top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Large area and flexible electronics / / edited by Mario Caironi and Yong-Young Noh ; contributors, Jong-Hyun Ahn [and forty seven others]
Large area and flexible electronics / / edited by Mario Caironi and Yong-Young Noh ; contributors, Jong-Hyun Ahn [and forty seven others]
Edizione [2nd ed.]
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH, , 2015
Descrizione fisica 1 online resource (588 p.)
Disciplina 621.381028
Soggetto topico Electronics - Materials
Flexible printed circuits
ISBN 3-527-67999-5
3-527-67997-9
3-527-68000-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Large Area and Flexible Electronics; Contents; List of Contributors; Overview; Book Structure and Aim; Acknowledgments; References; Part I: Materials; Chapter 1 Polymeric and Small-Molecule Semiconductors for Organic Field-Effect Transistors; 1.1 Introduction; 1.2 Organic Semiconductor Structural Design; 1.3 Thin-Film Transistor Applications; 1.4 p-Channel Semiconductors; 1.4.1 Polymers; 1.4.2 Small Molecules; 1.5 n-Channel Semiconductors; 1.5.1 Polymers; 1.5.2 Small Molecules; 1.6 Ambipolar Semiconductors; 1.6.1 Polymers; 1.6.2 Small Molecules; 1.7 Conclusions; References
Chapter 2 Metal-Oxide Thin-Film Transistors for Flexible Electronics2.1 Introduction; 2.2 Metal-Oxide TFTs; 2.2.1 Advantages and Applications; 2.2.2 Vacuum Deposition; 2.2.3 Solution Processing; 2.3 Solution-Processed MO Thin Films; 2.3.1 Nanoparticle-Based Process; 2.3.2 Sol-Gel-Based Process; 2.3.3 Hybrid Type; 2.4 Low-Temperature-Processed MO TFTs for Flexible Electronics; 2.4.1 Low-Temperature-Processed MO TFTs; 2.4.1.1 Annealing Environment; 2.4.1.2 Ink Formulation; 2.4.1.3 Alternate Annealing Process; 2.4.2 Photochemical Activation of Oxide Semiconductors; 2.5 Summary; References
Chapter 3 Carbon Nanotube Thin-Film Transistors3.1 Introduction; 3.2 Individual SWCNTs and SWCNT Thin Films; 3.3 Chemical Vapor Deposition Growth of SWCNT TFTs; 3.4 Solution-Based Methods for SWCNT TFTs; 3.5 Inkjet Printing of Flexible SWCNT TFTs; 3.6 Fabrication Schemes for High-Performance Inkjet-Printed SWCNT TFTs; 3.7 Inkjet Printing of SWCNT CMOS Inverters; 3.8 Inkjet Printing of Aligned SWCNT Films; 3.9 Conclusion; References; Chapter 4 Organic Single-Crystalline Semiconductors for Flexible Electronics Applications; 4.1 Introduction
4.2 Electronic and Structural Properties of Single Crystals4.2.1 Intrinsic Transport Properties; 4.2.2 Crystal Dimensionality; 4.3 Crystallization Techniques; 4.3.1 Growth from Vapor Phase; 4.3.2 Growth from Solution; 4.4 Single-Crystal Flexible Electronic Devices; 4.4.1 Fundamental Mechanics for Flexible Electronics; 4.4.2 Mechanical Versatility of Organic Single Crystals; 4.4.3 Importance of Mechanical Properties Knowledge; 4.4.4 The Elastic Constants of Rubrene Single Crystals; 4.5 Strategies for Flexible Organic Single-Crystal Device Fabrication
4.5.1 Discrete Ultrathin Single-Crystal Transistor4.5.2 Transistor Arrays Based on Micropatterned Single Crystals; 4.5.3 Flexible Single-Crystal Nanowire Devices; 4.6 Conclusions; Acknowledgments; References; Chapter 5 Solution-Processable Quantum Dots; 5.1 Introduction; 5.2 Optimization of the Colloidal Synthesis of Quantum Dots by Selection of Suitable Solvents, Ligands, and Precursors; 5.3 Large-Scale Synthesis of Quantum Dots; 5.4 Surface Chemistry of Quantum Dots; 5.5 Post-Synthetic Chemical Modification of Nanocrystals; 5.6 Conclusions and Outlook; References
Chapter 6 Inorganic Semiconductor Nanomaterials for Flexible Electronics
Record Nr. UNINA-9910132294803321
Weinheim, Germany : , : Wiley-VCH, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Large area and flexible electronics / / edited by Mario Caironi and Yong-Young Noh ; contributors, Jong-Hyun Ahn [and forty seven others]
Large area and flexible electronics / / edited by Mario Caironi and Yong-Young Noh ; contributors, Jong-Hyun Ahn [and forty seven others]
Edizione [2nd ed.]
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH, , 2015
Descrizione fisica 1 online resource (588 p.)
Disciplina 621.381028
Soggetto topico Electronics - Materials
Flexible printed circuits
ISBN 3-527-67999-5
3-527-67997-9
3-527-68000-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Large Area and Flexible Electronics; Contents; List of Contributors; Overview; Book Structure and Aim; Acknowledgments; References; Part I: Materials; Chapter 1 Polymeric and Small-Molecule Semiconductors for Organic Field-Effect Transistors; 1.1 Introduction; 1.2 Organic Semiconductor Structural Design; 1.3 Thin-Film Transistor Applications; 1.4 p-Channel Semiconductors; 1.4.1 Polymers; 1.4.2 Small Molecules; 1.5 n-Channel Semiconductors; 1.5.1 Polymers; 1.5.2 Small Molecules; 1.6 Ambipolar Semiconductors; 1.6.1 Polymers; 1.6.2 Small Molecules; 1.7 Conclusions; References
Chapter 2 Metal-Oxide Thin-Film Transistors for Flexible Electronics2.1 Introduction; 2.2 Metal-Oxide TFTs; 2.2.1 Advantages and Applications; 2.2.2 Vacuum Deposition; 2.2.3 Solution Processing; 2.3 Solution-Processed MO Thin Films; 2.3.1 Nanoparticle-Based Process; 2.3.2 Sol-Gel-Based Process; 2.3.3 Hybrid Type; 2.4 Low-Temperature-Processed MO TFTs for Flexible Electronics; 2.4.1 Low-Temperature-Processed MO TFTs; 2.4.1.1 Annealing Environment; 2.4.1.2 Ink Formulation; 2.4.1.3 Alternate Annealing Process; 2.4.2 Photochemical Activation of Oxide Semiconductors; 2.5 Summary; References
Chapter 3 Carbon Nanotube Thin-Film Transistors3.1 Introduction; 3.2 Individual SWCNTs and SWCNT Thin Films; 3.3 Chemical Vapor Deposition Growth of SWCNT TFTs; 3.4 Solution-Based Methods for SWCNT TFTs; 3.5 Inkjet Printing of Flexible SWCNT TFTs; 3.6 Fabrication Schemes for High-Performance Inkjet-Printed SWCNT TFTs; 3.7 Inkjet Printing of SWCNT CMOS Inverters; 3.8 Inkjet Printing of Aligned SWCNT Films; 3.9 Conclusion; References; Chapter 4 Organic Single-Crystalline Semiconductors for Flexible Electronics Applications; 4.1 Introduction
4.2 Electronic and Structural Properties of Single Crystals4.2.1 Intrinsic Transport Properties; 4.2.2 Crystal Dimensionality; 4.3 Crystallization Techniques; 4.3.1 Growth from Vapor Phase; 4.3.2 Growth from Solution; 4.4 Single-Crystal Flexible Electronic Devices; 4.4.1 Fundamental Mechanics for Flexible Electronics; 4.4.2 Mechanical Versatility of Organic Single Crystals; 4.4.3 Importance of Mechanical Properties Knowledge; 4.4.4 The Elastic Constants of Rubrene Single Crystals; 4.5 Strategies for Flexible Organic Single-Crystal Device Fabrication
4.5.1 Discrete Ultrathin Single-Crystal Transistor4.5.2 Transistor Arrays Based on Micropatterned Single Crystals; 4.5.3 Flexible Single-Crystal Nanowire Devices; 4.6 Conclusions; Acknowledgments; References; Chapter 5 Solution-Processable Quantum Dots; 5.1 Introduction; 5.2 Optimization of the Colloidal Synthesis of Quantum Dots by Selection of Suitable Solvents, Ligands, and Precursors; 5.3 Large-Scale Synthesis of Quantum Dots; 5.4 Surface Chemistry of Quantum Dots; 5.5 Post-Synthetic Chemical Modification of Nanocrystals; 5.6 Conclusions and Outlook; References
Chapter 6 Inorganic Semiconductor Nanomaterials for Flexible Electronics
Record Nr. UNINA-9910814432703321
Weinheim, Germany : , : Wiley-VCH, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Micro light emitting diode : fabrication and devices : micro-LED technology / / Jong-Hyun Ahn and Jae Hyun Kim, editors
Micro light emitting diode : fabrication and devices : micro-LED technology / / Jong-Hyun Ahn and Jae Hyun Kim, editors
Pubbl/distr/stampa Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (161 pages)
Disciplina 500
Collana Series in Display Science and Technology
Soggetto topico Science
ISBN 981-16-5505-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910520080303321
Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Micro light emitting diode : fabrication and devices : micro-LED technology / / Jong-Hyun Ahn and Jae Hyun Kim, editors
Micro light emitting diode : fabrication and devices : micro-LED technology / / Jong-Hyun Ahn and Jae Hyun Kim, editors
Pubbl/distr/stampa Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (161 pages)
Disciplina 500
Collana Series in Display Science and Technology
Soggetto topico Science
ISBN 981-16-5505-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996466742103316
Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Silicon nanomembranes : fundamental science and applications / / edited by John A. Rogers and Jong-Hyun Ahn
Silicon nanomembranes : fundamental science and applications / / edited by John A. Rogers and Jong-Hyun Ahn
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH Verlag GmbH & Co. KGaA, , 2016
Descrizione fisica 1 online resource (369 p.)
