top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Prospects of differential geometry and its related fields : proceedings of the 3rd International Colloquium on Differential Geometry and its Related Fields, Veliko Tarnovo, Bulgaria, 3-7 September 2012 / / editors, Toshiaki Adachi, Nagoya Institute of Technology, Japan, Hideya Hashimoto, Meijo University, Japan, Milen J. Hristov, St. Cyril and St. Methodius University of Veliko Tarnovo, Bulgaria
Prospects of differential geometry and its related fields : proceedings of the 3rd International Colloquium on Differential Geometry and its Related Fields, Veliko Tarnovo, Bulgaria, 3-7 September 2012 / / editors, Toshiaki Adachi, Nagoya Institute of Technology, Japan, Hideya Hashimoto, Meijo University, Japan, Milen J. Hristov, St. Cyril and St. Methodius University of Veliko Tarnovo, Bulgaria
Pubbl/distr/stampa New Jersey : , : World Scientific, , [2014]
Descrizione fisica 1 online resource (243 p.)
Disciplina 510
516.36
Altri autori (Persone) AdachiToshiaki
HashimotoHideya
HristovMilen J
Soggetto topico Geometry, Differential
Soggetto genere / forma Electronic books.
ISBN 981-4541-81-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Organizing and Scientific Advisory Committees; Presentations; CONTENTS; Geometry of biharmonic maps: L2-rigidity, biharmonic Lagrangian submanifolds of Kahler manifolds, and conformal change of metrics Hajime URAKAWA; 1. Introduction and the generalized Chen's conjecture; 2. L2-rigidity theorem of biharmonic maps; 3. Lagrangian submanifolds of Kahler manifolds; 4. Conformal change of metrics and biharmonic maps; Bibliography; Homogeneous Einstein metrics on generalized flag manifolds with G2-type t-roots Andreas ARVANITOYEORGOS, Ioannis CHRYSIKOS and Yusuke SAKANE; 1. Introduction
2. Ricci tensor of a compact homogeneous space G/K3. Riemannian submersion; 4. Decomposition associated to generalized flag manifolds; 5. The classification of generalized flag manifolds with G2-type t-roots; 6. Kahler Einstein metrics of a generalized flag manifold; 7. Generalized flag manifolds with two or three isotropy summands; 8. Generalized flag manifolds with G2-type t-roots; 9. Proof of the theorems; Acknowledgments; Bibliography; Applications of the Gaussian integers in coding theory Stefka BOUYUKLIEVA; 1. Introduction; 2. Some properties of the Gaussian integers
5. Twistor theory for Tod-Kamada metric5.1. Model case; 5.2. Tod-Kamada metric; 5.3. Twistor space of Tod-Kamada metric; 6. Twsitor theory for indefinite self-dual metric on R4; 6.1. Model case; 6.2. Deformation of the twistor correspondence; Bibliography; A dynamical systematic aspect of horocyclic circles in a complex hyperbolic space Toshiaki ADACHI; 1. Introduction; 2. Circles on a complex space form; 3. Sasakian magnetic fields; 4. Extrinsic circular trajectories; 5. Other trajectories for Sasakian magnetic fields; Bibliography
Volume densities of trajectory-balls and trajectory-spheres for Kahler magnetic fields Pengfei BAI
Record Nr. UNINA-9910453243203321
New Jersey : , : World Scientific, , [2014]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Recent progress in differential geometry and its related fields [[electronic resource] ] : proceedings of the 2nd International Colloquium on Differential Geometry and Its Related Fields, Veliko Tarnovo, Bulgaria, 6-10 September, 2010 / / editors, Toshiaki Adachi, Hideya Hashimoto, Milen J. Hristov
Recent progress in differential geometry and its related fields [[electronic resource] ] : proceedings of the 2nd International Colloquium on Differential Geometry and Its Related Fields, Veliko Tarnovo, Bulgaria, 6-10 September, 2010 / / editors, Toshiaki Adachi, Hideya Hashimoto, Milen J. Hristov
Pubbl/distr/stampa Hackensack, N.J., : World Scientific, 2012
Descrizione fisica 1 online resource (207 p.)
Disciplina 516.36
Altri autori (Persone) AdachiToshiaki
HashimotoHideya
HristovMilen Y
Soggetto topico Geometry, Differential
Soggetto genere / forma Electronic books.
ISBN 1-280-37558-2
9786613555403
981-4355-47-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 8.1. Case of Sp(3)/(U(1) x U(1) x Sp(1))8.2. Case of Sp(4)/(U(1) x U(1) x Sp(2)); 8.3. Case of Sp(4)/(U(2) x U(1) x Sp(1)); Acknowledgments; References; On G -invariants of curves in purely imaginary octonions Misa OHASHI; 1. Introduction; 2. Preliminaries; 3. G -congruence theorem of curves in Im C; 3.1. G -frame field along a curve; 3.2. G -invariants; 3.3. G -congruence theorem; 4. Curves in 3-dimensional Euclidean space V Im C; 5. Curves in 4-dimensional Euclidean space V Im C; References; Magnetic Jacobi fields for K hler magnetic fields Toshiaki ADACHI; 1. Introduction
2. Magnetic exponential maps3. Magnetic Jacobi fields; 4. Magnetic conjugate points on complex space forms; 5. Comparison theorems on magnetic Jacobi fields; References; Geometry for q-exponential families Hiroshi MATSUZOE and Atsumi OHARA; Introduction; 1. Preliminaries; 1.1. Statistical models; 1.2. Statistical manifolds; 1.3. Generalized conformal relations on statistical manifolds; 2. Geometry for q-exponential families; 2.1. The q-escort probability and the q-expectation; 2.2. The q-exponential family; 2.3. Geometry for q-exponential families; 3. An application to statistical inferences
3.1. Generalization of independence3.2. Geometry for q-likelihood estimators; Acknowledgment; References; Sasakian magnetic fields on homogeneous real hypersurfaces in a complex hyperbolic space Tuya BAO; 1. Introduction; 2. K ahler and Sasakian magnetic fields; 3. Real hypersurfaces in a complex hyperbolic space; 4. Circles and curves of order two; 5. Circular trajectories for Sasakian magnetic fields; 6. Characterization of hypersurfaces of type (A); 7. Extrinsic shapes of trajectories; 8. Asymptotic behaviors of circular trajectories; 9. Lengths of circular trajectories; References
TYZ expansions for some rotation invariant K hler metrics Todor GRAMCHEV and Andrea LOI1. Introduction; 2. On the remainder term for the cylindrical metric on C; 3. Representation of Kempf's distortion function for the Kepler manifold; 4. TYZ expansion for the Kepler manifold; Acknowledgments; References; Kershner's tilings of type 6 by congruent pentagons are not Dirichlet Atsushi KUBOTA and Toshiaki ADACHI; 1. Introduction; 2. Kershner's tilings of type 6; 3. The Dirichlet property of Kershner's tilings of type 6; 4. Tessellations of type 6 by congruent pentagons; References
Eleven classes of almost paracontact manifolds with semi- Riemannian metric of (n + 1, n) Galia NAKOVA and Simeon ZAMKOVOY
Record Nr. UNINA-9910457264403321
Hackensack, N.J., : World Scientific, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Recent progress in differential geometry and its related fields [[electronic resource] ] : proceedings of the 2nd International Colloquium on Differential Geometry and Its Related Fields, Veliko Tarnovo, Bulgaria, 6-10 September, 2010 / / editors, Toshiaki Adachi, Hideya Hashimoto, Milen J. Hristov
Recent progress in differential geometry and its related fields [[electronic resource] ] : proceedings of the 2nd International Colloquium on Differential Geometry and Its Related Fields, Veliko Tarnovo, Bulgaria, 6-10 September, 2010 / / editors, Toshiaki Adachi, Hideya Hashimoto, Milen J. Hristov
Pubbl/distr/stampa Hackensack, N.J., : World Scientific, 2012
Descrizione fisica 1 online resource (207 p.)
Disciplina 516.36
Altri autori (Persone) AdachiToshiaki
HashimotoHideya
HristovMilen Y
Soggetto topico Geometry, Differential
ISBN 1-280-37558-2
9786613555403
981-4355-47-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 8.1. Case of Sp(3)/(U(1) x U(1) x Sp(1))8.2. Case of Sp(4)/(U(1) x U(1) x Sp(2)); 8.3. Case of Sp(4)/(U(2) x U(1) x Sp(1)); Acknowledgments; References; On G -invariants of curves in purely imaginary octonions Misa OHASHI; 1. Introduction; 2. Preliminaries; 3. G -congruence theorem of curves in Im C; 3.1. G -frame field along a curve; 3.2. G -invariants; 3.3. G -congruence theorem; 4. Curves in 3-dimensional Euclidean space V Im C; 5. Curves in 4-dimensional Euclidean space V Im C; References; Magnetic Jacobi fields for K hler magnetic fields Toshiaki ADACHI; 1. Introduction
2. Magnetic exponential maps3. Magnetic Jacobi fields; 4. Magnetic conjugate points on complex space forms; 5. Comparison theorems on magnetic Jacobi fields; References; Geometry for q-exponential families Hiroshi MATSUZOE and Atsumi OHARA; Introduction; 1. Preliminaries; 1.1. Statistical models; 1.2. Statistical manifolds; 1.3. Generalized conformal relations on statistical manifolds; 2. Geometry for q-exponential families; 2.1. The q-escort probability and the q-expectation; 2.2. The q-exponential family; 2.3. Geometry for q-exponential families; 3. An application to statistical inferences
3.1. Generalization of independence3.2. Geometry for q-likelihood estimators; Acknowledgment; References; Sasakian magnetic fields on homogeneous real hypersurfaces in a complex hyperbolic space Tuya BAO; 1. Introduction; 2. K ahler and Sasakian magnetic fields; 3. Real hypersurfaces in a complex hyperbolic space; 4. Circles and curves of order two; 5. Circular trajectories for Sasakian magnetic fields; 6. Characterization of hypersurfaces of type (A); 7. Extrinsic shapes of trajectories; 8. Asymptotic behaviors of circular trajectories; 9. Lengths of circular trajectories; References
TYZ expansions for some rotation invariant K hler metrics Todor GRAMCHEV and Andrea LOI1. Introduction; 2. On the remainder term for the cylindrical metric on C; 3. Representation of Kempf's distortion function for the Kepler manifold; 4. TYZ expansion for the Kepler manifold; Acknowledgments; References; Kershner's tilings of type 6 by congruent pentagons are not Dirichlet Atsushi KUBOTA and Toshiaki ADACHI; 1. Introduction; 2. Kershner's tilings of type 6; 3. The Dirichlet property of Kershner's tilings of type 6; 4. Tessellations of type 6 by congruent pentagons; References
Eleven classes of almost paracontact manifolds with semi- Riemannian metric of (n + 1, n) Galia NAKOVA and Simeon ZAMKOVOY
Record Nr. UNINA-9910778811203321
Hackensack, N.J., : World Scientific, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Recent progress in differential geometry and its related fields : proceedings of the 2nd International Colloquium on Differential Geometry and Its Related Fields, Veliko Tarnovo, Bulgaria, 6-10 September, 2010 / / editors, Toshiaki Adachi, Hideya Hashimoto, Milen J. Hristov
Recent progress in differential geometry and its related fields : proceedings of the 2nd International Colloquium on Differential Geometry and Its Related Fields, Veliko Tarnovo, Bulgaria, 6-10 September, 2010 / / editors, Toshiaki Adachi, Hideya Hashimoto, Milen J. Hristov
Edizione [1st ed.]
Pubbl/distr/stampa Hackensack, N.J., : World Scientific, 2012
Descrizione fisica 1 online resource (207 p.)
Disciplina 516.36
Altri autori (Persone) AdachiToshiaki
HashimotoHideya
HristovMilen Y
Soggetto topico Geometry, Differential
ISBN 1-280-37558-2
9786613555403
981-4355-47-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 8.1. Case of Sp(3)/(U(1) x U(1) x Sp(1))8.2. Case of Sp(4)/(U(1) x U(1) x Sp(2)); 8.3. Case of Sp(4)/(U(2) x U(1) x Sp(1)); Acknowledgments; References; On G -invariants of curves in purely imaginary octonions Misa OHASHI; 1. Introduction; 2. Preliminaries; 3. G -congruence theorem of curves in Im C; 3.1. G -frame field along a curve; 3.2. G -invariants; 3.3. G -congruence theorem; 4. Curves in 3-dimensional Euclidean space V Im C; 5. Curves in 4-dimensional Euclidean space V Im C; References; Magnetic Jacobi fields for K hler magnetic fields Toshiaki ADACHI; 1. Introduction
2. Magnetic exponential maps3. Magnetic Jacobi fields; 4. Magnetic conjugate points on complex space forms; 5. Comparison theorems on magnetic Jacobi fields; References; Geometry for q-exponential families Hiroshi MATSUZOE and Atsumi OHARA; Introduction; 1. Preliminaries; 1.1. Statistical models; 1.2. Statistical manifolds; 1.3. Generalized conformal relations on statistical manifolds; 2. Geometry for q-exponential families; 2.1. The q-escort probability and the q-expectation; 2.2. The q-exponential family; 2.3. Geometry for q-exponential families; 3. An application to statistical inferences
3.1. Generalization of independence3.2. Geometry for q-likelihood estimators; Acknowledgment; References; Sasakian magnetic fields on homogeneous real hypersurfaces in a complex hyperbolic space Tuya BAO; 1. Introduction; 2. K ahler and Sasakian magnetic fields; 3. Real hypersurfaces in a complex hyperbolic space; 4. Circles and curves of order two; 5. Circular trajectories for Sasakian magnetic fields; 6. Characterization of hypersurfaces of type (A); 7. Extrinsic shapes of trajectories; 8. Asymptotic behaviors of circular trajectories; 9. Lengths of circular trajectories; References
TYZ expansions for some rotation invariant K hler metrics Todor GRAMCHEV and Andrea LOI1. Introduction; 2. On the remainder term for the cylindrical metric on C; 3. Representation of Kempf's distortion function for the Kepler manifold; 4. TYZ expansion for the Kepler manifold; Acknowledgments; References; Kershner's tilings of type 6 by congruent pentagons are not Dirichlet Atsushi KUBOTA and Toshiaki ADACHI; 1. Introduction; 2. Kershner's tilings of type 6; 3. The Dirichlet property of Kershner's tilings of type 6; 4. Tessellations of type 6 by congruent pentagons; References
Eleven classes of almost paracontact manifolds with semi- Riemannian metric of (n + 1, n) Galia NAKOVA and Simeon ZAMKOVOY
Record Nr. UNINA-9910822384303321
Hackensack, N.J., : World Scientific, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui