top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Sub-Laplacians with drift on Lie groups of polynomial volume growth / / Georgios K. Alexopoulos
Sub-Laplacians with drift on Lie groups of polynomial volume growth / / Georgios K. Alexopoulos
Autore Alexopoulos Georgios K. <1962->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 2002
Descrizione fisica 1 online resource (119 p.)
Disciplina 510 s
512/.55
Collana Memoirs of the American Mathematical Society
Soggetto topico Lie groups
Functional analysis
Soggetto genere / forma Electronic books.
ISBN 1-4704-0332-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""11. A Taylor formula for the heat functions on nilpotent Lie groups""""12. Harnack inequalities for the derivatives of the heat functions on nilpotent Lie groups""; ""13. Harmonic functions of polynomial growth on nilpotent Lie groups""; ""14. Proof of the Berry-Esseen estimate in the case of nilpotent Lie groups""; ""15. The nil-shadow of a simply connected solvable Lie group""; ""16. Connected Lie groups of polynomial volume growth""; ""17. Proof of propositions 1.6.3 and 1.6.4 in the general case""; ""18. Proof of the Gaussian estimate in the general case""
""19. A Berry-Esseen estimate for the heat kernels on connected Lie groups of polynomial volume growth""""20. Polynomials on connected Lie groups of polynomial growth""; ""21. A Taylor formula for the heat functions on connected Lie groups of polynomial volume growth""; ""22. Harnack inequalities for the derivatives of the heat functions""; ""23. Harmonic functions of polynomial growth""; ""24. Berry-Esseen type of estimates for the derivatives of the heat kernel""; ""25. Riesz transforms""; ""Bibliography""
Record Nr. UNINA-9910480590903321
Alexopoulos Georgios K. <1962->  
Providence, Rhode Island : , : American Mathematical Society, , 2002
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Sub-Laplacians with drift on Lie groups of polynomial volume growth / / Georgios K. Alexopoulos
Sub-Laplacians with drift on Lie groups of polynomial volume growth / / Georgios K. Alexopoulos
Autore Alexopoulos Georgios K. <1962->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 2002
Descrizione fisica 1 online resource (119 p.)
Disciplina 510 s
512/.55
Collana Memoirs of the American Mathematical Society
Soggetto topico Lie groups
Functional analysis
ISBN 1-4704-0332-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""11. A Taylor formula for the heat functions on nilpotent Lie groups""""12. Harnack inequalities for the derivatives of the heat functions on nilpotent Lie groups""; ""13. Harmonic functions of polynomial growth on nilpotent Lie groups""; ""14. Proof of the Berry-Esseen estimate in the case of nilpotent Lie groups""; ""15. The nil-shadow of a simply connected solvable Lie group""; ""16. Connected Lie groups of polynomial volume growth""; ""17. Proof of propositions 1.6.3 and 1.6.4 in the general case""; ""18. Proof of the Gaussian estimate in the general case""
""19. A Berry-Esseen estimate for the heat kernels on connected Lie groups of polynomial volume growth""""20. Polynomials on connected Lie groups of polynomial growth""; ""21. A Taylor formula for the heat functions on connected Lie groups of polynomial volume growth""; ""22. Harnack inequalities for the derivatives of the heat functions""; ""23. Harmonic functions of polynomial growth""; ""24. Berry-Esseen type of estimates for the derivatives of the heat kernel""; ""25. Riesz transforms""; ""Bibliography""
Record Nr. UNINA-9910788845403321
Alexopoulos Georgios K. <1962->  
Providence, Rhode Island : , : American Mathematical Society, , 2002
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Sub-Laplacians with drift on Lie groups of polynomial volume growth / / Georgios K. Alexopoulos
Sub-Laplacians with drift on Lie groups of polynomial volume growth / / Georgios K. Alexopoulos
Autore Alexopoulos Georgios K. <1962->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 2002
Descrizione fisica 1 online resource (119 p.)
Disciplina 510 s
512/.55
Collana Memoirs of the American Mathematical Society
Soggetto topico Lie groups
Functional analysis
ISBN 1-4704-0332-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""11. A Taylor formula for the heat functions on nilpotent Lie groups""""12. Harnack inequalities for the derivatives of the heat functions on nilpotent Lie groups""; ""13. Harmonic functions of polynomial growth on nilpotent Lie groups""; ""14. Proof of the Berry-Esseen estimate in the case of nilpotent Lie groups""; ""15. The nil-shadow of a simply connected solvable Lie group""; ""16. Connected Lie groups of polynomial volume growth""; ""17. Proof of propositions 1.6.3 and 1.6.4 in the general case""; ""18. Proof of the Gaussian estimate in the general case""
""19. A Berry-Esseen estimate for the heat kernels on connected Lie groups of polynomial volume growth""""20. Polynomials on connected Lie groups of polynomial growth""; ""21. A Taylor formula for the heat functions on connected Lie groups of polynomial volume growth""; ""22. Harnack inequalities for the derivatives of the heat functions""; ""23. Harmonic functions of polynomial growth""; ""24. Berry-Esseen type of estimates for the derivatives of the heat kernel""; ""25. Riesz transforms""; ""Bibliography""
Record Nr. UNINA-9910808071903321
Alexopoulos Georgios K. <1962->  
Providence, Rhode Island : , : American Mathematical Society, , 2002
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui