top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Machine Learning Paradigms : Advances in Learning Analytics / / edited by Maria Virvou, Efthimios Alepis, George A. Tsihrintzis, Lakhmi C. Jain
Machine Learning Paradigms : Advances in Learning Analytics / / edited by Maria Virvou, Efthimios Alepis, George A. Tsihrintzis, Lakhmi C. Jain
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (230 pages)
Disciplina 371.334
Collana Intelligent Systems Reference Library
Soggetto topico Computational intelligence
Artificial intelligence
Learning
Instruction
Data mining
Computational Intelligence
Artificial Intelligence
Learning & Instruction
Data Mining and Knowledge Discovery
ISBN 3-030-13743-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910484339003321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Privacy and Data Protection Challenges in the Distributed Era
Privacy and Data Protection Challenges in the Distributed Era
Autore Politou Eugenia
Pubbl/distr/stampa Cham : , : Springer International Publishing AG, , 2021
Descrizione fisica 1 online resource (195 pages)
Altri autori (Persone) AlepisEfthimios
VirvouMaria
PatsakisConstantinos
Collana Learning and Analytics in Intelligent Systems Ser.
Soggetto genere / forma Electronic books.
ISBN 3-030-85443-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Series Editor's Foreword -- References -- Preface -- Contents -- Acronyms -- 1 Introduction -- 1.1 Book Objectives -- 1.2 Book Structure -- References -- 2 Privacy and Personal Data Protection -- 2.1 Introduction -- 2.2 The Value of Personal Data -- 2.3 The Value of Data Privacy -- 2.4 The Rights to Privacy and to Data Protection -- 2.5 Privacy in the Tax and Financial Domain -- References -- 3 The General Data Protection Regulation -- 3.1 Introduction -- 3.2 Introduction to the GDPR -- 3.3 The GDPR Data Protection Principles -- 3.4 Consent and Revocation -- 3.4.1 Consent Misuses -- 3.4.2 Consent Under the GDPR -- 3.4.3 Current Efforts for Revoking Consent -- 3.5 The Right to be Forgotten -- 3.5.1 Forgetting and the Need to be Forgotten -- 3.5.2 About the CJEU Decision -- 3.5.3 The Right to be Forgotten Under the GDPR -- References -- 4 The ``Right to Be Forgotten'' in the GDPR: Implementation Challenges and Potential Solutions -- 4.1 Introduction -- 4.2 Implementation Challenges -- 4.3 The Impact of the GDPR on Backups and Archives -- 4.3.1 GDPR Provisions for Backups and Archives -- 4.3.2 The Process of Backing up -- 4.3.3 IT Security Standards for Backup Procedures -- 4.3.4 Impact Analysis of Implementing the RtbF on Backups -- 4.4 Towards GDPR Compliance -- References -- 5 State-of-the-Art Technological Developments -- 5.1 Introduction -- 5.2 Mobile Ubiquitous Computing -- 5.2.1 Affective Computing -- 5.2.2 Mobile Affective Computing and Ubiquitous Sensing -- 5.3 Decentralized p2p Networks -- 5.3.1 Blockchain -- 5.3.2 Decentralized Storage and File Sharing -- References -- 6 Privacy in Ubiquitous Mobile Computing -- 6.1 Introduction -- 6.2 Privacy Risks in Mobile Computing -- 6.2.1 Privacy and Big Data -- 6.2.2 Informed Consent -- 6.2.3 Risk of Re-Identification -- 6.2.4 Risk of Profiling.
6.2.5 The Risks of Tax and Financial Profiling -- 6.2.6 Towards Accountable, Transparent and Fairer Profiling and Automated Decision Making -- 6.3 Mitigating Privacy Risks Under the GDPR -- 6.3.1 Profiling and Automated Decision Making Under the GDPR -- 6.3.2 Implementation Challenges and Countermeasures -- 6.3.3 The Future of Big Data Profiling Under the GDPR -- References -- 7 Privacy in Blockchain -- 7.1 Introduction -- 7.2 Blockchain Privacy -- 7.3 Blockchain's Immutability and the ``Right to Be Forgotten'' -- 7.4 Current Efforts for Balancing Immutability and the RtbF -- 7.4.1 Bypassing Blockchain's Immutability -- 7.4.2 Removing Blockchain's Immutability -- 7.5 The Controversy -- References -- 8 Implementing Content Erasure in IPFS -- 8.1 Introduction -- 8.2 Storing Off-Chain Personal Data in the IPFS -- 8.3 Erasing Content in IPFS -- 8.4 The Requirement for Total Content Erasure -- 8.5 Towards Aligning IPFS with the RtbF -- 8.6 The Proposed Protocol -- 8.6.1 Assumptions and Desiderata -- 8.6.2 Threat Model -- 8.6.3 IPFS Delegated Erasure Protocol -- 8.6.4 Security Proof -- 8.6.5 Protocol Efficiency -- 8.6.6 Limitations and Countermeasures -- References -- 9 Privacy in the COVID-19 Era -- 9.1 Introduction -- 9.2 Contact Tracing Apps -- 9.3 Immunity Passports -- 9.4 Privacy and Data Protection in the Pandemic -- 9.5 Conclusions -- References -- 10 Open Questions and Future Directions -- 10.1 Introduction -- 10.1.1 Forgetting Implementation Standards -- 10.1.2 Big Data Analytics -- 10.1.3 Backups and Archives -- 10.1.4 Blockchain -- 10.1.5 IPFS and Other Decentralized P2p File Storage Systems -- References -- 11 Conclusions -- 11.1 Introduction -- References.
Record Nr. UNINA-9910506403603321
Politou Eugenia  
Cham : , : Springer International Publishing AG, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui