top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Data Mining : The Textbook / / by Charu C. Aggarwal
Data Mining : The Textbook / / by Charu C. Aggarwal
Autore Aggarwal Charu C
Edizione [1st ed. 2015.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
Descrizione fisica 1 online resource (XXIX, 734 p. 180 illus., 7 illus. in color.)
Disciplina 006.312
Soggetto topico Data mining
Pattern perception
Data Mining and Knowledge Discovery
Pattern Recognition
ISBN 3-319-14142-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction to Data Mining -- Data Preparation -- Similarity and Distances -- Association Pattern Mining -- Association Pattern Mining: Advanced Concepts -- Cluster Analysis -- Cluster Analysis: Advanced Concepts -- Outlier Analysis -- Outlier Analysis: Advanced Concepts -- Data Classification -- Data Classification: Advanced Concepts -- Mining Data Streams -- Mining Text Data -- Mining Time-Series Data -- Mining Discrete Sequences -- Mining Spatial Data -- Mining Graph Data -- Mining Web Data -- Social Network Analysis -- Privacy-Preserving Data Mining.
Record Nr. UNINA-9910299227603321
Aggarwal Charu C  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Linear Algebra and Optimization for Machine Learning [[electronic resource] ] : A Textbook / / by Charu C. Aggarwal
Linear Algebra and Optimization for Machine Learning [[electronic resource] ] : A Textbook / / by Charu C. Aggarwal
Autore Aggarwal Charu C
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (507 pages) : illustrations
Disciplina 512.5
Soggetto topico Machine learning
Matrix theory
Algebra
Computers
Machine Learning
Linear and Multilinear Algebras, Matrix Theory
Information Systems and Communication Service
ISBN 3-030-40344-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- 1 Linear Algebra and Optimization: An Introduction -- 2 Linear Transformations and Linear Systems -- 3 Eigenvectors and Diagonalizable Matrices -- 4 Optimization Basics: A Machine Learning View -- 5 Advanced Optimization Solutions -- 6 Constrained Optimization and Duality -- 7 Singular Value Decomposition -- 8 Matrix Factorization -- 9 The Linear Algebra of Similarity -- 10 The Linear Algebra of Graphs -- 11 Optimization in Computational Graphs -- Index.
Record Nr. UNISA-996465455903316
Aggarwal Charu C  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Linear Algebra and Optimization for Machine Learning : A Textbook / / by Charu C. Aggarwal
Linear Algebra and Optimization for Machine Learning : A Textbook / / by Charu C. Aggarwal
Autore Aggarwal Charu C
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (507 pages) : illustrations
Disciplina 512.5
Soggetto topico Machine learning
Matrix theory
Algebra
Computers
Machine Learning
Linear and Multilinear Algebras, Matrix Theory
Information Systems and Communication Service
ISBN 3-030-40344-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- 1 Linear Algebra and Optimization: An Introduction -- 2 Linear Transformations and Linear Systems -- 3 Eigenvectors and Diagonalizable Matrices -- 4 Optimization Basics: A Machine Learning View -- 5 Advanced Optimization Solutions -- 6 Constrained Optimization and Duality -- 7 Singular Value Decomposition -- 8 Matrix Factorization -- 9 The Linear Algebra of Similarity -- 10 The Linear Algebra of Graphs -- 11 Optimization in Computational Graphs -- Index.
Record Nr. UNINA-9910410040003321
Aggarwal Charu C  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine Learning for Text / / by Charu C. Aggarwal
Machine Learning for Text / / by Charu C. Aggarwal
Autore Aggarwal Charu C
Edizione [1st ed. 2018.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Descrizione fisica 1 online resource (XXIII, 493 p. 80 illus., 4 illus. in color.)
Disciplina 006.31
Soggetto topico Data mining
Artificial intelligence
Data Mining and Knowledge Discovery
Artificial Intelligence
ISBN 3-319-73531-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1 An Introduction to Text Analytics -- 2 Text Preparation and Similarity Computation -- 3 Matrix Factorization and Topic Modeling -- 4 Text Clustering -- 5 Text Classification: Basic Models -- 6 Linear Models for Classification and Regression -- 7 Classifier Performance and Evaluation -- 8 Joint Text Mining with Heterogeneous Data -- 9 Information Retrieval and Search Engines -- 10 Text Sequence Modeling and Deep Learning -- 11 Text Summarization -- 12 Information Extraction -- 13 Opinion Mining and Sentiment Analysis -- 14 Text Segmentation and Event Detection.
Record Nr. UNINA-9910299459603321
Aggarwal Charu C  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Neural networks and deep learning : a textbook / / by Charu C. Aggarwal
Neural networks and deep learning : a textbook / / by Charu C. Aggarwal
Autore Aggarwal Charu C
Edizione [1st ed.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Descrizione fisica 1 online resource (XXIII, 497 pages 139 illustrations, 11 illustrations in color.)
Disciplina 006.32
Soggetto topico Artificial intelligence
Computers
Microprocessors
Machine learning
Neural networks (Computer science)
Artificial Intelligence
Information Systems and Communication Service
Processor Architectures
ISBN 9783319944630
3319944630
9783319944647
3319944649
9783319944623
3319944622
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1 An Introduction to Neural Networks -- 2 Machine Learning with Shallow Neural Networks -- 3 Training Deep Neural Networks -- 4 Teaching Deep Learners to Generalize -- 5 Radical Basis Function Networks -- 6 Restricted Boltzmann Machines -- 7 Recurrent Neural Networks -- 8 Convolutional Neural Networks -- 9 Deep Reinforcement Learning -- 10 Advanced Topics in Deep Learning.
Record Nr. UNINA-9910741163303321
Aggarwal Charu C  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Outlier Analysis / / by Charu C. Aggarwal
Outlier Analysis / / by Charu C. Aggarwal
Autore Aggarwal Charu C
Edizione [2nd ed. 2017.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Descrizione fisica 1 online resource (XXII, 466 p. 78 illus., 13 illus. in color.)
Disciplina 006.312
Soggetto topico Data mining
Statistics 
Artificial intelligence
Data Mining and Knowledge Discovery
Statistics and Computing/Statistics Programs
Artificial Intelligence
ISBN 3-319-47578-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto An Introduction to Outlier Analysis -- Probabilistic Models for Outlier Detection -- Linear Models for Outlier Detection -- Proximity-Based Outlier Detection -- High-Dimension Outlier Detection -- Outlier Ensembles -- Supervised Outlier Detection -- Categorical, Text, and Mixed Attribute Data -- Time Series and Streaming Outlier Detection -- Outlier Detection in Discrete Sequences -- Spatial Outlier Detection -- Outlier Detection in Graphs and Networks -- Applications of Outlier Analysis.
Record Nr. UNINA-9910254845803321
Aggarwal Charu C  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Outlier analysis / / Charu C. Aggarwal
Outlier analysis / / Charu C. Aggarwal
Autore Aggarwal Charu C
Edizione [1st ed. 2013.]
Pubbl/distr/stampa New York, NY, : Springer, c2013
Descrizione fisica 1 online resource (xv, 446 pages) : illustrations (some color)
Disciplina 519.5/2
519.52
Collana Gale eBooks
Soggetto topico Outliers (Statistics)
Data mining
ISBN 1-4614-6396-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto An Introduction to Outlier Analysis -- Probabilistic and Statistical Models for Outlier Detection -- Linear Models for Outlier Detection -- Proximity-based Outlier Detection -- High-Dimensional Outlier Detection: The Subspace Method -- Supervised Outlier Detection -- Outlier Detection in Categorical, Text and Mixed Attribute Data -- Time Series and Multidimensional Streaming Outlier Detection -- Outlier Detection in Discrete Sequences -- Spatial Outlier Detection -- Outlier Detection in Graphs and Networks -- Applications of Outlier Analysis.
Record Nr. UNINA-9910437575303321
Aggarwal Charu C  
New York, NY, : Springer, c2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Outlier Ensembles : An Introduction / / by Charu C. Aggarwal, Saket Sathe
Outlier Ensembles : An Introduction / / by Charu C. Aggarwal, Saket Sathe
Autore Aggarwal Charu C
Edizione [1st ed. 2017.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Descrizione fisica 1 online resource (XVI, 276 p. 55 illus., 9 illus. in color.)
Disciplina 005.1
Soggetto topico Computers
Artificial intelligence
Statistics 
Information Systems and Communication Service
Artificial Intelligence
Statistics and Computing/Statistics Programs
ISBN 3-319-54765-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto An Introduction to Outlier Ensembles -- Theory of Outlier Ensembles -- Variance Reduction in Outlier Ensembles -- Bias Reduction in Outlier Ensembles: The Guessing Game -- Model Combination Methods for Outlier Ensembles -- Which Outlier Detection Algorithm Should I Use?
Record Nr. UNINA-9910254842703321
Aggarwal Charu C  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Probability and Statistics for Machine Learning : A Textbook
Probability and Statistics for Machine Learning : A Textbook
Autore Aggarwal Charu C
Edizione [1st ed.]
Pubbl/distr/stampa Cham : , : Springer, , 2024
Descrizione fisica 1 online resource (530 pages)
Disciplina 006.31
ISBN 3-031-53282-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- Preface -- Acknowledgments -- Author Biography -- 1 Probability and Statistics: An Introduction -- 1.1 Introduction -- 1.1.1 The Interplay Between Probability, Statistics, and Machine Learning -- 1.1.2 Chapter Organization -- 1.2 Representing Data -- 1.2.1 Numeric Multidimensional Data -- 1.2.2 Categorical and Mixed Attribute Data -- 1.3 Summarizing and Visualizing Data -- 1.4 The Basics of Probability and Probability Distributions -- 1.4.1 Populations versus Samples -- 1.4.2 Modeling Populations with Samples -- 1.4.3 Handing Dependence in Data Samples -- 1.5 Hypothesis Testing -- 1.6 Basic Problems in Machine Learning -- 1.6.1 Clustering -- 1.6.2 Classification and Regression Modeling -- 1.6.2.1 Regression -- 1.6.3 Outlier Detection -- 1.7 Summary -- 1.8 Further Reading -- 1.9 Exercises -- 2 Summarizing and Visualizing Data -- 2.1 Introduction -- 2.1.1 Chapter Organization -- 2.2 Summarizing Data -- 2.2.1 Univariate Summarization -- 2.2.1.1 Measures of Central Tendency -- 2.2.1.2 Measures of Dispersion -- 2.2.2 Multivariate Summarization -- 2.2.2.1 Covariance and Correlation -- 2.2.2.2 Rank Correlation Measures -- 2.2.2.3 Correlations among Multiple Attributes -- 2.2.2.4 Contingency Tables for Categorical Data -- 2.3 Data Visualization -- 2.3.1 Univariate Visualization -- 2.3.1.1 Histogram -- 2.3.1.2 Box Plot -- 2.3.2 Multivariate Visualization -- 2.3.2.1 Line Plot -- 2.3.2.2 Scatter Plot -- 2.3.2.3 Bar Chart -- 2.4 Applications to Data Preprocessing -- 2.4.1 Univariate Preprocessing Methods -- 2.4.2 Whitening: A Multivariate Preprocessing Method -- 2.5 Summary -- 2.6 Further Reading -- 2.7 Exercises -- 3 Probability Basics and Random Variables -- 3.1 Introduction -- 3.1.1 Chapter Organization -- 3.2 Sample Spaces and Events -- 3.3 The Counting Approach to Probabilities -- 3.4 Set-Wise View of Events.
3.5 Conditional Probabilities and Independence -- 3.6 The Bayes Rule -- 3.6.1 The Observability Perspective: Posteriors versus Likelihoods -- 3.7 The Basics of Probability Distributions -- 3.7.1 Closed-Form View of Probability Distributions -- 3.7.2 Continuous Distributions -- 3.7.3 Multivariate Probability Distributions -- 3.8 Distribution Independence and Conditionals -- 3.8.1 Independence of Distributions -- 3.8.2 Conditional Distributions -- 3.8.3 Example: A Simple 1-Dimensional Knowledge-Based Bayes Classifier -- 3.9 Summarizing Distributions -- 3.9.1 Expectation and Variance -- 3.9.2 Distribution Covariance -- 3.9.3 Useful Multivariate Properties Under Independence -- 3.10 Compound Distributions -- 3.10.1 Total Probability Rule in Continuous Hypothesis Spaces -- 3.10.2 Bayes Rule in Continuous Hypothesis Spaces -- 3.11 Functions of Random Variables (*) -- 3.11.1 Distribution of the Function of a Single Random Variable -- 3.11.2 Distribution of the Sum of Random Variables -- 3.11.3 Geometric Derivation of Distributions of Functions -- 3.12 Summary -- 3.13 Further Reading -- 3.14 Exercises -- 4 Probability Distributions -- 4.1 Introduction -- 4.1.1 Chapter Organization -- 4.2 The Uniform Distribution -- 4.3 The Bernoulli Distribution -- 4.4 The Categorical Distribution -- 4.5 The Geometric Distribution -- 4.6 The Binomial Distribution -- 4.7 The Multinomial Distribution -- 4.8 The Exponential Distribution -- 4.9 The Poisson Distribution -- 4.10 The Normal Distribution -- 4.10.0.1 Closure Properties of the Normal Distribution Family -- 4.10.1 Multivariate Normal Distribution: Independent Attributes -- 4.10.2 Multivariate Normal Distribution: Dependent Attributes -- 4.11 The Student's t-Distribution -- 4.12 The χ2-Distribution -- 4.12.1 Application: Mahalanobis Method for Outlier Detection -- 4.13 Mixture Distributions: The Realistic View.
4.13.1 Why Mixtures are Ubiquitous: A Motivating Example -- 4.13.2 The Basic Generative Process of a Mixture Model -- 4.13.3 Some Useful Results for Prediction -- 4.13.4 The Conditional Independence Assumption -- 4.14 Moments of Random Variables (*) -- 4.14.1 Central and Standardized Moments -- 4.14.2 Moment Generating Functions -- 4.15 Summary -- 4.16 Further Reading -- 4.17 Exercises -- 5 Hypothesis Testing and Confidence Intervals -- 5.1 Introduction -- 5.1.1 Chapter Organization -- 5.2 The Central Limit Theorem -- 5.3 Sampling Distribution and Standard Error -- 5.4 The Basics of Hypothesis Testing -- 5.4.1 Confidence Intervals -- 5.4.2 When Population Standard Deviations Are Not Available -- 5.4.3 The One-Tailed Hypothesis Test -- 5.5 Hypothesis Tests For Differences in Means -- 5.5.1 Unequal Variance t-Test -- 5.5.1.1 Tightening the Degrees of Freedom -- 5.5.2 Equal Variance t-Test -- 5.5.3 Paired t-Test -- 5.6 χ2-Hypothesis Tests -- 5.6.1 Standard Deviation Hypothesis Test -- 5.6.2 χ2-Goodness-of-Fit Test -- 5.6.3 Independence Tests -- 5.7 Analysis of Variance (ANOVA) -- 5.8 Machine Learning Applications of Hypothesis Testing -- 5.8.1 Evaluating the Performance of a Single Classifier -- 5.8.2 Comparing Two Classifiers -- 5.8.3 χ2-Statistic for Feature Selection in Text -- 5.8.4 Fisher Discriminant Index for Feature Selection -- 5.8.5 Fisher Discriminant Index for Classification (*) -- 5.8.5.1 Most Discriminating Direction for the Two-Class Case -- 5.8.5.2 Most Discriminating Direction for Multiple Classes -- 5.9 Summary -- 5.10 Further Reading -- 5.11 Exercises -- 6 Reconstructing Probability Distributions -- 6.1 Introduction -- 6.1.1 Chapter Organization -- 6.2 Maximum Likelihood Estimation -- 6.2.1 Comparing Likelihoods with Posteriors -- 6.3 Reconstructing Common Distributions from Data -- 6.3.1 The Uniform Distribution.
6.3.2 The Bernoulli Distribution -- 6.3.3 The Geometric Distribution -- 6.3.4 The Binomial Distribution -- 6.3.5 The Multinomial Distribution -- 6.3.6 The Exponential Distribution -- 6.3.7 The Poisson Distribution -- 6.3.8 The Normal Distribution -- 6.3.9 Multivariate Distributions with Dimension Independence -- 6.3.10 Gaussian Distribution with Dimension Dependence -- 6.4 Mixture of Distributions: The EM Algorithm -- 6.5 Kernel Density Estimation -- 6.6 Reducing Reconstruction Variance -- 6.6.1 Variance in Maximum Likelihood Estimation -- 6.6.2 Prior Beliefs with Maximum A Posteriori (MAP) Estimation -- 6.6.2.1 Example: Laplacian Smoothing -- 6.6.3 Kernel Density Estimation: Role of Bandwidth -- 6.7 The Bias-Variance Trade-Off -- 6.8 Popular Distributions Used as Conjugate Priors (*) -- 6.8.1 Gamma Distribution -- 6.8.2 Beta Distribution -- 6.8.3 Dirichlet Distribution -- 6.9 Summary -- 6.10 Further Reading -- 6.11 Exercises -- 7 Regression -- 7.1 Introduction -- 7.1.1 Chapter Organization -- 7.2 The Basics of Regression -- 7.2.1 Interpreting the Coefficients -- 7.2.2 Feature Engineering Trick for Dropping Bias -- 7.2.3 Regression: A Central Problem in Statistics and Linear Algebra -- 7.3 Two Perspectives on Linear Regression -- 7.3.1 The Linear Algebra Perspective -- 7.3.2 The Probabilistic Perspective -- 7.3.2.1 Example: Regression with L1-Loss -- 7.4 Solutions to Linear Regression -- 7.4.1 Closed-Form Solution to Squared-Loss Regression -- 7.4.2 The Case of One Non-Trivial Predictor Variable -- 7.4.3 Solution with Gradient Descent for Squared Loss -- 7.4.3.1 Stochastic Gradient Descent -- 7.4.4 Gradient Descent For L1-Loss Regression -- 7.5 Handling Categorical Predictors -- 7.6 Overfitting and Regularization -- 7.6.1 Closed-Form Solution for Regularized Formulation -- 7.6.2 Solution Based on Gradient Descent -- 7.6.3 LASSO Regularization.
7.7 A Probabilistic View of Regularization -- 7.8 Evaluating Linear Regression -- 7.8.1 Evaluating In-Sample Properties of Regression -- 7.8.1.1 Correlation Versus R2-Statistic -- 7.8.2 Out-of-Sample Evaluation -- 7.9 Nonlinear Regression -- 7.9.1 Interpretable Feature Engineering -- 7.9.2 Explicit Feature Engineering with Similarity Matrices -- 7.9.3 Implicit Feature Engineering with Similarity Matrices -- 7.10 Summary -- 7.11 Further Reading -- 7.12 Exercises -- 8 Classification: A Probabilistic View -- 8.1 Introduction -- 8.1.1 Chapter Organization -- 8.2 Generative Probabilistic Models -- 8.2.1 Continuous Numeric Data: The Gaussian Distribution -- 8.2.1.1 Prediction -- 8.2.1.2 Handling Overfitting -- 8.2.2 Binary Data: The Bernoulli Distribution -- 8.2.2.1 Prediction -- 8.2.2.2 Handling Overfitting -- 8.2.3 Sparse Numeric Data: The Multinomial Distribution -- 8.2.3.1 Prediction -- 8.2.3.2 Handling Overfitting -- 8.2.3.3 Extending Multinomial Distributions to Real-Valued Data -- 8.2.4 Plate Diagrams for Generative Processes -- 8.3 Loss-Based Formulations: A Probabilistic View -- 8.3.1 Least-Squares Classification -- 8.3.1.1 The Probabilistic Interpretation and Its Problems -- 8.3.1.2 Practical Issues with Least Squares Classification -- 8.3.2 Logistic Regression -- 8.3.2.1 Maximum Likelihood Estimation for Logistic Regression -- 8.3.2.2 Gradient Descent and Stochastic Gradient Descent -- 8.3.2.3 Interpreting Updates in Terms of Error Probabilities -- 8.3.3 Multinomial Logistic Regression -- 8.3.3.1 The Probabilistic Model -- 8.3.3.2 Maximum Likelihood Estimation -- 8.3.3.3 Gradient Descent and Stochastic Gradient Descent -- 8.3.3.4 Probabilistic Interpretation of Gradient Descent Updates -- 8.4 Beyond Classification: Ordered Logit Model -- 8.4.1 Maximum Likelihood Estimation for Ordered Logit -- 8.5 Summary -- 8.6 Further Reading -- 8.7 Exercises.
9 Unsupervised Learning: A Probabilistic View.
Record Nr. UNINA-9910861088903321
Aggarwal Charu C  
Cham : , : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Recommender Systems : The Textbook / / by Charu C. Aggarwal
Recommender Systems : The Textbook / / by Charu C. Aggarwal
Autore Aggarwal Charu C
Edizione [1st ed. 2016.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
Descrizione fisica 1 online resource (XXI, 498 p. 79 illus., 18 illus. in color.)
Disciplina 005.56
Soggetto topico Data mining
Artificial intelligence
Data Mining and Knowledge Discovery
Artificial Intelligence
Informàtica
Sistemes d'informació
Difusió selectiva de la informació
Intel·ligència artificial
Soggetto genere / forma Llibres electrònics
ISBN 3-319-29659-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto An Introduction to Recommender Systems -- Neighborhood-Based Collaborative Filtering -- Model-Based Collaborative Filtering -- Content-Based Recommender Systems -- Knowledge-Based Recommender Systems -- Ensemble-Based and Hybrid Recommender Systems -- Evaluating Recommender Systems -- Context-Sensitive Recommender Systems -- Time- and Location-Sensitive Recommender Systems -- Structural Recommendations in Networks -- Social and Trust-Centric Recommender Systems -- Attack-Resistant Recommender Systems -- Advanced Topics in Recommender Systems.
Record Nr. UNINA-9910254982703321
Aggarwal Charu C  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui