Aerospace Polymeric Materials |
Autore | Inamuddin <1980-> |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2022 |
Descrizione fisica | 1 online resource (281 pages) |
Altri autori (Persone) |
AltalhiTariq A
AdnanSayed Mohammed |
Soggetto genere / forma | Electronic books. |
ISBN |
1-119-90526-5
1-119-90525-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Tuning Aerogel Properties for Aerospace Applications -- 1.1 Introduction -- 1.2 Synthesis -- 1.3 Aerospace Missions -- 1.3.1 Stardust Mission -- 1.3.2 MARS Pathfinder Mission -- 1.3.3 Hypersonic Inflatable Aerodynamic Decelerator -- 1.3.4 Mars Science Laboratory -- 1.3.5 Cryogenic Fluid Containment -- 1.4 Property Tuning of Aerogels -- 1.4.1 During Synthesis -- 1.4.2 Post-Synthesis -- 1.4.3 Aerogel Composites -- 1.5 Tuning Properties for Aerospace Applications -- 1.5.1 Thermal Conductivity -- 1.5.1.1 Minimizing Solid Conductivity -- 1.5.1.2 Modification of IR Absorption Properties -- 1.5.1.3 Minimizing Gaseous Conductivity -- 1.5.2 Mechanical Property -- 1.5.3 Optical Transmittance -- 1.6 Conclusion and Future Prospects -- Acknowledgments -- References -- 2 Welding of Polymeric Materials in Aircrafts -- 2.1 Introduction -- 2.2 Major Polymer Welding Methods Applied in Aviation -- 2.2.1 Hot Gas Welding -- 2.2.2 Hot Plate Welding -- 2.2.3 Extrusion Welding -- 2.2.4 Infrared Welding -- 2.2.5 Laser Welding -- 2.2.6 Vibration Welding -- 2.2.7 Friction Welding -- 2.2.8 Friction Stir Welding -- 2.2.9 Friction Stir Spot Welding -- 2.2.10 Ultrasonic Welding -- 2.2.11 Resistance Implant Welding -- 2.2.12 Induction Welding -- 2.2.13 Dielectric Welding -- 2.2.14 Microwave Welding -- 2.3 Conclusion -- References -- 3 Carbon Nanostructures for Reinforcement of Polymers in Mechanical and Aerospace Engineering -- 3.1 Introduction -- 3.2 Common Carbon Nanoparticles -- 3.2.1 Graphene -- 3.2.2 Carbon Nanotubes -- 3.2.3 Fullerenes -- 3.3 Modeling and Mechanical Properties of Carbon Nanoparticles -- 3.4 Modeling of Carbon Nanoparticles Reinforced Polymers -- 3.5 Preparation of Carbon Nanoparticles Reinforced Polymers.
3.6 Mechanical Properties of Carbon Nanoparticles Reinforced Polymers -- 3.6.1 Graphene Family/Polymer -- 3.6.1.1 Graphite Nanosheets/Polymer -- 3.6.1.2 Graphene and Graphene Oxide/Polymer -- 3.6.2 CNT/Polymer -- 3.6.3 Fullerene/Polymer -- 3.7 Application of Carbon Nanoparticles Reinforced Polymers in Mechanical and Aerospace Engineering -- 3.8 Conclusions -- References -- 4 Self-Healing Carbon Fiber-Reinforced Polymers for Aerospace Applications -- 4.1 General Principle of Self-Healing Composites -- 4.1.1 Extrinsic Healing -- 4.1.2 Intrinsic Self-Healing -- 4.2 Self-Healing Carbon Fiber-Reinforced Polymers -- 4.2.1 Carbon Fiber-Reinforced Polymers (CFRPs) -- 4.2.2 Healing Efficiency -- 4.3 Manufacturing Techniques -- 4.4 Recent Development of Carbon Fiber-Reinforced Polymers in Aerospace Applications -- 4.4.1 Engines -- 4.4.2 Fuselage -- 4.4.3 Aerostructure -- 4.4.4 Coating -- 4.4.5 Other Application -- 4.5 Disposal and Recycling of Self-Healing Carbon Fiber-Reinforced Polymers -- 4.6 Conclusion and Future Challenges -- References -- 5 Advanced Polymeric Materials for Aerospace Applications -- 5.1 Introduction -- 5.2 Types of Advanced Polymers -- 5.2.1 Copolymers -- 5.2.2 Polymer Matrix Composite -- 5.2.3 Properties of Reinforced Materials -- 5.3 Thermoplastics -- 5.4 Thermosetting -- 5.5 Polymeric Nanocomposites -- 5.6 Glass Fiber -- 5.7 Polycarbonates -- 5.8 Applications -- 5.9 Conclusion -- References -- 6 Self-Healing Composite Materials -- 6.1 Introduction -- 6.2 Self-Healing Mechanism -- 6.3 Types of Self-Healing Coatings -- 6.3.1 Passive Self-Healing for External Techniques -- 6.3.1.1 Microencapsulation -- 6.3.1.2 Hollow-Fiber Approach -- 6.3.1.3 Microvascular Network -- 6.3.2 Active Self-Healing Methodology Based on Intrinsic -- 6.3.2.1 Shape Memory Polymers (SMPs) -- 6.3.2.2 Reversible Polymers. 6.4 Research Areas of Self-Healing Materials -- 6.5 Aerospace Applications of Polymer Composite Self-Healing Materials -- 6.5.1 Aircraft Fuselage and Structure -- 6.5.2 Coatings -- 6.6 Conclusion -- References -- 7 Conducting Polymer Composites for Antistatic Application in Aerospace -- 7.1 Introduction -- 7.2 Conducting Polymer Composites (CPCs) for Antistatic Application in Aerospace -- 7.3 Conducting Polymer Nanocomposites (CPNCs) for Antistatic Application in Aerospace -- 7.4 Conclusions -- References -- 8 Electroactive Polymeric Shape Memory Composites for Aerospace Application -- 8.1 Introduction -- 8.1.1 Electroactive Polymer -- 8.1.1.1 Electronic EAPs -- 8.1.1.2 Dielectric Elastomer Actuators (DEAs) -- 8.1.1.3 Piezoelectric Polymer -- 8.1.1.4 Ferroelectric EAPs -- 8.1.2 Ionic Polymers -- 8.1.2.1 Carbon Nanotube (CNT) Actuators -- 8.1.2.2 Ionic Polymer Metal Composites -- 8.1.2.3 Carbon Nanotubes -- 8.1.2.4 Ionic Polymer Gels -- 8.2 Shape-Memory Polymers (SMPs) -- 8.2.1 Properties of Shape Memory Polymers -- 8.2.1.1 Classification of SMPs by Stimulus Response -- 8.2.2 Shape Memory Polymer Composites -- 8.2.3 Electroactive Shape Memory Polymers -- 8.2.4 Applications of Electroactive Shape Memory Polymer Composites in Aerospace -- 8.2.5 Hybrid Electroactive Morphing Wings -- 8.2.6 Paper-Thin CNT -- 8.2.7 SMPC Hinges -- 8.2.8 SMPC Booms -- 8.2.9 Foldable SMPC Truss Booms -- 8.2.9.1 Coilable SMPC Truss Booms -- 8.2.9.2 SMPC STEM Booms -- 8.2.10 SMPC Reflector Antennas -- 8.2.11 Expandable Lunar Habitat -- 8.2.12 Super Wire -- References -- 9 Polymer Nanocomposite Dielectrics for High-Temperature Applications -- 9.1 Introduction -- 9.1.1 Polymer Nanocomposite Dielectrics (PNCD) -- 9.2 Crucial Factor in Framing the High-Temperature Polymer Nanocomposite Dielectric Materials -- 9.2.1 Dielectric Permittivity -- 9.2.2 Thermal Stability. 9.3 Application of Polymer Nanocomposite Dielectric at Elevated Temperature and Their Progress -- 9.4 Conclusion -- References -- 10 Self-Healable Conductive and Polymeric Composite Materials -- 10.1 Introduction -- 10.2 Self-Healing Materials -- 10.2.1 Self-Healing Polymers -- 10.2.2 Self-Healing Polymer Composite Materials -- 10.3 Mechanically-Induced Self-Healing Materials -- 10.3.1 Self-Healing Induction Grounded on Gel -- 10.3.2 Self-Healing Induction Based on Crystals -- 10.3.3 Self-Healing Induction Based on Corrosion Inhibitors -- 10.4 Self-Healing Elastomers and Reversible Materials -- 10.5 Self-Healing Conductive Materials -- 10.5.1 Self-Healing Conductive Polymers -- 10.5.2 Self-Healing Conductive Capsules -- 10.5.3 Self-Healing Conductive Liquids -- 10.5.4 Self-Healing Conductive Composites -- 10.5.5 Self-Healing Conductive Coating -- 10.6 Conclusion and Future Prospects -- References -- Index -- EULA. |
Record Nr. | UNINA-9910590093903321 |
Inamuddin <1980-> | ||
Newark : , : John Wiley & Sons, Incorporated, , 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Aerospace polymeric materials / / edited by Inamuddin Tariq Altalhi and Sayed Mohammed Adnan |
Pubbl/distr/stampa | Hoboken, NJ : , : John Wiley & Sons, Inc., , 2022 |
Descrizione fisica | 1 online resource (281 pages) |
Disciplina | 629.1 |
Soggetto topico |
Aerospace engineering - Materials
Polymeric composites |
ISBN |
1-119-90526-5
1-119-90525-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Tuning Aerogel Properties for Aerospace Applications -- 1.1 Introduction -- 1.2 Synthesis -- 1.3 Aerospace Missions -- 1.3.1 Stardust Mission -- 1.3.2 MARS Pathfinder Mission -- 1.3.3 Hypersonic Inflatable Aerodynamic Decelerator -- 1.3.4 Mars Science Laboratory -- 1.3.5 Cryogenic Fluid Containment -- 1.4 Property Tuning of Aerogels -- 1.4.1 During Synthesis -- 1.4.2 Post-Synthesis -- 1.4.3 Aerogel Composites -- 1.5 Tuning Properties for Aerospace Applications -- 1.5.1 Thermal Conductivity -- 1.5.1.1 Minimizing Solid Conductivity -- 1.5.1.2 Modification of IR Absorption Properties -- 1.5.1.3 Minimizing Gaseous Conductivity -- 1.5.2 Mechanical Property -- 1.5.3 Optical Transmittance -- 1.6 Conclusion and Future Prospects -- Acknowledgments -- References -- 2 Welding of Polymeric Materials in Aircrafts -- 2.1 Introduction -- 2.2 Major Polymer Welding Methods Applied in Aviation -- 2.2.1 Hot Gas Welding -- 2.2.2 Hot Plate Welding -- 2.2.3 Extrusion Welding -- 2.2.4 Infrared Welding -- 2.2.5 Laser Welding -- 2.2.6 Vibration Welding -- 2.2.7 Friction Welding -- 2.2.8 Friction Stir Welding -- 2.2.9 Friction Stir Spot Welding -- 2.2.10 Ultrasonic Welding -- 2.2.11 Resistance Implant Welding -- 2.2.12 Induction Welding -- 2.2.13 Dielectric Welding -- 2.2.14 Microwave Welding -- 2.3 Conclusion -- References -- 3 Carbon Nanostructures for Reinforcement of Polymers in Mechanical and Aerospace Engineering -- 3.1 Introduction -- 3.2 Common Carbon Nanoparticles -- 3.2.1 Graphene -- 3.2.2 Carbon Nanotubes -- 3.2.3 Fullerenes -- 3.3 Modeling and Mechanical Properties of Carbon Nanoparticles -- 3.4 Modeling of Carbon Nanoparticles Reinforced Polymers -- 3.5 Preparation of Carbon Nanoparticles Reinforced Polymers.
3.6 Mechanical Properties of Carbon Nanoparticles Reinforced Polymers -- 3.6.1 Graphene Family/Polymer -- 3.6.1.1 Graphite Nanosheets/Polymer -- 3.6.1.2 Graphene and Graphene Oxide/Polymer -- 3.6.2 CNT/Polymer -- 3.6.3 Fullerene/Polymer -- 3.7 Application of Carbon Nanoparticles Reinforced Polymers in Mechanical and Aerospace Engineering -- 3.8 Conclusions -- References -- 4 Self-Healing Carbon Fiber-Reinforced Polymers for Aerospace Applications -- 4.1 General Principle of Self-Healing Composites -- 4.1.1 Extrinsic Healing -- 4.1.2 Intrinsic Self-Healing -- 4.2 Self-Healing Carbon Fiber-Reinforced Polymers -- 4.2.1 Carbon Fiber-Reinforced Polymers (CFRPs) -- 4.2.2 Healing Efficiency -- 4.3 Manufacturing Techniques -- 4.4 Recent Development of Carbon Fiber-Reinforced Polymers in Aerospace Applications -- 4.4.1 Engines -- 4.4.2 Fuselage -- 4.4.3 Aerostructure -- 4.4.4 Coating -- 4.4.5 Other Application -- 4.5 Disposal and Recycling of Self-Healing Carbon Fiber-Reinforced Polymers -- 4.6 Conclusion and Future Challenges -- References -- 5 Advanced Polymeric Materials for Aerospace Applications -- 5.1 Introduction -- 5.2 Types of Advanced Polymers -- 5.2.1 Copolymers -- 5.2.2 Polymer Matrix Composite -- 5.2.3 Properties of Reinforced Materials -- 5.3 Thermoplastics -- 5.4 Thermosetting -- 5.5 Polymeric Nanocomposites -- 5.6 Glass Fiber -- 5.7 Polycarbonates -- 5.8 Applications -- 5.9 Conclusion -- References -- 6 Self-Healing Composite Materials -- 6.1 Introduction -- 6.2 Self-Healing Mechanism -- 6.3 Types of Self-Healing Coatings -- 6.3.1 Passive Self-Healing for External Techniques -- 6.3.1.1 Microencapsulation -- 6.3.1.2 Hollow-Fiber Approach -- 6.3.1.3 Microvascular Network -- 6.3.2 Active Self-Healing Methodology Based on Intrinsic -- 6.3.2.1 Shape Memory Polymers (SMPs) -- 6.3.2.2 Reversible Polymers. 6.4 Research Areas of Self-Healing Materials -- 6.5 Aerospace Applications of Polymer Composite Self-Healing Materials -- 6.5.1 Aircraft Fuselage and Structure -- 6.5.2 Coatings -- 6.6 Conclusion -- References -- 7 Conducting Polymer Composites for Antistatic Application in Aerospace -- 7.1 Introduction -- 7.2 Conducting Polymer Composites (CPCs) for Antistatic Application in Aerospace -- 7.3 Conducting Polymer Nanocomposites (CPNCs) for Antistatic Application in Aerospace -- 7.4 Conclusions -- References -- 8 Electroactive Polymeric Shape Memory Composites for Aerospace Application -- 8.1 Introduction -- 8.1.1 Electroactive Polymer -- 8.1.1.1 Electronic EAPs -- 8.1.1.2 Dielectric Elastomer Actuators (DEAs) -- 8.1.1.3 Piezoelectric Polymer -- 8.1.1.4 Ferroelectric EAPs -- 8.1.2 Ionic Polymers -- 8.1.2.1 Carbon Nanotube (CNT) Actuators -- 8.1.2.2 Ionic Polymer Metal Composites -- 8.1.2.3 Carbon Nanotubes -- 8.1.2.4 Ionic Polymer Gels -- 8.2 Shape-Memory Polymers (SMPs) -- 8.2.1 Properties of Shape Memory Polymers -- 8.2.1.1 Classification of SMPs by Stimulus Response -- 8.2.2 Shape Memory Polymer Composites -- 8.2.3 Electroactive Shape Memory Polymers -- 8.2.4 Applications of Electroactive Shape Memory Polymer Composites in Aerospace -- 8.2.5 Hybrid Electroactive Morphing Wings -- 8.2.6 Paper-Thin CNT -- 8.2.7 SMPC Hinges -- 8.2.8 SMPC Booms -- 8.2.9 Foldable SMPC Truss Booms -- 8.2.9.1 Coilable SMPC Truss Booms -- 8.2.9.2 SMPC STEM Booms -- 8.2.10 SMPC Reflector Antennas -- 8.2.11 Expandable Lunar Habitat -- 8.2.12 Super Wire -- References -- 9 Polymer Nanocomposite Dielectrics for High-Temperature Applications -- 9.1 Introduction -- 9.1.1 Polymer Nanocomposite Dielectrics (PNCD) -- 9.2 Crucial Factor in Framing the High-Temperature Polymer Nanocomposite Dielectric Materials -- 9.2.1 Dielectric Permittivity -- 9.2.2 Thermal Stability. 9.3 Application of Polymer Nanocomposite Dielectric at Elevated Temperature and Their Progress -- 9.4 Conclusion -- References -- 10 Self-Healable Conductive and Polymeric Composite Materials -- 10.1 Introduction -- 10.2 Self-Healing Materials -- 10.2.1 Self-Healing Polymers -- 10.2.2 Self-Healing Polymer Composite Materials -- 10.3 Mechanically-Induced Self-Healing Materials -- 10.3.1 Self-Healing Induction Grounded on Gel -- 10.3.2 Self-Healing Induction Based on Crystals -- 10.3.3 Self-Healing Induction Based on Corrosion Inhibitors -- 10.4 Self-Healing Elastomers and Reversible Materials -- 10.5 Self-Healing Conductive Materials -- 10.5.1 Self-Healing Conductive Polymers -- 10.5.2 Self-Healing Conductive Capsules -- 10.5.3 Self-Healing Conductive Liquids -- 10.5.4 Self-Healing Conductive Composites -- 10.5.5 Self-Healing Conductive Coating -- 10.6 Conclusion and Future Prospects -- References -- Index -- EULA. |
Record Nr. | UNINA-9910829825803321 |
Hoboken, NJ : , : John Wiley & Sons, Inc., , 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Electroceramics for High Performance Supercapicitors / / edited by Inamuddin, Tariq Altalhi and Sayed Mohammed Adnan |
Edizione | [First edition.] |
Pubbl/distr/stampa | Hoboken, NJ : , : John Wiley & Sons, Inc., , [2024] |
Descrizione fisica | 1 online resource (0 pages) |
Disciplina | 621.381 |
Soggetto topico |
Electronic ceramics
Supercapacitors |
ISBN |
1-394-16716-4
1-394-16715-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Lead-Free Energy Storage Ceramics -- 1.1 Introduction -- 1.2 Dielectric Capacitor and Energy Storage -- 1.3 Energy Storage of Dielectric Ceramics Free of Lead -- 1.4 Conclusion and Outlooks -- Acknowledgments -- References -- Chapter 2 Lead-Based Ceramics for High-Performance Supercapacitors -- 2.1 Introduction -- 2.2 General Idea of Ceramics for Supercapacitors -- 2.2.1 Metallic Oxide Ceramics for Supercapacitors -- 2.2.2 Binary Metal Oxides -- 2.2.2.1 Ceramics of Spinal Oxide Material -- 2.2.2.2 Barium Titanate Ceramics -- 2.2.3 Multimetal Oxidized Ceramics -- 2.2.4 Metal Hydroxide-Type Ceramics -- 2.3 Principle Involved in Electroceramics -- 2.3.1 Electrostatic Capacitor -- 2.4 Lead-Based Ceramics -- 2.4.1 Lead-Based Ferroelectrics -- 2.4.2 Lead-Based Relaxor Ferroelectrics -- 2.4.3 Lead-Based Anti-Ferroelectrics -- 2.5 Characteristics of Lead-Based Ceramics -- 2.5.1 Characteristics of Lead Zirconate Titanate -- 2.5.2 Characteristics of Lead Magnesium Niobate -- 2.5.3 Characteristics of Lead Zinc Niobate -- 2.6 Conclusion and Perspectives -- 2.6.1 Up-to-Date Sintering and Molding Process -- 2.6.2 Microscopical and Flexible Ceramics Electrode Materials -- 2.6.3 Improvement of Efficiency of the Ceramic Electrode Materials -- References -- Chapter 3 Ceramic Films for High-Performance Supercapacitors -- 3.1 Introduction -- 3.2 Energy Storage Principles -- 3.3 Factors Optimizing Energy Density -- 3.3.1 The Intrinsic Band Gap (Eg) -- 3.3.2 Electrical Microstructure -- 3.3.3 Density and Grain Size -- 3.4 Ceramics for Supercapacitors -- 3.4.1 Metal Oxide Ceramics -- 3.4.2 Multielemental Oxides -- 3.5 Conclusions and Outlook -- References -- Chapter 4 Ceramic Multilayers and Films for High-Performance Supercapacitors -- 4.1 Introduction.
4.2 Fundamentals of Energy Storage in Electroceramics -- 4.2.1 Electrostatic Capacitors -- 4.2.2 Important Factors Designed for Assessing Energy Storage Characteristics -- 4.3 Important Factors for Maximizing Energy Density -- 4.3.1 Intrinsic Band Gap -- 4.3.2 Electrical Microstructure -- 4.4 Different Types of Electroceramics Capacitors for Energy Storage -- 4.4.1 Pb-Doped Ceramics -- 4.4.1.1 Pb-Doped RFEs -- 4.4.1.2 Lead-Doped Antiferroelectrics -- 4.4.2 Pb-Free Ceramics -- 4.4.2.1 BaTiO3-Based Ceramics -- 4.4.2.2 K0.5Na0.5NbO3-Doped Ceramics -- 4.4.2.3 Na0.5Bi0.5TiO3-Doped Ceramics -- 4.4.2.4 AgNbO3-Based Ceramics -- 4.5 Application of Electroceramics Supercapacitor -- 4.6 Conclusion -- References -- Chapter 5 Superconductors for Energy Storage -- 5.1 Introduction -- 5.1.1 Background -- 5.1.2 Superconducting Properties -- 5.1.3 Synthetic Methodology -- 5.2 Low-Temperature Superconductors -- 5.2.1 Nb-Ti-Based LTS -- 5.2.2 Nb3Sn-Based LTS -- 5.3 High-Temperature Superconductors -- 5.3.1 Cuprate-Based HTS -- 5.3.2 Iron-Based Pnictides (Pn) and Chalcogenides (Ch) as HTS -- 5.3.3 MgB2-Based HTS -- 5.3.4 Hydrides-Based HTS -- 5.4 Superconductors in Energy Applications -- 5.4.1 Superconducting Magnetic Energy Storage -- 5.4.1.1 Use of SMES in the Power Grid: Flexible AC Transmission System (FACTS) -- 5.4.1.2 Use of SMES as Fault Current Limiters -- 5.4.2 Use of Superconductors in Accelerator System -- 5.4.3 Use of Superconductors in Fusion Technologies -- 5.4.4 Challenges Faced During Superconducting Energy Storage -- 5.5 Conclusion -- Acknowledgments -- References -- Chapter 6 Key Factors for Optimizing Energy Density in High-Performance Supercapacitors -- 6.1 Supercapacitor -- 6.2 Electric Double-Layer Capacitor -- 6.3 Pseudo-Capacitor -- 6.4 Hybrid Supercapacitor -- 6.4.1 Electrochemical Performance -- 6.4.2 Capacitance -- 6.4.3 Specific Capacitance. 6.4.4 Energy Density -- 6.4.5 Power Density -- 6.4.6 Cyclic Stability -- 6.5 The Energy Density of Supercapacitor -- 6.5.1 Optimization of High Energy Density -- 6.5.1.1 Pore Size -- 6.5.1.2 Surface Area -- 6.5.1.3 Grain Size -- 6.5.1.4 Functional Groups -- 6.5.1.5 Band Gap -- 6.5.2 Effect of Voltage -- 6.5.3 Asymmetric Supercapacitors -- 6.5.4 Negative Electrode Materials -- 6.5.5 Positive Electrode Materials -- 6.5.6 Battery-Supercapacitor Hybrid (Bsh) Device -- 6.5.6.1 Lithium-Ion BSH -- 6.5.6.2 Na-Ion BSH -- 6.5.6.3 Acidic BSH -- 6.5.6.4 Alkaline BSH -- 6.6 Future Outlook -- 6.7 Conclusion -- References -- Chapter 7 Optimization of Anti-Ferroelectrics -- 7.1 Introduction -- 7.2 Energy Storage Properties -- 7.3 Antiferroelectric for Energy Storage -- 7.3.1 Lead-Based Antiferroelectric -- 7.3.2 Lead-Free Antiferroelectric -- 7.3.3 Challenges -- 7.4 Explosive Energy Conversion -- 7.5 Energy Storage and High-Power Capacitors -- 7.6 Thermal-Electric Energy Interconversion -- 7.7 Optimization -- 7.7.1 Phase Structure Engineering -- 7.7.1.1 Planning Phase in a Structural Engineering Project -- 7.7.1.2 Design Phase -- 7.7.1.3 Construction Phase -- 7.7.2 Grain Size Engineering -- 7.7.3 Domain Engineering -- 7.7.3.1 Phase -- 7.7.3.2 Domain Analysis -- 7.7.3.3 Domain Design -- 7.7.4 Doping -- 7.8 Conclusion -- References -- Chapter 8 Super Capacitive Performance Assessment of Mixed Ferromagnetic Iron and Cobalt Oxides and Their Polymer Composites -- 8.1 Introduction -- 8.1.1 Electrolyte -- 8.1.2 Separator -- 8.1.3 Current Collector -- 8.1.4 Supercapacitor Electrode Materials -- 8.2 Ferromagnetic Electrode Materials -- 8.3 Mixed Ferromagnetic Iron and Cobalt Oxides -- 8.4 Conclusion -- References -- Chapter 9 Transition Metal Oxides with Broaden Potential Window for High-Performance Supercapacitors -- 9.1 Introduction of Transition Metal Oxides (TMOs). 9.2 Redox-Based Materials -- 9.3 Conducting Polymers -- 9.4 Electroactive Metal Oxides or Transition Metal Oxides (TMOs) as Electrodes for SCs -- 9.4.1 MnO2 as Electrode Material for SCs -- 9.4.2 Pseudo-Capacitive Behavior of á-MnO2 by Cation Insertion -- 9.4.3 Na0.5MnO2 Nanosheet Assembled Nanowall Arrays for ASCs -- 9.4.4 FeOx/FeOOH Material as Negative Electrode -- 9.4.5 Carbon-Stabilized Fe3O4@C Nanorod Arrays as an Efficient Anode for SCs -- 9.4.6 Electrochemical Performance of Fe3O4 and Fe3O4@C NRAs as Anode -- 9.4.7 Construction of Na0.5MnO2//Fe3O4@C ASC and Electrochemical Performance -- 9.4.8 Highly Efficient NiCo2S4@Fe2O3//MnO2 ASC -- 9.4.9 Bi2O3 as Negative Electrode with Broaden Potential Window -- 9.5 Conclusion -- References -- Chapter 10 Aqueous Redox-Active Electrolytes -- 10.1 Introduction -- 10.2 Electrolyte Requirements for High-Performance Supercapacitors -- 10.2.1 Conductivity -- 10.2.2 Salt Effect -- 10.2.3 Solvent Effect -- 10.2.4 Electrochemical Stability -- 10.2.5 Thermal Stability -- 10.3 Effect of the Electrolyte on Supercapacitor Performance -- 10.3.1 Aqueous Electrolytes -- 10.3.2 Acidic Electrolytes -- 10.3.2.1 Sulfuric Acid Electrolyte-Based EDLC and Pseudocapacitors -- 10.3.2.2 H2SO4 Electrolyte-Based Hybrid Supercapacitors -- 10.3.3 Alkaline Electrolytes -- 10.3.3.1 Alkaline Electrolyte-Based EDLC and Pseudocapacitors -- 10.3.3.2 Alkaline Electrolyte-Based Hybrid Supercapacitors -- 10.3.4 Neutral Electrolyte -- 10.3.4.1 Neutral Electrolyte-Based EDLC and Pseudocapacitors -- 10.3.4.2 Neutral Electrolyte-Based Hybrid Supercapacitors -- 10.4 Conclusion and Future Research Directions -- References -- Chapter 11 Strategies for Improving Energy Storage Properties -- 11.1 Introduction -- 11.2 Result and Discussion -- 11.2.1 Solid-State Batteries -- 11.2.2 Ultracapacitor -- 11.2.3 Flywheels. 11.2.4 Pumped Hydroelectric Storage Dams -- 11.2.5 Rail Energy Storage -- 11.2.6 Compressed Storage of Air -- 11.2.7 Liquid Air Energy Storage -- 11.2.8 Pumped Heat Electrical Storage -- 11.2.9 Redox Flow Batteries -- 11.2.10 Superconducting Magnetic Energy Storage -- 11.2.11 Methane -- 11.3 Energy Storage Systems Applications -- 11.3.1 Mills -- 11.3.2 Homes -- 11.3.3 Power Stations and Grid Electricity -- 11.3.4 Air Conditioning -- 11.3.5 Transportation -- 11.3.6 Electronics -- 11.4 Energy Storage Systems Economics -- 11.5 Impacts on Environment by Electricity Storage -- 11.6 Future Prospective -- 11.7 Conclusion -- References -- Chapter 12 State-of-the-Art in Electroceramics for Energy Storage -- 12.1 Introduction -- 12.2 Electroceramics for Energy-Storing Devices -- 12.2.1 Bulk-Based Ceramics -- 12.2.2 Lead-Free Ceramics -- 12.3 Ceramic Multilayers and Films -- 12.4 Ceramic Films for Energy Storage in Capacitors -- 12.5 Conclusion -- References -- Chapter 13 Lead-Free Ceramics for High Performance Supercapacitors -- 13.1 Introduction -- 13.2 Ceramics -- 13.2.1 General Classification of Ceramics -- 13.2.1.1 Ceramic-Based Capacitors -- 13.3 Types of Ceramic Capacitors -- 13.4 Overview of Ceramics for Supercapacitors -- 13.4.1 Metal Oxide Ceramics for Supercapacitors -- 13.4.2 Multi-Elemental Oxide Ceramics for Supercapacitors -- 13.4.2.1 Spinel Oxide Ceramics -- 13.5 Lead-Based Ceramics -- 13.6 Lead-Free Ceramics -- 13.6.1 Analysis of Pb-Free Hybrid Materials for Energy Conversion -- 13.7 Comparison of Pb-Based Ceramics and Pb-Free Ceramics -- 13.8 Conclusion -- References -- Index -- EULA. |
Record Nr. | UNINA-9910747099803321 |
Hoboken, NJ : , : John Wiley & Sons, Inc., , [2024] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Sustainable Materials for Electrochemcial Capacitors |
Autore | Inamuddin |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2023 |
Descrizione fisica | 1 online resource (467 pages) |
Disciplina | 621.31/5 |
Altri autori (Persone) |
AltalhiTariq
AdnanSayed Mohammed |
Soggetto topico | Capacitors - Materials |
ISBN |
1-394-16710-5
1-394-16709-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Sustainable Materials for Electrochemical Supercapacitors: Eco Materials -- 1.1 Introduction -- 1.2 Eco-Carbon-Based Electrode Materials -- 1.3 Eco-Metal Oxide-Based Electrode Materials -- 1.4 Eco-Carbon-Based Material/Metal Oxide Composite Electrode Materials -- 1.5 Conclusion -- References -- Chapter 2 Solid Waste-Derived Carbon Materials for Electrochemical Capacitors -- 2.1 Introduction -- 2.2 Solid Waste as a Source of CNS -- 2.3 Preparation and Activation Methods of Solid Waste-Derived CNS -- 2.4 Effect of Structural and Morphological Diversities on Electrochemical Performance -- 2.5 Environmental Trash-Derived CNS in Electrochemical Capacitors -- 2.6 Challenges and Future Prospects -- 2.7 Conclusions -- References -- Chapter 3 Metal Hydroxides -- 3.1 Introduction -- 3.2 Method to Fabricate Metal Hydroxide -- 3.2.1 Precipitation Strategy -- 3.2.2 Post-Uniting and Metal Cation Consolidation Strategy -- 3.2.3 Ion Exchange Method -- 3.2.4 Sonochemical Method -- 3.2.5 Hydrothermal Method -- 3.2.6 Polyol Synthesis -- 3.3 Properties and Applications of MOHs -- 3.3.1 MOH Flame Retardants -- 3.3.1.1 Alumina Tri-Hydrate (ATH) and Milk of Magnesia -- 3.3.1.2 Utilization of Mg(OH)2 as a Flame Resistance in Plastics -- 3.3.2 MOHs Sludge Can Be Used as Latest Adsorbent -- 3.3.3 Metal Hydroxide MOH Nanostructures -- 3.3.4 MOHs for Supercapacitor Electrode Materials -- 3.3.5 Drugs or Pharmaceutical Applications -- 3.3.5.1 Ca(OH)2 Used in Dental Practice -- 3.3.6 Removal of Toxins from the Water -- 3.3.6.1 Water's Physical and Chemical Characteristics -- 3.3.6.2 Types of Wastewater -- 3.3.6.3 Treatment Techniques of Wastewater -- 3.3.6.4 Metal Hydroxide for Treatment of Wastewater -- 3.4 Examples of Metal Hydroxide -- 3.4.1 Calcium Hydroxide Ca(OH)2.
3.4.1.1 Utilizations of Ca(OH)2 in Dental Detailing of Ca(OH)2 (Glues) -- 3.4.1.2 Materials for Setting the Therapeutic Effect -- 3.4.1.3 Covering of Pits -- 3.4.2 Magnesium Hydroxide Mg(OH)2 -- 3.4.3 Copper Hydroxide -- 3.4.4 Graphene Hydroxide -- 3.4.5 Nickel Hydroxides -- 3.4.6 Aluminum Hydroxide -- 3.4.6.1 Sources of Human Exposure in the Environment -- 3.4.6.2 Natural Levels and Exposure to the Environment and Humans -- 3.4.6.3 Kinetics and Metabolism in Humans -- 3.4.6.4 Animals -- 3.5 Conclusions -- References -- Chapter 4 Porous Organic Polymers: Genres, Chemistry, Synthetic Strategies, and Diversified Applications -- 4.1 Introduction -- 4.2 Family of Porous Organic Materials -- 4.2.1 Covalent Organic Frameworks (COFs) -- 4.2.1.1 Historical Development of Covalent Organic Frameworks COFs -- 4.2.1.2 Chemistry of Covalent Organic Frameworks (COFs) -- 4.2.1.3 Classifications of COFs -- 4.2.1.4 Synthetic Strategy Adopted for COFs Formation -- 4.2.1.5 Characterization COF -- 4.2.1.6 Applications of COF -- 4.2.2 Covalent Triazine Frameworks (CTF) -- 4.2.2.1 Historical Development of CTF -- 4.2.2.2 Chemistry of CTFs -- 4.2.2.3 Synthesize of CTFs -- 4.2.2.4 Characterizations of CTFs -- 4.2.2.5 Applications of CTF -- 4.2.3 Hyper-Cross-Linked Polymers (HCPs) -- 4.2.3.1 Historical Development -- 4.2.3.2 Chemistry of HCPs -- 4.2.3.3 Synthesis of HCPs -- 4.2.3.4 Characterization and Applications of HCP -- 4.2.3.5 Applications of HCPs -- 4.2.4 Conjugated Micro Porous Polymers (CMP) -- 4.2.4.1 Historical Development and Selected Advances of Conjugated Micro Porous Polymers -- 4.2.4.2 Design and Synthetic Strategy Adopted for Synthesizing CMPs -- 4.2.4.3 Characterization of Conjugated Microporous Polymers (CMP) -- 4.2.4.4 Applications of CMPs -- 4.2.5 Porous Aromatic Frameworks (PAFs) -- 4.2.5.1 Historical Development of PAF -- 4.2.5.2 Chemistry of PAF. 4.2.5.3 Design Principles and Synthetic Strategy Adopted to Synthesize PAFs -- 4.2.5.4 Synthesize of PAFs -- 4.2.5.5 PAF Characterization -- 4.2.5.6 Applications -- 4.2.6 Porous Organic Cages -- 4.2.6.1 Characterization of Organic Cages -- 4.3 Conclusions and Perspectives -- References -- Chapter 5 Gel-Type Natural Polymers as Electroconductive Materials -- 5.1 Introduction -- 5.2 Natural Polymers -- 5.2.1 Hydrogels -- 5.2.2 Classification of Hydrogels -- 5.2.3 Composition of Hydrogels -- 5.2.4 Natural Polymers Derived Hydrogels -- 5.2.5 Cellulose-Based Hydrogels -- 5.2.6 Chitosan-Based Hydrogels -- 5.2.7 Xanthan Gum-Based Hydrogels -- 5.2.8 Sea Weed-Derived Polysaccharide-Based Hydrogels -- 5.2.9 Protein-Based Hydrogels -- 5.2.10 DNA-Based Hydrogels -- 5.3 Synthesis Methods for Fabrication of Natural Polymer-Based Hydrogels -- 5.3.1 Natural Polymer-Based Chemically Cross-Linked Hydrogels -- 5.3.2 Grafting Method -- 5.3.3 Radical Polymerization Method -- 5.3.4 Irradiation Method -- 5.3.5 Enzymatic Reaction Method -- 5.4 Natural Polymer-Based Physically Cross-Linked Hydrogels -- 5.4.1 By Freezing and Thawing Cycles -- 5.4.2 By Hydrogen Bonding -- 5.4.3 By Ionic Interactions -- 5.5 Properties of Natural Polymer-Based Hydrogels -- 5.5.1 Mechanical Properties -- 5.5.2 Biodegradability -- 5.5.3 Swelling Characteristics -- 5.6 Stimuli Sensitivity of Hydrogels -- 5.7 Application of Hydrogels as Electrochemical Supercapacitors -- 5.7.1 Types of Supercapacitors -- 5.7.2 Electrochemical Double-Layer Capacitor (EDLC) -- 5.7.3 Pseudo Capacitor -- 5.7.4 Asymmetric or Hybrid Supercapacitors -- 5.8 Conducting Polymer Hydrogels as Electrode Materials -- 5.9 Conducting Polymer Hydrogels as Electrolyte Materials -- 5.10 Conclusion -- References -- Chapter 6 Ionic Liquids for Supercapacitors -- 6.1 Introduction -- 6.2 Brief Introduction of Supercapacitor. 6.2.1 Supercapacitor and Its Classification -- 6.2.2 Electrolyte of Supercapacitor -- 6.3 Ionic Liquids and Its Unique Properties -- 6.4 Application of Ionic Liquids in Supercapacitors -- 6.4.1 Pure Ionic Liquid as Electrolyte -- 6.4.1.1 Aprotic Ionic Liquids -- 6.4.1.2 Proton Ionic Liquids -- 6.4.1.3 Functionalized Ionic Liquids -- 6.4.2 Mixture Electrolyte of Ionic Liquids -- 6.4.2.1 Binary of Ionic Liquids -- 6.4.2.2 Mixed Electrolyte of Organic Solvent and Ionic Liquids -- 6.4.2.3 Mixed Electrolyte of Ionic Liquid and Ionic Salt -- 6.5 Conclusion and Prospective -- Acknowledgments -- References -- Chapter 7 Functional Binders for Electrochemical Capacitors -- 7.1 Introduction -- 7.2 Characteristics of Binder -- 7.3 Method of Fabricating Supercapacitor Electrode -- 7.4 Mechanism of Binding Process -- 7.5 Classification of Binders -- 7.5.1 On the Basis of Origin -- 7.5.2 On the Basis of Reactivity -- 7.6 Characterization Techniques -- 7.7 Conventional Binders and Related Issues -- 7.8 Sustainable Binders -- 7.9 Conclusion -- References -- Chapter 8 Sustainable Substitutes for Fluorinated Electrolytes in Electrochemical Capacitors -- 8.1 Introduction -- 8.2 Fluorinated Electrolytes -- 8.3 Sustainable Substitutes for Fluorinated Electrolytes -- 8.3.1 Aqueous Electrolytes -- 8.3.1.1 Seawater -- 8.3.1.2 Aqueous Solution of Redox-Active Ligands as Electrolytes -- 8.3.2 Organic Electrolytes -- 8.3.3 Solid-State Electrolytes -- 8.4 Performance of Sustainable Electrolytes Compared to Fluorinated Electrolytes -- 8.4.1 Strongly Acidic Electrolytes -- 8.4.2 Strong Alkaline Electrolytes -- 8.4.3 Neutral Electrolytes -- 8.4.4 Organic Electrolytes -- 8.5 Final Remarks -- References -- Chapter 9 Aqueous Redox-Active Electrolytes -- 9.1 Introduction -- 9.2 Effect of the Electrolyte on Supercapacitor Performance -- 9.3 Aqueous Electrolytes. 9.4 Acidic Electrolytes -- 9.4.1 Sulfuric Acid Electrolyte-Based EDLC and Pseudocapacitors -- 9.4.2 H2SO4 Electrolyte-Based Hybrid Supercapacitors -- 9.5 Alkaline Electrolytes -- 9.5.1 Alkaline Electrolyte-Based EDLC and Pseudocapacitors -- 9.5.2 Alkaline Electrolyte-Based Hybrid Supercapacitors -- 9.6 Neutral Electrolyte -- 9.6.1 Neutral Electrolyte-Based EDLC and Pseudocapacitors -- 9.6.2 Neutral Electrolyte-Based Hybrid Supercapacitors -- 9.7 Conclusion and Future Research Directions -- References -- Chapter 10 Biodegradable Electrolytes -- 10.1 Introduction -- 10.2 Classification of Biodegradable Electrolytes -- 10.2.1 Solid Polymer Electrolytes -- 10.2.2 Gel Polymer Electrolytes -- 10.2.3 Composite Polymer Electrolytes -- 10.3 Preparation of Biodegradable Electrolytes -- 10.4 Some Defined Ways to Increase the Ionic Conductivity -- 10.4.1 Polymer Blending -- 10.4.2 Incorporation of Additives -- 10.5 Factors Affecting Ion Conduction of Biodegradable Polymer Electrolytes -- 10.6 Properties of Ideal Biodegradable Electrolyte System -- 10.7 Applications of Biodegradable Electrolytes -- 10.7.1 Biodegradable Electrolytes in Fuel Cells -- 10.7.2 Biodegradable Electrolytes and Batteries -- 10.7.3 Supercapacitors in Terms of Biodegradable Electrolytes -- 10.7.4 Biodegradable Electrolytes in Dye Sensitized Solar Cells -- 10.8 Conclusion -- References -- Chapter 11 Supercapattery: An Electrochemical Energy Storage Device -- 11.1 Introduction -- 11.2 Batteries and Capacitors -- 11.3 Supercapattery Device and Electrode Materials -- 11.3.1 Metal-Based Materials and Their Composites -- 11.3.2 Polymers and their Composites -- 11.3.3 Carbon Materials and Their Composites -- 11.4 Advantages and Challenges of Supercapatteries -- 11.5 Conclusions -- References -- Chapter 12 Ceramic Multilayers and Films for High.Performance Supercapacitors -- 12.1 Introduction. 12.2 Different Types of Ceramic Materials. |
Record Nr. | UNINA-9910829869003321 |
Inamuddin | ||
Newark : , : John Wiley & Sons, Incorporated, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Sustainable Materials for Electrochemcial Capacitors |
Autore | Inamuddin |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2023 |
Descrizione fisica | 1 online resource (467 pages) |
Disciplina | 621.31/5 |
Altri autori (Persone) |
AltalhiTariq
AdnanSayed Mohammed |
Soggetto topico | Capacitors - Materials |
ISBN |
1-394-16710-5
1-394-16709-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Sustainable Materials for Electrochemical Supercapacitors: Eco Materials -- 1.1 Introduction -- 1.2 Eco-Carbon-Based Electrode Materials -- 1.3 Eco-Metal Oxide-Based Electrode Materials -- 1.4 Eco-Carbon-Based Material/Metal Oxide Composite Electrode Materials -- 1.5 Conclusion -- References -- Chapter 2 Solid Waste-Derived Carbon Materials for Electrochemical Capacitors -- 2.1 Introduction -- 2.2 Solid Waste as a Source of CNS -- 2.3 Preparation and Activation Methods of Solid Waste-Derived CNS -- 2.4 Effect of Structural and Morphological Diversities on Electrochemical Performance -- 2.5 Environmental Trash-Derived CNS in Electrochemical Capacitors -- 2.6 Challenges and Future Prospects -- 2.7 Conclusions -- References -- Chapter 3 Metal Hydroxides -- 3.1 Introduction -- 3.2 Method to Fabricate Metal Hydroxide -- 3.2.1 Precipitation Strategy -- 3.2.2 Post-Uniting and Metal Cation Consolidation Strategy -- 3.2.3 Ion Exchange Method -- 3.2.4 Sonochemical Method -- 3.2.5 Hydrothermal Method -- 3.2.6 Polyol Synthesis -- 3.3 Properties and Applications of MOHs -- 3.3.1 MOH Flame Retardants -- 3.3.1.1 Alumina Tri-Hydrate (ATH) and Milk of Magnesia -- 3.3.1.2 Utilization of Mg(OH)2 as a Flame Resistance in Plastics -- 3.3.2 MOHs Sludge Can Be Used as Latest Adsorbent -- 3.3.3 Metal Hydroxide MOH Nanostructures -- 3.3.4 MOHs for Supercapacitor Electrode Materials -- 3.3.5 Drugs or Pharmaceutical Applications -- 3.3.5.1 Ca(OH)2 Used in Dental Practice -- 3.3.6 Removal of Toxins from the Water -- 3.3.6.1 Water's Physical and Chemical Characteristics -- 3.3.6.2 Types of Wastewater -- 3.3.6.3 Treatment Techniques of Wastewater -- 3.3.6.4 Metal Hydroxide for Treatment of Wastewater -- 3.4 Examples of Metal Hydroxide -- 3.4.1 Calcium Hydroxide Ca(OH)2.
3.4.1.1 Utilizations of Ca(OH)2 in Dental Detailing of Ca(OH)2 (Glues) -- 3.4.1.2 Materials for Setting the Therapeutic Effect -- 3.4.1.3 Covering of Pits -- 3.4.2 Magnesium Hydroxide Mg(OH)2 -- 3.4.3 Copper Hydroxide -- 3.4.4 Graphene Hydroxide -- 3.4.5 Nickel Hydroxides -- 3.4.6 Aluminum Hydroxide -- 3.4.6.1 Sources of Human Exposure in the Environment -- 3.4.6.2 Natural Levels and Exposure to the Environment and Humans -- 3.4.6.3 Kinetics and Metabolism in Humans -- 3.4.6.4 Animals -- 3.5 Conclusions -- References -- Chapter 4 Porous Organic Polymers: Genres, Chemistry, Synthetic Strategies, and Diversified Applications -- 4.1 Introduction -- 4.2 Family of Porous Organic Materials -- 4.2.1 Covalent Organic Frameworks (COFs) -- 4.2.1.1 Historical Development of Covalent Organic Frameworks COFs -- 4.2.1.2 Chemistry of Covalent Organic Frameworks (COFs) -- 4.2.1.3 Classifications of COFs -- 4.2.1.4 Synthetic Strategy Adopted for COFs Formation -- 4.2.1.5 Characterization COF -- 4.2.1.6 Applications of COF -- 4.2.2 Covalent Triazine Frameworks (CTF) -- 4.2.2.1 Historical Development of CTF -- 4.2.2.2 Chemistry of CTFs -- 4.2.2.3 Synthesize of CTFs -- 4.2.2.4 Characterizations of CTFs -- 4.2.2.5 Applications of CTF -- 4.2.3 Hyper-Cross-Linked Polymers (HCPs) -- 4.2.3.1 Historical Development -- 4.2.3.2 Chemistry of HCPs -- 4.2.3.3 Synthesis of HCPs -- 4.2.3.4 Characterization and Applications of HCP -- 4.2.3.5 Applications of HCPs -- 4.2.4 Conjugated Micro Porous Polymers (CMP) -- 4.2.4.1 Historical Development and Selected Advances of Conjugated Micro Porous Polymers -- 4.2.4.2 Design and Synthetic Strategy Adopted for Synthesizing CMPs -- 4.2.4.3 Characterization of Conjugated Microporous Polymers (CMP) -- 4.2.4.4 Applications of CMPs -- 4.2.5 Porous Aromatic Frameworks (PAFs) -- 4.2.5.1 Historical Development of PAF -- 4.2.5.2 Chemistry of PAF. 4.2.5.3 Design Principles and Synthetic Strategy Adopted to Synthesize PAFs -- 4.2.5.4 Synthesize of PAFs -- 4.2.5.5 PAF Characterization -- 4.2.5.6 Applications -- 4.2.6 Porous Organic Cages -- 4.2.6.1 Characterization of Organic Cages -- 4.3 Conclusions and Perspectives -- References -- Chapter 5 Gel-Type Natural Polymers as Electroconductive Materials -- 5.1 Introduction -- 5.2 Natural Polymers -- 5.2.1 Hydrogels -- 5.2.2 Classification of Hydrogels -- 5.2.3 Composition of Hydrogels -- 5.2.4 Natural Polymers Derived Hydrogels -- 5.2.5 Cellulose-Based Hydrogels -- 5.2.6 Chitosan-Based Hydrogels -- 5.2.7 Xanthan Gum-Based Hydrogels -- 5.2.8 Sea Weed-Derived Polysaccharide-Based Hydrogels -- 5.2.9 Protein-Based Hydrogels -- 5.2.10 DNA-Based Hydrogels -- 5.3 Synthesis Methods for Fabrication of Natural Polymer-Based Hydrogels -- 5.3.1 Natural Polymer-Based Chemically Cross-Linked Hydrogels -- 5.3.2 Grafting Method -- 5.3.3 Radical Polymerization Method -- 5.3.4 Irradiation Method -- 5.3.5 Enzymatic Reaction Method -- 5.4 Natural Polymer-Based Physically Cross-Linked Hydrogels -- 5.4.1 By Freezing and Thawing Cycles -- 5.4.2 By Hydrogen Bonding -- 5.4.3 By Ionic Interactions -- 5.5 Properties of Natural Polymer-Based Hydrogels -- 5.5.1 Mechanical Properties -- 5.5.2 Biodegradability -- 5.5.3 Swelling Characteristics -- 5.6 Stimuli Sensitivity of Hydrogels -- 5.7 Application of Hydrogels as Electrochemical Supercapacitors -- 5.7.1 Types of Supercapacitors -- 5.7.2 Electrochemical Double-Layer Capacitor (EDLC) -- 5.7.3 Pseudo Capacitor -- 5.7.4 Asymmetric or Hybrid Supercapacitors -- 5.8 Conducting Polymer Hydrogels as Electrode Materials -- 5.9 Conducting Polymer Hydrogels as Electrolyte Materials -- 5.10 Conclusion -- References -- Chapter 6 Ionic Liquids for Supercapacitors -- 6.1 Introduction -- 6.2 Brief Introduction of Supercapacitor. 6.2.1 Supercapacitor and Its Classification -- 6.2.2 Electrolyte of Supercapacitor -- 6.3 Ionic Liquids and Its Unique Properties -- 6.4 Application of Ionic Liquids in Supercapacitors -- 6.4.1 Pure Ionic Liquid as Electrolyte -- 6.4.1.1 Aprotic Ionic Liquids -- 6.4.1.2 Proton Ionic Liquids -- 6.4.1.3 Functionalized Ionic Liquids -- 6.4.2 Mixture Electrolyte of Ionic Liquids -- 6.4.2.1 Binary of Ionic Liquids -- 6.4.2.2 Mixed Electrolyte of Organic Solvent and Ionic Liquids -- 6.4.2.3 Mixed Electrolyte of Ionic Liquid and Ionic Salt -- 6.5 Conclusion and Prospective -- Acknowledgments -- References -- Chapter 7 Functional Binders for Electrochemical Capacitors -- 7.1 Introduction -- 7.2 Characteristics of Binder -- 7.3 Method of Fabricating Supercapacitor Electrode -- 7.4 Mechanism of Binding Process -- 7.5 Classification of Binders -- 7.5.1 On the Basis of Origin -- 7.5.2 On the Basis of Reactivity -- 7.6 Characterization Techniques -- 7.7 Conventional Binders and Related Issues -- 7.8 Sustainable Binders -- 7.9 Conclusion -- References -- Chapter 8 Sustainable Substitutes for Fluorinated Electrolytes in Electrochemical Capacitors -- 8.1 Introduction -- 8.2 Fluorinated Electrolytes -- 8.3 Sustainable Substitutes for Fluorinated Electrolytes -- 8.3.1 Aqueous Electrolytes -- 8.3.1.1 Seawater -- 8.3.1.2 Aqueous Solution of Redox-Active Ligands as Electrolytes -- 8.3.2 Organic Electrolytes -- 8.3.3 Solid-State Electrolytes -- 8.4 Performance of Sustainable Electrolytes Compared to Fluorinated Electrolytes -- 8.4.1 Strongly Acidic Electrolytes -- 8.4.2 Strong Alkaline Electrolytes -- 8.4.3 Neutral Electrolytes -- 8.4.4 Organic Electrolytes -- 8.5 Final Remarks -- References -- Chapter 9 Aqueous Redox-Active Electrolytes -- 9.1 Introduction -- 9.2 Effect of the Electrolyte on Supercapacitor Performance -- 9.3 Aqueous Electrolytes. 9.4 Acidic Electrolytes -- 9.4.1 Sulfuric Acid Electrolyte-Based EDLC and Pseudocapacitors -- 9.4.2 H2SO4 Electrolyte-Based Hybrid Supercapacitors -- 9.5 Alkaline Electrolytes -- 9.5.1 Alkaline Electrolyte-Based EDLC and Pseudocapacitors -- 9.5.2 Alkaline Electrolyte-Based Hybrid Supercapacitors -- 9.6 Neutral Electrolyte -- 9.6.1 Neutral Electrolyte-Based EDLC and Pseudocapacitors -- 9.6.2 Neutral Electrolyte-Based Hybrid Supercapacitors -- 9.7 Conclusion and Future Research Directions -- References -- Chapter 10 Biodegradable Electrolytes -- 10.1 Introduction -- 10.2 Classification of Biodegradable Electrolytes -- 10.2.1 Solid Polymer Electrolytes -- 10.2.2 Gel Polymer Electrolytes -- 10.2.3 Composite Polymer Electrolytes -- 10.3 Preparation of Biodegradable Electrolytes -- 10.4 Some Defined Ways to Increase the Ionic Conductivity -- 10.4.1 Polymer Blending -- 10.4.2 Incorporation of Additives -- 10.5 Factors Affecting Ion Conduction of Biodegradable Polymer Electrolytes -- 10.6 Properties of Ideal Biodegradable Electrolyte System -- 10.7 Applications of Biodegradable Electrolytes -- 10.7.1 Biodegradable Electrolytes in Fuel Cells -- 10.7.2 Biodegradable Electrolytes and Batteries -- 10.7.3 Supercapacitors in Terms of Biodegradable Electrolytes -- 10.7.4 Biodegradable Electrolytes in Dye Sensitized Solar Cells -- 10.8 Conclusion -- References -- Chapter 11 Supercapattery: An Electrochemical Energy Storage Device -- 11.1 Introduction -- 11.2 Batteries and Capacitors -- 11.3 Supercapattery Device and Electrode Materials -- 11.3.1 Metal-Based Materials and Their Composites -- 11.3.2 Polymers and their Composites -- 11.3.3 Carbon Materials and Their Composites -- 11.4 Advantages and Challenges of Supercapatteries -- 11.5 Conclusions -- References -- Chapter 12 Ceramic Multilayers and Films for High.Performance Supercapacitors -- 12.1 Introduction. 12.2 Different Types of Ceramic Materials. |
Record Nr. | UNINA-9910876588803321 |
Inamuddin | ||
Newark : , : John Wiley & Sons, Incorporated, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|