 1.4.3.3 ZnO-PVDF -- 1.5 Connectivity of Composites Similar in Hybrid Systems -- 1.6 Fabrication and Characterization of Hybrid Piezoelectric Materials -- 1.6.1 Cold‐pressing and Curing‐molding Method -- 1.6.2 Cold Sintering Process -- 1.6.3 Electrospinning (ES) -- 1.6.4 Solvent‐casting Method -- 1.7 Piezoelectric Energy Harvesters (PEHs) System -- 1.7.1 Cantilever Configuration of PEH -- 1.7.2 Circular Diaphragm Configuration of PEH -- 1.7.3 Cymbal Configuration of PEH -- 1.7.4 Stacked Configuration of PEH -- 1.8 Application of Hybrid Materials for Hybrid Energy‐Harvesting Systems -- 1.8.1 Piezoelectric and Electromagnetic Hybrid Systems -- 1.8.2 Piezoelectric-Triboelectric Hybrid Systems -- 1.8.3 Triboelectric, Piezoelectric, and Electromagnetic Hybrid System -- 1.9 Present Development Challenges and Future Perspectives -- 1.10 Conclusion -- References -- Chapter 2 KNN‐Based Hybrid Piezoelectric Materials -- 2.1 Introduction -- 2.2 Lead‐Free Ceramics -- 2.2.1 Inorganic Piezoelectric Ceramics -- 2.3 Potassium Sodium Niobate (KNN): A Piezoelectric Material -- 2.4 Potassium Sodium Niobate (KNN)‐Based Hybrid Piezoelectric Materials -- 2.5 Applications -- 2.6 Conclusion -- References. |
| Chapter 3 MoS2‐Based Hybrid Piezoelectric Materials -- 3.1 Introduction -- 3.2 Different Methods of MoS2 Synthesis -- 3.2.1 Exfoliation Method -- 3.2.2 Hydrothermal Method -- 3.2.3 CVD Method -- 3.3 MoS2 Working Mechanism -- 3.4 Investigating the Transition of MoS2 Structure from Bulk to Nanostructured Materials -- 3.5 Piezoelectric Energy Harvesting by MoS2 Composites -- 3.6 Conclusions -- References -- Chapter 4 BaTiO3‐Based Hybrid Piezoelectric Materials -- 4.1 Introduction -- 4.2 Structure and Piezoelectric Properties of BaTiO3 Perovskite -- 4.3 Synthesis of Barium Titanate -- 4.4 Barium Titanate‐Based Hybrid Piezoelectric Materials -- 4.4.1 Modified BaTiO3 Crystal Lattice -- 4.4.2 Composite Containing BaTiO3 -- 4.4.3 Piezoelectric Cum Triboelectric Energy Harvester -- 4.5 Applications -- 4.6 Conclusion -- References -- Chapter 5 BNT‐Based Hybrid Piezoelectric Materials -- 5.1 Introduction -- 5.2 Key Limitations of BNT and Ways to Overcome the Limitations -- 5.3 Applicability of BNT‐Based Materials for Piezoelectric Energy Harvesting -- 5.4 BNT/Piezoelectric Polymer‐Based Piezoelectric Energy Harvesters -- 5.5 BNT/Non‐Piezoelectric Polymer‐Based Piezoelectric Energy Harvesters -- 5.6 BNT‐Based Other Mechanical Energy Harvesters -- 5.7 Challenges and Future Scopes -- 5.8 Conclusion -- Acknowledgments -- References -- Chapter 6 ZnSnO3‐Based Hybrid Piezoelectric Materials -- 6.1 Introduction -- 6.2 Synthesis of Zinc Stannate -- 6.2.1 Synthesis of ZTO by Thermal Evaporation -- 6.2.2 Synthesis of ZTO by Chemical Vapor Deposition (CVD) -- 6.2.3 Synthesis of ZTO by Sol-Gel Synthesis -- 6.2.4 Synthesis of ZTO by Coprecipitation -- 6.2.5 Synthesis of ZTO by Hydrothermal Reaction -- 6.2.6 Synthesis of ZTO by Ion‐Exchange Reaction -- 6.2.7 Synthesis of ZTO by Solid‐State Reaction -- 6.2.8 Synthesis of ZTO by Electrospinning. | |
| 6.3 Morphologies and Properties of Zinc Stannate -- 6.4 Uses of Zinc Stannate and Hybrids in Piezoelectric Nanogenerators -- 6.5 Conclusion -- Acknowledgments -- References -- Chapter 7 ZnFe2O4‐Based Hybrid Piezoelectric Materials -- 7.1 Introduction -- 7.2 Current Scenario, Challenges in This Field and Scope of the Chapter -- 7.3 Fabrication Strategy of the Nanocomposites -- 7.4 The Controlling Factors of β‐phase Formation in Composites and its Property -- 7.4.1 Effect of Conducting Filler Addition -- 7.5 ZF Nanorod (High Aspect Ratio) and Copolymer PVDF-HFP-Based Nanocomposite -- 7.6 Applications Still Explored and Future Scope -- 7.6.1 Powering Commercial LEDs in Series Connection and Charging Different Capacitors by Single Finger Tapping -- 7.6.2 Energy‐Harvesting Performance from Human Body Movement -- 7.6.3 Energy Harvesting from Ambient Airflow -- 7.6.4 Application as Self‐Powered Pressure Sensor/Height Monitor -- 7.7 Conclusion -- 7.8 Future Direction -- References -- Chapter 8 Conductive Filler‐Based Hybrid Piezoelectric Materials -- 8.1 Introduction -- 8.2 Piezoelectricity: A Brief Overview -- 8.3 Role of Conductive Fillers in Piezoelectric Materials -- 8.4 Conductive Filler‐Based Piezoelectric Materials -- 8.4.1 Carbon‐Based Piezoelectric Materials -- 8.4.2 Metal‐Based Piezoelectric Materials -- 8.4.3 Polymer‐Based Piezoelectric Materials -- 8.4.3.1 PVDF‐Based Polymeric Materials -- 8.4.3.2 Non‐PVDF‐Based Piezoelectric Polymers -- 8.5 Applications -- 8.5.1 Sensing and Actuation -- 8.5.2 Energy Harvesting -- 8.5.3 Structural Health Monitoring -- 8.5.4 Flexible/Wearable Electronics -- 8.5.5 Electromechanical Devices -- 8.6 Summary -- 8.7 Challenges -- References -- Chapter 9 Semiconductive Filler‐Based Hybrid Piezoelectric Materials -- 9.1 Introduction -- 9.2 Piezoelectric Materials. | |
| 9.3 Semiconductor‐Modified Hybrid Piezoelectric Materials -- 9.3.1 Semiconductor‐Modified Lead‐Based Hybrid Piezoelectric Materials -- 9.3.2 Semiconductor‐Modified Lead‐Free Hybrid Piezoelectric Materials -- 9.4 Semiconductive Filler‐Based Hybrid Piezoelectric Energy Harvesters -- 9.5 Applications -- 9.6 Conclusion -- References -- Chapter 10 Cellulose‐Based Hybrid Piezoelectric Materials -- 10.1 Introduction -- 10.2 Origin of Piezoelectricity in Cellulose -- 10.3 Different Crystal Structures and Forms of Cellulose -- 10.4 Cellulose‐Based Hybrid Piezoelectric Devices Containing Cellulose as Matrix -- 10.4.1 Molybdenum Disulphide (MoS2) as Filler -- 10.4.2 Barium Titanate (BaTiO3) as Filler -- 10.4.3 Other Fillers and Blends -- 10.5 Cellulose‐Based Hybrid Piezoelectric Devices Containing Cellulose as Filler -- 10.6 Conclusion -- References -- Chapter 11 Collagen‐Based Hybrid Piezoelectric Material -- 11.1 Introduction -- 11.2 Origin of Piezoelectricity in Collagen -- 11.3 Application of Collagen‐based Hybrid Piezoelectric Systems -- 11.4 Collagen‐Based Piezoelectric Nanogenerator -- 11.5 Collagen‐based Supercapacitors -- 11.6 Collagen‐based Sensors -- 11.7 Collagen‐based Memory Devices -- 11.8 Collagen‐based Tissue Engineering Scaffolds -- 11.9 Conclusion and Future Prospects -- References -- Chapter 12 Chitin and Chitosan-Foremost Hybrid Piezoelectric Materials for Energy Harvesting Applications -- 12.1 Introduction -- 12.2 Chitin and its Application as Piezoelectric Material -- 12.3 Chitosan and its Applications as Piezoelectric Materials -- 12.4 Problems -- 12.5 Future Scope -- References -- Index -- EULA. | |
| Sommario/riassunto: | This book explores the development and application of hybrid materials for piezoelectric energy harvesting and conversion. Edited by experts from leading institutions, it provides a comprehensive overview of the latest advancements in piezoelectric materials, focusing on their ability to convert mechanical energy into electrical energy. The book covers the synthesis, fabrication, and application of various hybrid piezoelectric materials, including polymers, composites, and biological substances. It discusses the potential of these materials in addressing global energy challenges by offering sustainable and efficient energy solutions. The intended audience includes researchers, engineers, and students in materials science and related fields. |
| Titolo autorizzato: | Hybrid Materials for Piezoelectric Energy Harvesting and Conversion ![]() |
| ISBN: | 9781394150373 |
| 1394150377 | |
| 9781394150359 | |
| 1394150350 | |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9911019381603321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |