top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
The Supercontinuum Laser Source [[electronic resource] ] : The Ultimate White Light / / by Robert R. Alfano
The Supercontinuum Laser Source [[electronic resource] ] : The Ultimate White Light / / by Robert R. Alfano
Autore Alfano Robert R
Edizione [3rd ed. 2016.]
Pubbl/distr/stampa New York, NY : , : Springer New York : , : Imprint : Springer, , 2016
Descrizione fisica 1 online resource (452 p.)
Disciplina 530
Soggetto topico Lasers
Photonics
Optics
Electrodynamics
Atoms
Physics
Microwaves
Optical engineering
Optics, Lasers, Photonics, Optical Devices
Classical Electrodynamics
Atomic, Molecular, Optical and Plasma Physics
Microwaves, RF and Optical Engineering
ISBN 1-4939-3326-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto From the Contents: Part I Fundamentals -- Theory of Self Phase Modulation and Spectral Broadening -- Supercontinuum Generation and Condensed Matter -- Ultrashort Pulse Propagation in Nonlinear Dispersive Fibers -- Cross-Phase Modulation: A New Technique for Controlling the Spectral, Temporal, and Spatial Properties of Ultrashort Pulses -- Fiber Based Supercontinuum -- Generation of Ultrashort and Coherent Supercontinuum Light Pulses in all Normal Dispersion Fibers.- Self-Focusing and Continuum Generation in Gases -- Utilization of UV and IR Supercontinuum in Gas-Phase Subpicosecond Kinetic Spectroscopy -- Attosecond Extreme Ultraviolet Supercontinuum -- Supercontinuum in Telecom Applications -- Current Applications of Supercontinuum Light.
Record Nr. UNINA-9910254618503321
Alfano Robert R  
New York, NY : , : Springer New York : , : Imprint : Springer, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The supercontinuum laser source : the ultimate white light / / Robert R. Alfano, editor
The supercontinuum laser source : the ultimate white light / / Robert R. Alfano, editor
Edizione [4th ed.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (646 pages)
Disciplina 621.366
Soggetto topico Laser pulses, Ultrashort
Nonlinear optics
ISBN 9783031061974
9783031061967
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword -- Preface -- Supercontinuum Generated in Different Media -- Supercontinuum Light Vector Vortex Beams with OAM (L == 1,2,3) in Air -- Conical Emission and Self-Phase Modulation Light from Vector Vortex Beam with OAM (L == 2) in BK7 Glass -- Supercontinuum Light from Calcite -- Supercontinuum Light Generated from Methanol Liquid -- Supercontinuum Light Generated from Plasma Ablation in Air from Copper Foil -- Contents -- Contributors -- 1 Theory of Self-Phase Modulation and Spectral Broadening -- 1.1 Introduction -- 1.2 Optical-Field-Induced Refractive Indices -- 1.2.1 Electronic Mechanism -- 1.2.2 Vibrational Contribution -- 1.2.3 Rotation, Libration, and Reorientation of Molecules -- 1.2.4 Electrostriction, Molecular Redistribution, and Molecular Collisions -- 1.2.5 Other Mechanisms -- 1.3 Simple Theory of Self-Phase Modulation and Spectral Broadening -- 1.4 More Rigorous Theory of Self-Phase Modulation and Spectral Superbroadening -- 1.5 Self-Focusing and Self-Phase Modulation -- 1.5.1 Self-Phase Modulation with Quasisteady-State Self-Focusing -- 1.5.2 Spectral Superbroadening of Ultrashort Pulses in Gases -- 1.5.3 Self-Phase Modulation with Transient Self-Focusing -- 1.6 Conclusion -- References -- 2 Supercontinuum Generation in Condensed Matter -- 2.1 Introduction -- 2.2 Simplified Model -- 2.3 Experimental Arrangement for SPM Generation -- 2.4 Generation of Supercontinuum in Solids -- 2.4.1 Supercontinuum in Glasses -- 2.4.2 Supercontinuum in Quartz -- 2.4.3 Supercontinuum in NaCl -- 2.4.4 Supercontinuum in Calcite -- 2.4.5 Supercontinuum in KBr -- 2.4.6 Supercontinuum in Semiconductors -- 2.5 Generation of Supercontinuum in Liquids -- 2.5.1 Supercontinuum in H2O and D2O -- 2.5.2 Supercontinuum in CCl4 -- 2.5.3 Supercontinuum in Phosphoric Acid -- 2.5.4 Supercontinuum in Polyphosphoric Acid.
2.6 Supercontinuum Generated in Optical Fibers -- 2.7 Supercontinuum Generation in Rare-Gas Liquids and Solids -- 2.8 Supercontinuum Generation in Antiferromagnetic KNiF3 Crystals -- 2.9 Generation of Supercontinuum Near Electronic Resonances in Crystals -- 2.10 Enhancement of Supercontinuum in Water by Addition of Ions -- 2.11 Temporal Behavior of SPM -- 2.11.1 Temporal Distribution of SPM -- 2.11.2 Local Generation and Propagation -- 2.11.3 SPM Pulse Duration Reduction -- 2.12 Higher-Order Effects on Self-Phase Modulation -- 2.12.1 Self-Focusing -- 2.12.2 Dispersion -- 2.12.3 Self-Steepening -- 2.12.4 Initial Pulse Chirping -- 2.13 High-Resolution Spectra of Self-Phase Modulation in Optical Fibers -- 2.13.1 Reduced Wave Equation -- 2.13.2 Experiment -- 2.13.3 Discussion -- 2.13.4 UV Supercontinuum Lower Limit in Holey Fibers -- 2.14 High-Resolution Spectra of Cross-Phase Modulation in Optical Fibers -- 2.14.1 Reduced Wave Equation -- 2.14.2 Experiment -- 2.14.3 Discussion -- 2.15 Recent Developments of Supercontinuum Generation -- 2.15.1 Nonlinear Refractive Index of Materials Used in Supercontinuum Generation -- 2.15.2 Mid-Infrared Supercontinuum Generation Covering 1.4-13.3 m -- 2.15.3 Enhanced Bandwidth of Supercontinuum Generated in Microstructured Fibers -- 2.15.4 Deep-Ultraviolet to Mid-Infrared Supercontinuum Generation -- 2.15.5 Summary of Selected Supercontinuum Generation Since 2000 -- 2.16 Overview -- A.1 Appendix: Nonlinear Wave Equation with Group Velocity Dispersion -- References -- 3 Ultrashort Pulse Propagation in Nonlinear Dispersive Fibers -- 3.1 Introduction -- 3.2 Basic Propagation Equation -- 3.3 Different Propagation Regimes -- 3.3.1 Dispersion-Dominant Regime -- 3.3.2 Nonlinearity-Dominant Regime -- 3.3.3 Dispersive Nonlinear Regime -- 3.4 Normal Dispersion -- 3.5 Anomalous Dispersion -- 3.5.1 Fission of High-Order Solitons.
3.5.2 Intrapulse Raman Scattering -- 3.6 Supercontinuum Generation -- 3.6.1 Supercontinuum Generation Through Soliton Fission -- 3.6.2 Supercontinuum Generation Through Modulation Instability -- 3.6.3 Supercontinuum Pumping in the Normal-GVD Region -- 3.7 Mid-Infrared and Ultraviolet Regions -- 3.7.1 Supercontinuum in the Mid-Infrared Region -- 3.7.2 Sources of Ultraviolet Radiation -- 3.8 Summary -- References -- 4 Cross-Phase Modulation: A New Technique for Controlling the Spectral, Temporal, and Spatial Propertiesof Ultrashort Pulses -- 4.1 Introduction -- 4.2 Cross-Phase Modulation Theory -- 4.2.1 Coupled Nonlinear Equations of Copropagating Pulses -- 4.2.2 Spectral Broadening Enhancement -- 4.2.3 Optical Wave Breaking and Pulse Compression Due to Cross-Phase Modulation in Optical Fibers -- 4.3 Pump-Probe Cross-Phase Modulation Experiments -- 4.3.1 Spectral Broadening Enhancement by Cross-Phase Modulation in BK-7 Glass -- 4.3.2 Induced-Frequency Shift of Copropagating Pulses -- 4.3.3 XPM-Induced Spectral Broadening and Optical Amplification in Optical Fibers -- 4.4 Cross-Phase Modulation with Stimulated Raman Scattering -- 4.4.1 Theory of XPM with SRS -- 4.4.1.1 Influence of Walk-Off on the Symmetry Properties of the Pulse Spectra -- 4.4.1.2 Contributions from Self-Phase Modulation and Cross-Phase Modulation to the Chirp of Pulses -- 4.4.2 Experiments -- 4.4.2.1 XPM Measurements with the Fiber Raman Amplification Soliton Laser -- 4.4.2.2 Generation of Picosecond Raman Pulses in Optical Fibers -- 4.4.2.3 Generation of Femtosecond Raman Pulses in Ethanol -- 4.5 Harmonic Cross-Phase Modulation Generation in ZnSe -- 4.6 Cross-Phase Modulation and Stimulated Four-Photon Mixing in Optical Fibers -- 4.7 Induced Focusing by Cross-Phase Modulation in Optical Fibers -- 4.8 Modulation Instability Induced by Cross-Phase Modulation in Optical Fibers.
4.9 Applications of Cross-Phase Modulation for Ultrashort Pulse Technology -- 4.10 Conclusion -- 4.11 Addendum -- References -- 5 Fibre-Based Supercontinuum -- 5.1 Introduction -- 5.2 Non-linear Optics in Fibres -- 5.3 Solitons, Modulational Instability and Pulse Compression -- 5.4 Stimulated Raman Effect and Ultrashort Soliton Pulse Instabilities -- 5.5 Early Studies of Supercontinuum Generation in Fibres -- 5.6 Supercontinuum Applications in Telecommunications -- 5.7 Modelling Broadband Pulse Propagation in Optical Fibres -- 5.8 The New Generation of Supercontinuum Sources -- 5.9 Femtosecond Pulse-Pumped Supercontinua -- 5.10 Modelling of Femtosecond-Pumped Supercontinua -- 5.11 Picosecond Pulse-Pumped Supercontinua -- 5.12 Modelling of Picosecond-Pumped Supercontinua -- 5.13 CW-Pumped Supercontinua -- 5.14 Modelling of CW-Pumped Supercontinua -- 5.15 Extending Wavelength Operation -- 5.16 Infrared Supercontinuum Sources -- 5.17 Ultraviolet Supercontinuum Sources -- 5.18 Developments Since 2015 -- References -- New References Since 2015*12pt -- 6 All-Normal Dispersion Fiber Supercontinuum: Principles, Design, and Applications of a Unique White Light Source -- 6.1 Introduction -- 6.2 Brief Remarks About Numerical Modeling -- 6.3 Supercontinuum Generation: Conventional vs. ANDi PCF -- 6.3.1 Spectro-Temporal Characteristics -- 6.4 Nonlinear Dynamics in ANDi Fibers -- 6.4.1 Spectrogram Analysis -- 6.4.2 Influence of Fiber and Pump Pulse Parameters -- 6.5 Noise Properties of Fiber Supercontinuum Sources -- 6.5.1 Origin of Supercontinuum Noise -- 6.5.2 Supercontinuum Noise Control by Fiber Dispersion Engineering -- 6.5.3 Supercontinuum Noise Control by Designing Fiber Geometry and Birefringence -- 6.6 Experimental Results and Fiber Designs for Various Spectral Regions -- 6.6.1 Visible and Near-IR Spectral Region -- 6.6.1.1 Photonic Crystal Fibers (PCFs).
6.6.1.2 Suspended-Core Fibers (SCF) -- 6.6.2 Deep-UV Spectral Region -- 6.6.3 Mid-Infrared Spectral Region -- 6.7 Selected Application Examples -- 6.7.1 Ultrafast Photonics -- 6.7.2 Advanced Imaging and Spectroscopy -- 6.8 Conclusion -- References -- 7 Self-Focusing and Continuum Generation in Gases -- 7.1 Introduction -- 7.2 Experimental Aspects -- 7.3 Multiphoton Ionization -- 7.4 Self-Phase Modulation -- 7.5 Saturation of the Nonlinear Response in Gases -- 7.6 Self-Focusing: (3) Becomes Large -- 7.6.1 Spectral Characteristics of Gaseous Continua -- 7.6.2 Spatial Characteristics of Gaseous Continua -- 7.6.3 Discussion -- 7.7 Conclusions -- References -- 8 Attosecond Extreme Ultraviolet Supercontinuum -- 8.1 Introduction -- 8.2 High-Order Harmonic Generation -- 8.3 Isolated Attosecond Pulse Generation with Gating Techniques -- 8.3.1 Polarization Gating -- 8.3.2 Double Optical Gating -- 8.4 Temporal Characterization of Attosecond Pulses -- 8.4.1 Principle of Attosecond Streaking -- 8.4.2 Complete Reconstruction of Attosecond Bursts -- 8.4.3 Phase Retrieval by Omega Oscillation Filtering -- 8.5 Experimental Configuration and Results -- 8.5.1 Magnetic-Bottle Electron Energy Spectrometer for Attosecond Streaking -- 8.5.2 MBES Resolution -- 8.5.3 Generation of a Single 67 as Pulse -- 8.5.4 Broadband Supercontinuum Generation with Lens Focusing -- 8.6 Route to the Generation of Single 25 as Pulses -- 8.6.1 Characterizing the Contrast of 25 as Isolated Pulses -- 8.6.2 Driving Laser Suppression with Microchannel Plate Filters -- 8.7 Conclusion and Outlook -- References -- 9 Supercontinuum in Telecom Applications -- 9.1 Introduction -- 9.2 Basic Physics of Optical Spectral Broadening and SC Generation in Fibres -- 9.3 Application of Spectral Broadening and Continuum Generation in Telecom -- 9.3.1 Pulse Compression and Short Pulse Generation.
9.3.2 Pulse Train Generation at High Repetition Rates.
Record Nr. UNINA-9910639890203321
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The supercontinuum laser source : the ultimate white light / / Robert R. Alfano, editor
The supercontinuum laser source : the ultimate white light / / Robert R. Alfano, editor
Edizione [4th ed.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (646 pages)
Disciplina 621.366
Soggetto topico Laser pulses, Ultrashort
Nonlinear optics
ISBN 9783031061974
9783031061967
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword -- Preface -- Supercontinuum Generated in Different Media -- Supercontinuum Light Vector Vortex Beams with OAM (L == 1,2,3) in Air -- Conical Emission and Self-Phase Modulation Light from Vector Vortex Beam with OAM (L == 2) in BK7 Glass -- Supercontinuum Light from Calcite -- Supercontinuum Light Generated from Methanol Liquid -- Supercontinuum Light Generated from Plasma Ablation in Air from Copper Foil -- Contents -- Contributors -- 1 Theory of Self-Phase Modulation and Spectral Broadening -- 1.1 Introduction -- 1.2 Optical-Field-Induced Refractive Indices -- 1.2.1 Electronic Mechanism -- 1.2.2 Vibrational Contribution -- 1.2.3 Rotation, Libration, and Reorientation of Molecules -- 1.2.4 Electrostriction, Molecular Redistribution, and Molecular Collisions -- 1.2.5 Other Mechanisms -- 1.3 Simple Theory of Self-Phase Modulation and Spectral Broadening -- 1.4 More Rigorous Theory of Self-Phase Modulation and Spectral Superbroadening -- 1.5 Self-Focusing and Self-Phase Modulation -- 1.5.1 Self-Phase Modulation with Quasisteady-State Self-Focusing -- 1.5.2 Spectral Superbroadening of Ultrashort Pulses in Gases -- 1.5.3 Self-Phase Modulation with Transient Self-Focusing -- 1.6 Conclusion -- References -- 2 Supercontinuum Generation in Condensed Matter -- 2.1 Introduction -- 2.2 Simplified Model -- 2.3 Experimental Arrangement for SPM Generation -- 2.4 Generation of Supercontinuum in Solids -- 2.4.1 Supercontinuum in Glasses -- 2.4.2 Supercontinuum in Quartz -- 2.4.3 Supercontinuum in NaCl -- 2.4.4 Supercontinuum in Calcite -- 2.4.5 Supercontinuum in KBr -- 2.4.6 Supercontinuum in Semiconductors -- 2.5 Generation of Supercontinuum in Liquids -- 2.5.1 Supercontinuum in H2O and D2O -- 2.5.2 Supercontinuum in CCl4 -- 2.5.3 Supercontinuum in Phosphoric Acid -- 2.5.4 Supercontinuum in Polyphosphoric Acid.
2.6 Supercontinuum Generated in Optical Fibers -- 2.7 Supercontinuum Generation in Rare-Gas Liquids and Solids -- 2.8 Supercontinuum Generation in Antiferromagnetic KNiF3 Crystals -- 2.9 Generation of Supercontinuum Near Electronic Resonances in Crystals -- 2.10 Enhancement of Supercontinuum in Water by Addition of Ions -- 2.11 Temporal Behavior of SPM -- 2.11.1 Temporal Distribution of SPM -- 2.11.2 Local Generation and Propagation -- 2.11.3 SPM Pulse Duration Reduction -- 2.12 Higher-Order Effects on Self-Phase Modulation -- 2.12.1 Self-Focusing -- 2.12.2 Dispersion -- 2.12.3 Self-Steepening -- 2.12.4 Initial Pulse Chirping -- 2.13 High-Resolution Spectra of Self-Phase Modulation in Optical Fibers -- 2.13.1 Reduced Wave Equation -- 2.13.2 Experiment -- 2.13.3 Discussion -- 2.13.4 UV Supercontinuum Lower Limit in Holey Fibers -- 2.14 High-Resolution Spectra of Cross-Phase Modulation in Optical Fibers -- 2.14.1 Reduced Wave Equation -- 2.14.2 Experiment -- 2.14.3 Discussion -- 2.15 Recent Developments of Supercontinuum Generation -- 2.15.1 Nonlinear Refractive Index of Materials Used in Supercontinuum Generation -- 2.15.2 Mid-Infrared Supercontinuum Generation Covering 1.4-13.3 m -- 2.15.3 Enhanced Bandwidth of Supercontinuum Generated in Microstructured Fibers -- 2.15.4 Deep-Ultraviolet to Mid-Infrared Supercontinuum Generation -- 2.15.5 Summary of Selected Supercontinuum Generation Since 2000 -- 2.16 Overview -- A.1 Appendix: Nonlinear Wave Equation with Group Velocity Dispersion -- References -- 3 Ultrashort Pulse Propagation in Nonlinear Dispersive Fibers -- 3.1 Introduction -- 3.2 Basic Propagation Equation -- 3.3 Different Propagation Regimes -- 3.3.1 Dispersion-Dominant Regime -- 3.3.2 Nonlinearity-Dominant Regime -- 3.3.3 Dispersive Nonlinear Regime -- 3.4 Normal Dispersion -- 3.5 Anomalous Dispersion -- 3.5.1 Fission of High-Order Solitons.
3.5.2 Intrapulse Raman Scattering -- 3.6 Supercontinuum Generation -- 3.6.1 Supercontinuum Generation Through Soliton Fission -- 3.6.2 Supercontinuum Generation Through Modulation Instability -- 3.6.3 Supercontinuum Pumping in the Normal-GVD Region -- 3.7 Mid-Infrared and Ultraviolet Regions -- 3.7.1 Supercontinuum in the Mid-Infrared Region -- 3.7.2 Sources of Ultraviolet Radiation -- 3.8 Summary -- References -- 4 Cross-Phase Modulation: A New Technique for Controlling the Spectral, Temporal, and Spatial Propertiesof Ultrashort Pulses -- 4.1 Introduction -- 4.2 Cross-Phase Modulation Theory -- 4.2.1 Coupled Nonlinear Equations of Copropagating Pulses -- 4.2.2 Spectral Broadening Enhancement -- 4.2.3 Optical Wave Breaking and Pulse Compression Due to Cross-Phase Modulation in Optical Fibers -- 4.3 Pump-Probe Cross-Phase Modulation Experiments -- 4.3.1 Spectral Broadening Enhancement by Cross-Phase Modulation in BK-7 Glass -- 4.3.2 Induced-Frequency Shift of Copropagating Pulses -- 4.3.3 XPM-Induced Spectral Broadening and Optical Amplification in Optical Fibers -- 4.4 Cross-Phase Modulation with Stimulated Raman Scattering -- 4.4.1 Theory of XPM with SRS -- 4.4.1.1 Influence of Walk-Off on the Symmetry Properties of the Pulse Spectra -- 4.4.1.2 Contributions from Self-Phase Modulation and Cross-Phase Modulation to the Chirp of Pulses -- 4.4.2 Experiments -- 4.4.2.1 XPM Measurements with the Fiber Raman Amplification Soliton Laser -- 4.4.2.2 Generation of Picosecond Raman Pulses in Optical Fibers -- 4.4.2.3 Generation of Femtosecond Raman Pulses in Ethanol -- 4.5 Harmonic Cross-Phase Modulation Generation in ZnSe -- 4.6 Cross-Phase Modulation and Stimulated Four-Photon Mixing in Optical Fibers -- 4.7 Induced Focusing by Cross-Phase Modulation in Optical Fibers -- 4.8 Modulation Instability Induced by Cross-Phase Modulation in Optical Fibers.
4.9 Applications of Cross-Phase Modulation for Ultrashort Pulse Technology -- 4.10 Conclusion -- 4.11 Addendum -- References -- 5 Fibre-Based Supercontinuum -- 5.1 Introduction -- 5.2 Non-linear Optics in Fibres -- 5.3 Solitons, Modulational Instability and Pulse Compression -- 5.4 Stimulated Raman Effect and Ultrashort Soliton Pulse Instabilities -- 5.5 Early Studies of Supercontinuum Generation in Fibres -- 5.6 Supercontinuum Applications in Telecommunications -- 5.7 Modelling Broadband Pulse Propagation in Optical Fibres -- 5.8 The New Generation of Supercontinuum Sources -- 5.9 Femtosecond Pulse-Pumped Supercontinua -- 5.10 Modelling of Femtosecond-Pumped Supercontinua -- 5.11 Picosecond Pulse-Pumped Supercontinua -- 5.12 Modelling of Picosecond-Pumped Supercontinua -- 5.13 CW-Pumped Supercontinua -- 5.14 Modelling of CW-Pumped Supercontinua -- 5.15 Extending Wavelength Operation -- 5.16 Infrared Supercontinuum Sources -- 5.17 Ultraviolet Supercontinuum Sources -- 5.18 Developments Since 2015 -- References -- New References Since 2015*12pt -- 6 All-Normal Dispersion Fiber Supercontinuum: Principles, Design, and Applications of a Unique White Light Source -- 6.1 Introduction -- 6.2 Brief Remarks About Numerical Modeling -- 6.3 Supercontinuum Generation: Conventional vs. ANDi PCF -- 6.3.1 Spectro-Temporal Characteristics -- 6.4 Nonlinear Dynamics in ANDi Fibers -- 6.4.1 Spectrogram Analysis -- 6.4.2 Influence of Fiber and Pump Pulse Parameters -- 6.5 Noise Properties of Fiber Supercontinuum Sources -- 6.5.1 Origin of Supercontinuum Noise -- 6.5.2 Supercontinuum Noise Control by Fiber Dispersion Engineering -- 6.5.3 Supercontinuum Noise Control by Designing Fiber Geometry and Birefringence -- 6.6 Experimental Results and Fiber Designs for Various Spectral Regions -- 6.6.1 Visible and Near-IR Spectral Region -- 6.6.1.1 Photonic Crystal Fibers (PCFs).
6.6.1.2 Suspended-Core Fibers (SCF) -- 6.6.2 Deep-UV Spectral Region -- 6.6.3 Mid-Infrared Spectral Region -- 6.7 Selected Application Examples -- 6.7.1 Ultrafast Photonics -- 6.7.2 Advanced Imaging and Spectroscopy -- 6.8 Conclusion -- References -- 7 Self-Focusing and Continuum Generation in Gases -- 7.1 Introduction -- 7.2 Experimental Aspects -- 7.3 Multiphoton Ionization -- 7.4 Self-Phase Modulation -- 7.5 Saturation of the Nonlinear Response in Gases -- 7.6 Self-Focusing: (3) Becomes Large -- 7.6.1 Spectral Characteristics of Gaseous Continua -- 7.6.2 Spatial Characteristics of Gaseous Continua -- 7.6.3 Discussion -- 7.7 Conclusions -- References -- 8 Attosecond Extreme Ultraviolet Supercontinuum -- 8.1 Introduction -- 8.2 High-Order Harmonic Generation -- 8.3 Isolated Attosecond Pulse Generation with Gating Techniques -- 8.3.1 Polarization Gating -- 8.3.2 Double Optical Gating -- 8.4 Temporal Characterization of Attosecond Pulses -- 8.4.1 Principle of Attosecond Streaking -- 8.4.2 Complete Reconstruction of Attosecond Bursts -- 8.4.3 Phase Retrieval by Omega Oscillation Filtering -- 8.5 Experimental Configuration and Results -- 8.5.1 Magnetic-Bottle Electron Energy Spectrometer for Attosecond Streaking -- 8.5.2 MBES Resolution -- 8.5.3 Generation of a Single 67 as Pulse -- 8.5.4 Broadband Supercontinuum Generation with Lens Focusing -- 8.6 Route to the Generation of Single 25 as Pulses -- 8.6.1 Characterizing the Contrast of 25 as Isolated Pulses -- 8.6.2 Driving Laser Suppression with Microchannel Plate Filters -- 8.7 Conclusion and Outlook -- References -- 9 Supercontinuum in Telecom Applications -- 9.1 Introduction -- 9.2 Basic Physics of Optical Spectral Broadening and SC Generation in Fibres -- 9.3 Application of Spectral Broadening and Continuum Generation in Telecom -- 9.3.1 Pulse Compression and Short Pulse Generation.
9.3.2 Pulse Train Generation at High Repetition Rates.
Record Nr. UNISA-996503462103316
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui