top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Arthropod vector Vector saliva-host-pathogen interactions . Volume 2 : controller of disease transmission / / edited by Stephen K. Wikel, Serap Aksoy, George Dimopoulos
Arthropod vector Vector saliva-host-pathogen interactions . Volume 2 : controller of disease transmission / / edited by Stephen K. Wikel, Serap Aksoy, George Dimopoulos
Pubbl/distr/stampa London, England : , : Academic Press, , 2017
Descrizione fisica 1 online resource (317 pages) : illustrations (some color)
Disciplina 614.432
Soggetto topico Arthropod vectors
ISBN 0-12-809320-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910583013403321
London, England : , : Academic Press, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Arthropod Vector controller of disease transmission Vector microbiome and innate immunity of arthropods . Volume 1 / / edited by Stephen K Wikel, Serap Aksoy, George Dimopoulos
Arthropod Vector controller of disease transmission Vector microbiome and innate immunity of arthropods . Volume 1 / / edited by Stephen K Wikel, Serap Aksoy, George Dimopoulos
Pubbl/distr/stampa London, England : , : Academic Press, , 2017
Descrizione fisica 1 online resource (255 pages)
Disciplina 616.959
Soggetto topico Animals as carriers of disease
Animal ecology
ISBN 0-12-809237-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910583357603321
London, England : , : Academic Press, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Transgenic Insects : Techniques and Applications
Transgenic Insects : Techniques and Applications
Autore Benedict Mark Quentin
Edizione [2nd ed.]
Pubbl/distr/stampa Oxford : , : CAB International, , 2022
Descrizione fisica 1 online resource (762 pages)
Disciplina 636.0821
Altri autori (Persone) ScottMaxwell J
AhmedHassan M. M
AkbarOmar S
AksoySerap
AlcalayYehonatan
AlpheyLuke
ArienYael
AvrahamRotem Daniel
BeechCamilla
Collana CABI Biotechnology
Soggetto topico Transgenic animals
Insects - Genetic engineering
Insect cell biotechnology
ISBN 1-80062-116-7
1-80062-117-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Title Page -- Copyright -- Contents -- Contributors -- Preface -- Acknowledgements -- 1 Transposon-Based Technologies for Insects -- 1.1 Introduction -- 1.2 Transposons Used in Insects -- 1.2.1 P elements -- 1.2.2 piggyBac -- 1.2.3 Mos1 -- 1.2.4 Minos -- 1.2.5 Hermes, Herves, hopper and hobo -- 1.2.6 Tn5 -- 1.3 Mutagenesis -- 1.4 Germline Transformation -- 1.5 Transposons as Technology Platforms -- 1.5.1 Gene expression -- 1.5.2 Cell ablation -- 1.5.3 Gene silencing -- 1.5.4 Genetic sensors -- 1.6 Hybrid Transposase Systems for Precision Integration -- 1.7 CRISPR-associated Transposases -- 1.8 Conclusion -- 2 Inducible and Repressible Systems for Transgene Expression -- 2.1 Introduction -- 2.2 Naturally Occurring Systems of Conditional Expression -- 2.2.1 Heat shock - hsp70 -- 2.2.2 Natural temperature-sensitive lethal elements and mutations -- 2.2.3 Glucose repression -- 2.2.4 Metallothionein -- 2.2.5 lac inducible systems -- 2.3 Synthetic Systems -- 2.3.1 Tetracycline-mediated expression -- 2.3.2 Dimerization -- 2.3.3 GeneSwitch -- 2.3.4 Q system -- 2.3.5 Use of Cre/loxP recombination -- 2.4 Conclusions -- 3 Sex-, Tissue- and Stage-Specific Transgene Expression -- 3.1 Introduction -- 3.2 Gene Regulation in Insects -- 3.2.1 Transcriptional control -- 3.2.2 The promoter -- 3.2.3 Enhancers and silencers -- 3.2.4 Chromatin structure and genomic position effects -- 3.3 Post-transcriptional and Translational Control -- 3.3.1 Untranslated regions and introns -- 3.3.2 Regulatory RNAs -- 3.3.3 Splicing -- 3.3.4 Translational control -- 3.4 The Basic Genetic Construct -- 3.5 Sex-Specific Gene Expression -- 3.5.1 Targeting chromosomes -- 3.5.2 Sex-specific splicing -- 3.5.3 Sex-specific promoters -- 3.6 Tissue-Specific Gene Expression -- 3.6.1 Targeting tissues relevant for parasite transmission.
3.6.2 Targeting germline expression for gene drives -- 3.6.3 Targeting expression in chemosensory neurons -- 3.7 Stage-Specific Gene Expression -- 3.7.1 Targeting developmental stages -- 3.7.2 Targeting environmental, circadian and behavioural conditions -- 3.8 Design of Expression Systems for Sex-, Tissue- and Stage-Specific Transgene Expression -- 3.9 Mining Transcriptomics Data for Promoter Design -- 3.9.1 Limiting the promoter length -- 3.9.2 The importance of the UTR -- 3.9.3 Boosting levels of expression -- 3.9.4 Dampening levels of expression -- 3.9.5 Signal peptides for subcellular and extracellular localization -- 3.9.6 Controlling for position effects -- 3.9.7 In-frame fusions to capture endogenous regulation -- 3.9.8 Binary expression systems -- 3.10 Future Prospects -- 4 RNA Interference to Modify Phenotypes in Agriculturally Important Pest and Beneficial Insects: Useful Examples and Future Challenges -- 4.1 Introduction -- 4.2 RNAi Phenotypes in Insect Growth, Development, Behaviour and Reproduction -- 4.2.1 Growth and development -- 4.2.2 Behaviour and reproduction -- 4.3 RNAi Phenotypes Unravelling the Duality of Gene Isoforms -- 4.4 RNAi Phenotypes to Understand Insecticides, Mode of Action and Resistance Mechanisms -- 4.5 RNAi Phenotypes in Crop Protection -- 4.6 RNAi Phenotypes in Beneficial Insects, Pollinators and Natural Enemies -- 4.7 RNAi in the Field: Considerations for Biosafety -- 4.8 RNAi Future Challenges for Fundamental Mechanisms and Applications -- 4.9 Conclusions -- 5 Site-Specific Recombination for Gene Locus-Directed Transgene Integration and Modification -- 5.1 Introduction -- 5.2 Classification and Mechanisms of Site-Specific Recombination -- 5.2.1 Tyrosine and serine site-specific recombinases -- 5.2.2 CRISPR-Cas-mediated DNA double-strand breaks for site-specific genome editing.
5.3 Applications of Site-Specific Recombination -- 5.3.1 Integration into a single specific site -- 5.3.2 Integration into two sites -- 5.3.3 Modification of transgenes -- 5.3.4 Gene locus-directed chromosome modification: deletions, inversions and translocations -- 5.4 Conclusions -- 6 Receptor-Mediated Ovary Transduction of Cargo - ReMOT Control: a Comprehensive Review and Detailed Protocol for Implementation -- 6.1 History of Transgenic Methods in Arthropods -- 6.2 Development of CRISPR-based Technologies -- 6.3 Problems with Traditional Embryonic Microinjection -- 6.4 ReMOT Control Development -- 6.5 Summary of ReMOT Control Successes -- 6.5.1 Mosquitoes -- 6.5.2 Non-mosquito insects -- 6.6 Challenges and Future Directions -- 6.7 Recommendations for Adaptation of ReMOT Control to New Species -- 6.8 Generalized ReMOT Control Protocol -- 6.8.1 Prior to ReMOT Control -- 6.8.2 One day before injections -- 6.8.3 On injection day -- 6.8.4 Screening protocol -- 6.8.5 In vitro protein expression protocol -- 7 Site-Directed DNA Sequence Modification Using CRISPR-Cas9 -- 7.1 The CRISPR/Cas9 Revolution -- 7.1.1 CRISPR/Cas systems in bacterial immunity -- 7.1.2 CRISPR/Cas9 as a genome editing tool -- 7.2 Site-Directed Genomic Modifications in Insects (Version 2.0) -- 7.2.1 Designing sgRNA -- 7.2.2 Delivery of Cas9-gRNA complexes -- 7.2.3 Identifying genomic modifications -- 7.3 Applications of CRISPR/Cas9 in Insects -- 7.3.1 Developing markers for mutants -- 7.3.2 Testing gene function before making a gene drive -- 7.3.3 Functional genomics in evolution -- 7.4 Concluding Remarks -- 8 An Introduction to the Molecular Genetics of Gene Drives and Thoughts on Their Gradual Transition to Field Use -- 8.1 Introduction -- 8.2 Molecular Mechanism of CRISPR Homing-based Drive Systems -- 8.3 Population Modification -- 8.4 Population Suppression.
8.5 Additional Drive Design, Performance and Implementation Considerations -- 8.6 A Phased Approach to Gene Drive Advancement to the Field -- 8.7 Concluding Remarks -- 9 Drosophila melanogaster as a Model for Gene Drive Systems -- 9.1 Introduction -- 9.2 Engineered Transposon Drives -- 9.3 Homing Drives -- 9.3.1 Basic characteristics -- 9.3.2 Improved versions -- 9.3.3 Variants for drive control and applications -- 9.4 Shredder Drives -- 9.5 Toxin-Antidote Gene Drives -- 9.5.1 Cytoplasmic incompatibility -- 9.5.2 Medea -- 9.5.3 RNAi underdominance drives -- 9.5.4 Other underdominance drives -- 9.5.5 CRISPR toxin-antidote drives -- 9.5.6 Tethered drives -- 9.6 Self-limiting Gene Drives -- 9.6.1 Killer-rescue drives -- 9.6.2 Split drives -- 9.7 Measurement of Gene Drive Fitness -- 9.8 Comparisons with Other Organisms -- 9.9 Conclusions -- 10 Sex Ratio Manipulation Using Gene Drive for Mosquito Population Control -- 10.1 Introduction -- 10.2 Overview and General Principles of Sex Ratio Distorting (SRD) Methods -- 10.3 Meiotic Drive and Engineered X-Chromosome Shredders -- 10.4 Post-Zygotic Sex Distortion Through Sex-Specific Lethality -- 10.5 Engineering Y-Linked SRDs in Mosquitoes -- 10.6 Manipulation of Sex Determination Mechanisms -- 10.7 Conclusions -- 11 Population Modification Using Gene Drive for Reduction of Malaria Transmission -- 11.1 Introduction -- 11.2 Features of Gene Drive Population Modification Systems -- 11.3 Design Features of Parasite-Resistant Mosquitoes for Population Modification -- 11.4 Performance Objectives of Population Modification -- 11.5 Conclusions -- 12 Modelling Threshold-Dependent Gene Drives: a Case Study Using Engineered Underdominance -- 12.1 Introduction to Threshold-Dependent Gene Drives -- 12.2 Two-Locus Engineered Underdominance -- 12.3 Mathematical Modelling Approaches -- 12.4 Introduction Thresholds.
12.5 Relaxing Model Assumptions -- 12.5.1 Resistance formation and mutation -- 12.5.2 UD reversal -- 12.5.3 Spatial effects -- 12.6 Linking Theory and Experimentation -- 12.7 Alternative Configurations of UD -- 12.8 Areas of Future Interest -- 13 Tsetse Paratransgenesis: a Novel Strategy for Reducing the Spread of African Trypanosomiases -- 13.1 Tsetse as Vectors of Parasitic African Trypanosomes -- 13.2 Tsetse Reproduction and Symbiosis -- 13.2.1 Tsetse reproduction -- 13.2.2 Tsetse's endogenous endosymbionts -- 13.3 Utilizing Endogenous Endosymbionts for Tsetse Paratransgenesis -- 13.3.1 Recombinant Sodalis is well suited for tsetse paratransgenesis -- 13.3.2 Identification and expression of anti-trypanosomal effector molecules -- 13.3.3 Paratransgenic manipulation of tsetse midgut physiology to alter parasite infection dynamics -- 13.4 Utilizing Exogenous Bacteria for Tsetse Paratransgenesis -- 13.5 Mechanisms to Drive Parasite-Resistant Tsetse Phenotypes into Natural Populations -- 13.5.1 Exploiting Wolbachia-mediated mating incompatibilities -- 13.5.2 Modelling the efficacy of paratransgenic control -- 13.5.3 Polyandry and cytoplasmic incompatibility -- 13.6 Conclusions -- 14 Paratransgenic Control of Chagas Disease -- 14.1 Introduction -- 14.2 Chagas Disease -- 14.2.1 Epidemiology, ecology and modes of transmission of Chagas disease -- 14.2.2 Global spread of Chagas disease -- 14.3 Novel Approaches to Control of Chagas Disease -- 14.3.1 Paratransgenesis -- 14.3.2 Antimicrobial peptides as effector molecules -- 14.3.3 Single-chain antibodies -- 14.3.4 β-1-3-glucanase -- 14.3.5 Additional methods for bacterial modifications -- 14.4 From Bench Top to Field Trials -- 14.5 Conclusions -- 15 Asaia Paratransgenesis in Mosquitoes -- 15.1 Asaia -- 15.2 Paratransgenesis for Vector Control.
15.3 Desirable Attributes of Asaia as a Paratransgenic Candidate.
Record Nr. UNINA-9910760494603321
Benedict Mark Quentin  
Oxford : , : CAB International, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui