Innovations in food technology : current perspectives and future goals / / Pragya Mishra, Raghvendra Raman Mishra, Charles Oluwaseun Adetunji, editors |
Edizione | [1st ed. 2020.] |
Pubbl/distr/stampa | Singapore : , : Springer, , [2020] |
Descrizione fisica | 1 online resource (XXIV, 522 p. 95 illus., 45 illus. in color.) |
Disciplina | 664.00684 |
Soggetto topico |
Food industry and trade - Technological innovations
Food - Biotechnology |
ISBN | 981-15-6121-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Section A: Food Processing and Technology Innovations -- Chapter 1. Food Innovation and Sustainable Development: A Bio-economics Perception -- Chapter 2. Fermented pearl millet weaning food: an innovation of food technology and application in food processing and management -- Chapter 3. Processing methodologies for few crops in India: Arecanut, betelvine, cashew, cocoa and oil palm -- Chapter 4. Omega 3 fatty acid from plant sources and its application in Food Technology -- Chapter 5. Taizzy Smoked Cheese -- Chapter 6. Plant-Based Milk Substitutes: A novel non-dairy source -- Chapter 7. Makhana: Dry Food and a potential aquatic cash crop.-Chapter 8. An insight over creal β glucan as functional ingredient -- Section B: Food and Industrial Microbiology -- Chapter 9. Rediscovering Medicinal activity and Food Significance of Shogaol (4, 6, 8, 10 and 12): A comprehensive view.-Chapter 10. Exopolysaccarides derived from Beneficial Microorganisms: Antimicrobial, Food and Health benefits.-Chapter 11. Biofilm threat for food and industrial microbiology: An approach for its Elimination Using Herbal food components -- Chapter 12. Cyanobacterial exopolysaccharides as natural source for food packaging application.-Chapter 13. Microbial laccase production and its industrial applications -- Chapter 14. Lichens are the next promising candidates for active compounds.-Chapter 15. Microbial Production and Applications of L-lysine.-Chapter 16. Pomegranate peel: Nutritional values and its emerging potential for use in food systems -- Section C: Food Technology and Environmental Biotechnology -- Chapter 17. Bio-fertilizer from Trichoderma: Boom for Agriculture Production and Management of soil-borne and root-borne plant pathogens -- Chapter 18. Influence of heavy metal on food security: Recent advances -- Chapter 19. Utilization and management of agro and food processing waste -- Chapter 20. Nexus between Climate Change and Food Innovation Technology: Recent Advances -- Chapter 21. Antibiotic Residues in Food: A Global Concern for Human Health -- Chapter 22. Effects of toxicant from pesticides on food security: Current developments -- Chapter 23. Cr pollution, its impact and mitigation -- Chapter 24. Biosorption: A Novel Biotechnological Application For Removal of Hazardous Pollutants -- Section D: Agriculture, Food, Nutrition and Health Security -- Chapter 25. Emerging dichlorvos-based air freshener pertube kidney function in male albino rats -- Chapter 26. Consumption of green chilli& its nutritious effect on human health -- Chapter 27. Synthesis, characterization and evaluation of toxicity of melatonin loaded poly (D, L-lactic acid) Nano-Particles (Mel-PLA-Nano-Particles) and its putative use in osteoporosis -- Chapter 28. Nutritional Physiology -- Chapter 29. Caffeine: Nutraceutical and Health Benefit of Caffeine Containing Commodities and Products -- Chapter 30. Nutraceuticals potential of major edible oilseeds of India -- Chapter 31. Elimination of fungal Leaf Mosaic disease of Bottle Gourd (LagenariaSiceraria ) using Fungo-Phage Therapy: A possible approach for food security with plant protection -- Chapter 32. β- sitosterol - predominant phytosterol of therapeutic potential -- Chapter 33. Odonto-nutraceuticals: Phytochemicals for Oral Health Care -- Chapter 34. Pharmacological potential of thymol -- Chapter 35. TRIKATU- transforming food into medicines -- Chapter 36. Dietary factors associated with cancer. . |
Record Nr. | UNINA-9910424640903321 |
Singapore : , : Springer, , [2020] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Microbial rejuvenation of polluted environment . Volume 3 / / Charles Oluwaseun Adetunji, Deepak G. Panpatte, Yogeshvari K. Jhala, editors |
Edizione | [1st ed. 2021.] |
Pubbl/distr/stampa | Gateway East, Singapore : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (XVI, 358 p. 27 illus., 21 illus. in color.) |
Disciplina | 628.5 |
Collana | Microorganisms for Sustainability |
Soggetto topico | Bioremediation |
ISBN | 981-15-7459-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Chapter 1: Strain Improvement and Mass Production of Beneficial Microorganisms for Their Environmental and Agricultural Benefit -- Chapter 2: Biochemical Role of Beneficial Microorganisms: An Overview on Recent Development in Environmental and Agro-Science -- Chapter 3: Recent Advances in Application of Microbial Enzymes for Biodegradation Waste and Hazardous Waste Material -- Chapter 4: Biological, Biochemical and Biodiversity of Biomolecules from Marine based beneficial Microorganisms: Industrial Perspective -- Chapter 5: Climate Change and Pesticides: Their Consequence on Microorganisms -- Chapter 6: Effect of Heavy Metals on Activities of Soil Microorganism -- Chapter 7: Microbial Community Dynamics in Anaerobic Digestors for Biogas Production -- Chapter 8: Effect of Microbially Produced Silver Nanoparticles on Bioremediation of Waste Dye: Nanobioremediation -- Chapter 9: Bioremoval of Fluoride: Process and Mechanism -- Chapter 10: A Critical Review of Microbial Transport in Effluent Waste and Sewage Sludge Treatment -- Chapter 11: Recent Trends in Utilization of Biotechnological Tools for Environmental Sustainability -- Chapter 12: Artificial Intelligence and Internet of Things in Instrumentation and Control in Waste Biodegradation Plants: Recent Developments -- Chapter 13: Bioremediation of Polythene and Plastics Using Beneficial Microorganisms -- Chapter 14: Recent Advances in the Application of Genetically Engineered Microorganisms for Microbial Rejuvenation of Contaminated Environment -- Chapter 15: Efficacy of Microorganisms in the Removal of Toxic Materials from Industrial Effluents. |
Record Nr. | UNINA-9910484548503321 |
Gateway East, Singapore : , : Springer, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
MXenes : Fundamentals and Applications |
Autore | Singh Jay |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
Descrizione fisica | 1 online resource (385 pages) |
Altri autori (Persone) |
SinghKshitij Rb
SinghRavindra Pratap AdetunjiCharles Oluwaseun |
ISBN |
1-119-87400-9
1-119-87402-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- Editor Biographies -- List of Contributors -- Preface -- Acknowledgment -- Chapter 1 Introduction to MXenes a Next‐generation 2D Material -- 1.1 Introduction -- 1.2 Properties -- 1.3 Synthesis and Functionalization of MXenes -- 1.4 Characterization of MXenes -- 1.5 Application of MXenes -- 1.5.1 Biomedical -- 1.5.2 Agricultural -- 1.5.3 Environmental -- 1.5.4 Miscellaneous Field -- 1.6 Current Scenario, Risk Assessment, and Challenges -- 1.7 Conclusion and Prospects -- References -- Chapter 2 Structure, Composition, and Functionalization of MXenes -- 2.1 Introduction -- 2.2 MXenes Composition -- 2.2.1 Group IV Elemental Analog -- 2.2.2 Group V Elemental Analog -- 2.2.3 Group VI Elemental Analog -- 2.3 Structural Analysis Regarding MXenes -- 2.3.1 Theoretical Studies -- 2.3.2 Computational Studies -- 2.4 Structure Functionalization of MXene -- 2.4.1 Different Group Used for Structural Functionalization -- 2.4.1.1 Oxygen‐Functionalized MXene -- 2.4.1.2 Sulfur‐Functionalized MXenes -- 2.4.1.3 Methoxy Group‐Functionalized MXenes -- 2.4.2 Factor Affecting the Structure Functionalization -- 2.4.2.1 Electric and Optical Properties -- 2.4.2.2 Thermal Conductivity -- 2.4.2.3 Electrochemical Properties -- 2.4.2.4 Thermoelectric Property -- 2.5 Conclusion and Future Prospects -- Acknowledgment -- References -- Chapter 3 Synthesis of MXenes -- 3.1 Introduction -- 3.2 Fabrication of MXene -- 3.2.1 Fabrication Through Etching Agents -- 3.2.1.1 HF Etchants -- 3.2.1.2 In situ HF Etchants -- 3.2.1.3 MXenes Preparation Through Fluoride Free Routes -- 3.2.1.4 Molten Fluoride Salt as Etchants -- 3.2.1.5 MXenes Prepared from Unconventional Al‐MAX Phases -- 3.3 Conclusion -- References -- Chapter 4 Physicochemical and Biological Properties of MXenes -- 4.1 Introduction -- 4.2 Structure and Synthesis of MXenes.
4.3 Properties of MXenes -- 4.3.1 Biomedical Properties of MXenes -- 4.3.2 Electronic and Transport Properties -- 4.3.3 Optical Properties -- 4.3.4 Magnetic Properties -- 4.3.5 Topological Properties -- 4.3.6 Vibrational Properties -- 4.3.7 Electrochemical Properties -- 4.3.8 Thermal Properties -- 4.4 Conclusion and future Perspectives -- References -- Chapter 5 Processing and Characterization of MXenes and Their Nanocomposites -- 5.1 Introduction -- 5.2 Processing Techniques -- 5.2.1 Solution Blending -- 5.2.2 In Situ Polymerization Technique -- 5.2.3 Melt Blending -- 5.2.4 Electrospinning -- 5.2.5 Vacuum‐Assisted Filtration (VAF) Method -- 5.2.6 Spin Coating -- 5.3 Characterization Techniques -- 5.3.1 X‐Ray Diffraction (XRD) -- 5.3.2 Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy -- 5.3.3 X‐Ray Absorption Spectroscopy (XAS) -- 5.3.4 X‐Ray Photoelectron Spectroscopy (XPS) -- 5.3.5 Atomic Force Microscopy (AFM) -- 5.3.6 Nuclear Magnetic Resonance -- 5.3.7 Raman Spectroscopy -- 5.4 Conclusion -- References -- Chapter 6 Progressive Approach Toward MXenes Hydrogel -- 6.1 Hydrogels -- 6.1.1 Hydrogels Classification -- 6.1.2 Properties of Hydrogels -- 6.2 MXene‐Based Hydrogels -- 6.2.1 Applications of MXene Hydrogels -- 6.2.2 Mechanisms of Synthesis and Gelation of MXene Hydrogels -- 6.2.2.1 All‐MXene Hydrogels -- 6.2.2.2 MXene‐GO Nanocomposite Hydrogels -- 6.2.2.3 MXene‐polymer Nanocomposite Hydrogels -- 6.2.2.4 MXene‐metal Hybrid Nanocomposite Hydrogels -- 6.2.3 Properties of MXene‐Based Hydrogels -- 6.2.4 Applications of MXene‐Based Hydrogels -- 6.2.4.1 Energy Storage -- 6.2.4.2 Biomedical Applications -- 6.2.4.3 Catalysts -- 6.2.4.4 Sensors -- 6.3 Conclusions -- References -- Chapter 7 Comparison of MXenes with Other 2D Materials -- 7.1 Introduction of MXenes -- 7.2 MXenes vs. Carbon Materials. 7.3 MXenes vs. 2D‐chalcogenide/Carbide/Nitride -- 7.4 MXenes vs. 2D Metal-Organic Frameworks -- 7.5 Summary -- References -- Chapter 8 Newly Emerging 2D MXenes for Hydrogen Storage -- 8.1 Introduction -- 8.2 Structural Properties of MXene -- 8.3 Synthesis Techniques -- 8.4 H2 Storage Reaction Mechanisms -- 8.4.1 Adsorption -- 8.4.2 Kinetics and Thermodynamics -- 8.4.2.1 Kinetic Models -- 8.4.2.2 Geometrical Contraction -- 8.4.2.3 Contracting Volume Model -- 8.4.2.4 Jander Model -- 8.4.2.5 Ginstling-Brounshtein Model -- 8.4.2.6 Valensi-Carter Model -- 8.4.2.7 Nucleation‐Growth Impingement Models -- 8.5 Factors Influencing H2 Storage -- 8.6 Recent Advances in MXene‐Based Compounds for H2 Storage -- 8.7 Conclusions -- 8.8 Future Perspectives and Challenges -- Acknowledgment -- References -- Chapter 9 MXenes for Supercapacitor Applications -- 9.1 Introduction -- 9.2 Two‐dimensional MXenes Structure -- 9.3 MXenes' Characteristics -- 9.3.1 Characteristics of the Structure -- 9.3.2 Electronic Characteristics -- 9.3.3 Optical Characteristics -- 9.3.4 Magnetic Characteristics -- 9.4 MXenes as a Source of Energy Storage -- 9.4.1 Supercapacitor Energy Storage Mechanism -- 9.4.2 Morphology's Effect on MXenes' Energy Storage -- 9.4.3 MXene Functional Group Reactivity and Supercapacitors -- 9.4.4 Electrolytes' Role in the Storage Technology -- 9.5 Supercapacitor Systems of MXene and Hybrid -- 9.5.1 MXene in Their Original State -- 9.5.2 MXene Heterostructures -- 9.5.3 Hybrids of Transition Metal Oxides in MXene -- 9.5.4 Hierarchical Anode Structure -- 9.5.5 Appropriate Positive Electrode Design -- 9.5.6 Microsupercapacitors -- 9.6 Prospects -- 9.7 Conclusion -- References -- Chapter 10 MXenes‐based Biosensors -- 10.1 Introduction -- 10.2 Biosensing Application -- 10.2.1 Biomedical -- 10.2.2 Environmental -- 10.2.3 Agricultural -- 10.3 Challenges and Limitations. 10.4 Conclusion and Prospects -- References -- Chapter 11 Advances in Ti3C2 MXene and Its Composites for the Adsorption Process and Photocatalytic Applications -- 11.1 Introduction -- 11.2 Ti3C2 as Adsorbent for the Metal Ions -- 11.3 Photocatalytic Degradation Mechanism of Organic Pollutants via Ti3C2 MXene and Its Derivatives -- 11.3.1 Heterostructuring the Ti3C2 with Metal Oxides -- 11.3.2 Heterostructuring the Ti3C2/Ti3C2Tx with Metal Sulphides -- 11.3.3 Heterostructuring the Ti3C2/Ti3C2Tx with Ag/Bi‐based Semiconductors and Layered Double Hydroxides -- 11.4 Ternary Heterostructures based on the Ti3C2 -- 11.5 Gap Analysis -- 11.6 Conclusion -- Acknowledgements -- References -- Chapter 12 MXenes and its Hybrid Nanocomposites for Gas Sensing Applications in Breath Analysis -- 12.1 Introduction -- 12.2 Discussion -- 12.3 Conclusion -- References -- Chapter 13 MXenes for Catalysis and Electrocatalysis -- 13.1 Introduction -- 13.2 Application of MXene for Catalytic Processes -- 13.2.1 CO2 Reduction Reaction -- 13.2.2 Nitrogen Reduction Reaction -- 13.2.3 Oxygen Reduction Reaction -- 13.2.4 Oxygen Evolution Reactions -- 13.3 Strategies for Optimization of Catalytic Potential of MXenes -- 13.3.1 Termination Modification -- 13.3.2 Nanostructuring -- 13.3.3 Hybridization -- 13.3.4 Metal Atom Doping -- 13.4 Conclusion and Future Trend -- References -- Chapter 14 MXene and Its Hybrid Materials for Photothermal Therapy -- 14.1 Introduction -- 14.2 Photothermal Conversion -- 14.2.1 Localized Surface Plasmon Resonance Effect (LSPR) -- 14.2.2 Electron-Hole Generation -- 14.2.3 Hyperconjugation Effect -- 14.3 Optical and Thermal Properties of Mxenes -- 14.4 Photothermal Conversion Mechanism of MXenes -- 14.5 Applications of MXenes in Photothermal Therapy -- 14.5.1 Photothermal Therapy -- 14.5.2 PTT‐Coupled Chemotherapy -- 14.5.3 PTT Coupled Immunotherapy. 14.6 Conclusion -- Acknowledgment -- Conflict of interest -- References -- Chapter 15 MXenes and Its Composites for Biomedical Applications -- 15.1 Introduction -- 15.2 Various Biomedical Applications of MXenes -- 15.2.1 Biosensor Applications -- 15.2.2 Cancer Treatment -- 15.2.3 Antibacterial Properties -- 15.2.4 Drug Delivery -- 15.3 Conclusion -- References -- Chapter 16 MXenes for Point of Care Devices (POC) -- 16.1 Introduction -- 16.2 Characteristics of MXenes on Biosensing -- 16.2.1 Advantages of MXene and its Derivatives for Biosensing -- 16.2.2 Disadvantages of MXene and its Derivatives for Biosensing -- 16.2.3 Sensing Mechanism of MXene Wearables -- 16.3 Point‐of‐Care Diagnosing COVID‐19: Methods Used to Date -- 16.4 Applications of MXenes as PoCs -- 16.4.1 Cancer Diagnosis -- 16.4.2 Diagnosis of Bacterial and Viral Diseases -- 16.5 Current Challenges and Future Outlook -- 16.6 Conclusion -- References -- Chapter 17 MXenes and Their Hybrids for Electromagnetic Interference Shielding Applications -- 17.1 Introduction -- 17.2 Properties of MXenes -- 17.2.1 Stability -- 17.2.2 Electrical Conductivity -- 17.2.3 Magnetic Properties -- 17.2.4 Dielectric Properties -- 17.3 Various MXene Hybrids For EMI‐Hielding -- 17.3.1 Textile‐based -- 17.3.2 Insulating Polymer‐based -- 17.3.3 Aerogels, Hydrogels, and Foams -- 17.3.4 Polymer Thin Films -- 17.3.5 Electrospun Mats -- 17.3.6 Paper‐Based Composites -- 17.3.7 Laminates -- 17.4 Intrinsically Conducting Polymer‐based -- 17.4.1 Aerogels, Hydrogels, and Foams -- 17.4.2 Polymer Thin Films -- 17.4.3 Paper -- 17.5 Graphene‐based -- 17.5.1 Foam/Aerogels -- 17.5.2 Films -- 17.5.3 Laminates -- 17.6 Conclusion -- References -- Chapter 18 Technological Aspects in the Development of MXenes and Its Hybrid Nanocomposites: Current Challenges and Prospects -- 18.1 Introduction. 18.2 Progressive Approach Towards MXene Composites and Hybrids. |
Record Nr. | UNINA-9910876845603321 |
Singh Jay | ||
Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|