Disciplina 660.2842
Soggetto topico Membranes (Technology)
Nanosilicon
ISBN 3-527-69100-6
3-527-69099-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright; Contents; List of Contributors; Part 1 Materials and Processes; Chapter 1 Synthesis, Assembly, and Applications of Semiconductor Nanomembranes; 1.1 Introduction; 1.2 Strategies for Forming Silicon Nanomembranes; 1.2.1 Selective Etching to Release Nanomembranes from Layered Assemblies; 1.2.2 Anisotropic Etching to Release Silicon Nanomembranes from Bulk Silicon Wafers; 1.3 Transfer Printing for Deterministic Assembly; 1.3.1 Introduction; 1.3.2 Mechanics of Transfer Printing; 1.3.3 Transfer Printing for Single- and Multilayer Deterministic Assembly
1.4 Compressive Buckling for Deterministic Assembly1.4.1 Introduction; 1.4.2 Buckling on Compliant Substrates for Wavy Layouts; 1.4.3 Patterned Adhesion for Controlled, Large-Scale Buckling; 1.4.4 Deterministic Assembly of Complex, Three-Dimensional Architectures by Compressive Buckling; 1.5 Functional Devices Made from Silicon Nanomembranes; 1.5.1 Physically Transient Electronics; 1.5.2 Injectable, Cellular-Scale Optoelectronic Devices for the Brain; 1.5.3 Three-Dimensional Integumentary Membranes for Spatiotemporal Cardiac Measurements; 1.5.4 Arthropod Eyes Inspired Digital Camera
1.5.5 Cephalopod Skins Inspired Optoelectronic Camouflage Systems1.6 Conclusions and Outlook; References; Chapter 2 Models of Reactive Diffusion for Resorbable Electronics; 2.1 Introduction; 2.2 Hydrolysis of Silicon Nanomembranes; 2.3 Material-Level Dissolution; 2.4 Dissolution of Device with Layered Structures; 2.5 Discussion and Conclusion; Acknowledgments; References; Part 2 Applications in Bio-Integrated and Flexible Electronics; Chapter 3 Transparent and Foldable Electronics Enabled by Si Nanomembranes; 3.1 Introduction; 3.2 Fabrication; 3.3 Characterization
3.3.1 Mechanical Properties of Si NM in Bending and Stretching3.3.2 Optical Properties; 3.3.3 Piezoresistive Effect in Si NM; 3.4 Configurations of Transparent and Foldable Electronic Devices; 3.4.1 Representative Materials for Transparent and Foldable Electronics; 3.4.2 Electrical and Optical Properties of Transparent TFTs; 3.4.3 Modification of the Bending Stiffness with Substrate Thickness; 3.4.4 Electromechanical Properties of Foldable TFTs; 3.4.5 Control of Stiffness by Thinning of Si for Stretchable Electronic Devices; 3.4.6 Control of Strain Distribution by Geometrical Design
3.4.7 Mechanical Properties of Stretchable Inverters3.5 Concluding Remarks; References; Chapter 4 High-Performance Flexible Electronic and Optoelectronic Devices by Mechanical Exfoliation from a Brittle Substrate; 4.1 Introduction; 4.2 Steady-State Substrate Cracking Parallel to the Interface in a Bilayers; 4.3 Spalling-Mode Fracture for Layer Transfer; 4.4 High-Performance Flexible Electronics by Controlled Spalling; 4.4.1 Ultra-Low-Power Nanoscale Silicon Integrated Circuits on Plastic; 4.4.2 Electrical Characteristics of Flexible Devices and Circuits
4.4.3 Effect of Strain on Device Performance
Record Nr. UNINA-9910136778303321
Weinheim, Germany : , : Wiley-VCH Verlag GmbH & Co. KGaA, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Silicon nanomembranes : fundamental science and applications / / edited by John A. Rogers and Jong-Hyun Ahn
Silicon nanomembranes : fundamental science and applications / / edited by John A. Rogers and Jong-Hyun Ahn
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH Verlag GmbH & Co. KGaA, , 2016
Descrizione fisica 1 online resource (369 p.)
Disciplina 660.2842
Soggetto topico Membranes (Technology)
Nanosilicon
ISBN 3-527-69100-6
3-527-69099-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright; Contents; List of Contributors; Part 1 Materials and Processes; Chapter 1 Synthesis, Assembly, and Applications of Semiconductor Nanomembranes; 1.1 Introduction; 1.2 Strategies for Forming Silicon Nanomembranes; 1.2.1 Selective Etching to Release Nanomembranes from Layered Assemblies; 1.2.2 Anisotropic Etching to Release Silicon Nanomembranes from Bulk Silicon Wafers; 1.3 Transfer Printing for Deterministic Assembly; 1.3.1 Introduction; 1.3.2 Mechanics of Transfer Printing; 1.3.3 Transfer Printing for Single- and Multilayer Deterministic Assembly
1.4 Compressive Buckling for Deterministic Assembly1.4.1 Introduction; 1.4.2 Buckling on Compliant Substrates for Wavy Layouts; 1.4.3 Patterned Adhesion for Controlled, Large-Scale Buckling; 1.4.4 Deterministic Assembly of Complex, Three-Dimensional Architectures by Compressive Buckling; 1.5 Functional Devices Made from Silicon Nanomembranes; 1.5.1 Physically Transient Electronics; 1.5.2 Injectable, Cellular-Scale Optoelectronic Devices for the Brain; 1.5.3 Three-Dimensional Integumentary Membranes for Spatiotemporal Cardiac Measurements; 1.5.4 Arthropod Eyes Inspired Digital Camera
1.5.5 Cephalopod Skins Inspired Optoelectronic Camouflage Systems1.6 Conclusions and Outlook; References; Chapter 2 Models of Reactive Diffusion for Resorbable Electronics; 2.1 Introduction; 2.2 Hydrolysis of Silicon Nanomembranes; 2.3 Material-Level Dissolution; 2.4 Dissolution of Device with Layered Structures; 2.5 Discussion and Conclusion; Acknowledgments; References; Part 2 Applications in Bio-Integrated and Flexible Electronics; Chapter 3 Transparent and Foldable Electronics Enabled by Si Nanomembranes; 3.1 Introduction; 3.2 Fabrication; 3.3 Characterization
3.3.1 Mechanical Properties of Si NM in Bending and Stretching3.3.2 Optical Properties; 3.3.3 Piezoresistive Effect in Si NM; 3.4 Configurations of Transparent and Foldable Electronic Devices; 3.4.1 Representative Materials for Transparent and Foldable Electronics; 3.4.2 Electrical and Optical Properties of Transparent TFTs; 3.4.3 Modification of the Bending Stiffness with Substrate Thickness; 3.4.4 Electromechanical Properties of Foldable TFTs; 3.4.5 Control of Stiffness by Thinning of Si for Stretchable Electronic Devices; 3.4.6 Control of Strain Distribution by Geometrical Design
3.4.7 Mechanical Properties of Stretchable Inverters3.5 Concluding Remarks; References; Chapter 4 High-Performance Flexible Electronic and Optoelectronic Devices by Mechanical Exfoliation from a Brittle Substrate; 4.1 Introduction; 4.2 Steady-State Substrate Cracking Parallel to the Interface in a Bilayers; 4.3 Spalling-Mode Fracture for Layer Transfer; 4.4 High-Performance Flexible Electronics by Controlled Spalling; 4.4.1 Ultra-Low-Power Nanoscale Silicon Integrated Circuits on Plastic; 4.4.2 Electrical Characteristics of Flexible Devices and Circuits
4.4.3 Effect of Strain on Device Performance
Record Nr. UNINA-9910831075903321
Weinheim, Germany : , : Wiley-VCH Verlag GmbH & Co. KGaA, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui