Prospects of differential geometry and its related fields : proceedings of the 3rd International Colloquium on Differential Geometry and its Related Fields, Veliko Tarnovo, Bulgaria, 3-7 September 2012 / / editors, Toshiaki Adachi, Nagoya Institute of Technology, Japan, Hideya Hashimoto, Meijo University, Japan, Milen J. Hristov, St. Cyril and St. Methodius University of Veliko Tarnovo, Bulgaria |
Pubbl/distr/stampa | New Jersey : , : World Scientific, , [2014] |
Descrizione fisica | 1 online resource (243 p.) |
Disciplina |
510
516.36 |
Altri autori (Persone) |
AdachiToshiaki
HashimotoHideya HristovMilen J |
Soggetto topico | Geometry, Differential |
Soggetto genere / forma | Electronic books. |
ISBN | 981-4541-81-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Preface; Organizing and Scientific Advisory Committees; Presentations; CONTENTS; Geometry of biharmonic maps: L2-rigidity, biharmonic Lagrangian submanifolds of Kahler manifolds, and conformal change of metrics Hajime URAKAWA; 1. Introduction and the generalized Chen's conjecture; 2. L2-rigidity theorem of biharmonic maps; 3. Lagrangian submanifolds of Kahler manifolds; 4. Conformal change of metrics and biharmonic maps; Bibliography; Homogeneous Einstein metrics on generalized flag manifolds with G2-type t-roots Andreas ARVANITOYEORGOS, Ioannis CHRYSIKOS and Yusuke SAKANE; 1. Introduction
2. Ricci tensor of a compact homogeneous space G/K3. Riemannian submersion; 4. Decomposition associated to generalized flag manifolds; 5. The classification of generalized flag manifolds with G2-type t-roots; 6. Kahler Einstein metrics of a generalized flag manifold; 7. Generalized flag manifolds with two or three isotropy summands; 8. Generalized flag manifolds with G2-type t-roots; 9. Proof of the theorems; Acknowledgments; Bibliography; Applications of the Gaussian integers in coding theory Stefka BOUYUKLIEVA; 1. Introduction; 2. Some properties of the Gaussian integers 5. Twistor theory for Tod-Kamada metric5.1. Model case; 5.2. Tod-Kamada metric; 5.3. Twistor space of Tod-Kamada metric; 6. Twsitor theory for indefinite self-dual metric on R4; 6.1. Model case; 6.2. Deformation of the twistor correspondence; Bibliography; A dynamical systematic aspect of horocyclic circles in a complex hyperbolic space Toshiaki ADACHI; 1. Introduction; 2. Circles on a complex space form; 3. Sasakian magnetic fields; 4. Extrinsic circular trajectories; 5. Other trajectories for Sasakian magnetic fields; Bibliography Volume densities of trajectory-balls and trajectory-spheres for Kahler magnetic fields Pengfei BAI |
Record Nr. | UNINA-9910453243203321 |
New Jersey : , : World Scientific, , [2014] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Recent progress in differential geometry and its related fields [[electronic resource] ] : proceedings of the 2nd International Colloquium on Differential Geometry and Its Related Fields, Veliko Tarnovo, Bulgaria, 6-10 September, 2010 / / editors, Toshiaki Adachi, Hideya Hashimoto, Milen J. Hristov |
Pubbl/distr/stampa | Hackensack, N.J., : World Scientific, 2012 |
Descrizione fisica | 1 online resource (207 p.) |
Disciplina | 516.36 |
Altri autori (Persone) |
AdachiToshiaki
HashimotoHideya HristovMilen Y |
Soggetto topico | Geometry, Differential |
Soggetto genere / forma | Electronic books. |
ISBN |
1-280-37558-2
9786613555403 981-4355-47-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
8.1. Case of Sp(3)/(U(1) x U(1) x Sp(1))8.2. Case of Sp(4)/(U(1) x U(1) x Sp(2)); 8.3. Case of Sp(4)/(U(2) x U(1) x Sp(1)); Acknowledgments; References; On G -invariants of curves in purely imaginary octonions Misa OHASHI; 1. Introduction; 2. Preliminaries; 3. G -congruence theorem of curves in Im C; 3.1. G -frame field along a curve; 3.2. G -invariants; 3.3. G -congruence theorem; 4. Curves in 3-dimensional Euclidean space V Im C; 5. Curves in 4-dimensional Euclidean space V Im C; References; Magnetic Jacobi fields for K hler magnetic fields Toshiaki ADACHI; 1. Introduction
2. Magnetic exponential maps3. Magnetic Jacobi fields; 4. Magnetic conjugate points on complex space forms; 5. Comparison theorems on magnetic Jacobi fields; References; Geometry for q-exponential families Hiroshi MATSUZOE and Atsumi OHARA; Introduction; 1. Preliminaries; 1.1. Statistical models; 1.2. Statistical manifolds; 1.3. Generalized conformal relations on statistical manifolds; 2. Geometry for q-exponential families; 2.1. The q-escort probability and the q-expectation; 2.2. The q-exponential family; 2.3. Geometry for q-exponential families; 3. An application to statistical inferences 3.1. Generalization of independence3.2. Geometry for q-likelihood estimators; Acknowledgment; References; Sasakian magnetic fields on homogeneous real hypersurfaces in a complex hyperbolic space Tuya BAO; 1. Introduction; 2. K ahler and Sasakian magnetic fields; 3. Real hypersurfaces in a complex hyperbolic space; 4. Circles and curves of order two; 5. Circular trajectories for Sasakian magnetic fields; 6. Characterization of hypersurfaces of type (A); 7. Extrinsic shapes of trajectories; 8. Asymptotic behaviors of circular trajectories; 9. Lengths of circular trajectories; References TYZ expansions for some rotation invariant K hler metrics Todor GRAMCHEV and Andrea LOI1. Introduction; 2. On the remainder term for the cylindrical metric on C; 3. Representation of Kempf's distortion function for the Kepler manifold; 4. TYZ expansion for the Kepler manifold; Acknowledgments; References; Kershner's tilings of type 6 by congruent pentagons are not Dirichlet Atsushi KUBOTA and Toshiaki ADACHI; 1. Introduction; 2. Kershner's tilings of type 6; 3. The Dirichlet property of Kershner's tilings of type 6; 4. Tessellations of type 6 by congruent pentagons; References Eleven classes of almost paracontact manifolds with semi- Riemannian metric of (n + 1, n) Galia NAKOVA and Simeon ZAMKOVOY |
Record Nr. | UNINA-9910457264403321 |
Hackensack, N.J., : World Scientific, 2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Recent progress in differential geometry and its related fields [[electronic resource] ] : proceedings of the 2nd International Colloquium on Differential Geometry and Its Related Fields, Veliko Tarnovo, Bulgaria, 6-10 September, 2010 / / editors, Toshiaki Adachi, Hideya Hashimoto, Milen J. Hristov |
Pubbl/distr/stampa | Hackensack, N.J., : World Scientific, 2012 |
Descrizione fisica | 1 online resource (207 p.) |
Disciplina | 516.36 |
Altri autori (Persone) |
AdachiToshiaki
HashimotoHideya HristovMilen Y |
Soggetto topico | Geometry, Differential |
ISBN |
1-280-37558-2
9786613555403 981-4355-47-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
8.1. Case of Sp(3)/(U(1) x U(1) x Sp(1))8.2. Case of Sp(4)/(U(1) x U(1) x Sp(2)); 8.3. Case of Sp(4)/(U(2) x U(1) x Sp(1)); Acknowledgments; References; On G -invariants of curves in purely imaginary octonions Misa OHASHI; 1. Introduction; 2. Preliminaries; 3. G -congruence theorem of curves in Im C; 3.1. G -frame field along a curve; 3.2. G -invariants; 3.3. G -congruence theorem; 4. Curves in 3-dimensional Euclidean space V Im C; 5. Curves in 4-dimensional Euclidean space V Im C; References; Magnetic Jacobi fields for K hler magnetic fields Toshiaki ADACHI; 1. Introduction
2. Magnetic exponential maps3. Magnetic Jacobi fields; 4. Magnetic conjugate points on complex space forms; 5. Comparison theorems on magnetic Jacobi fields; References; Geometry for q-exponential families Hiroshi MATSUZOE and Atsumi OHARA; Introduction; 1. Preliminaries; 1.1. Statistical models; 1.2. Statistical manifolds; 1.3. Generalized conformal relations on statistical manifolds; 2. Geometry for q-exponential families; 2.1. The q-escort probability and the q-expectation; 2.2. The q-exponential family; 2.3. Geometry for q-exponential families; 3. An application to statistical inferences 3.1. Generalization of independence3.2. Geometry for q-likelihood estimators; Acknowledgment; References; Sasakian magnetic fields on homogeneous real hypersurfaces in a complex hyperbolic space Tuya BAO; 1. Introduction; 2. K ahler and Sasakian magnetic fields; 3. Real hypersurfaces in a complex hyperbolic space; 4. Circles and curves of order two; 5. Circular trajectories for Sasakian magnetic fields; 6. Characterization of hypersurfaces of type (A); 7. Extrinsic shapes of trajectories; 8. Asymptotic behaviors of circular trajectories; 9. Lengths of circular trajectories; References TYZ expansions for some rotation invariant K hler metrics Todor GRAMCHEV and Andrea LOI1. Introduction; 2. On the remainder term for the cylindrical metric on C; 3. Representation of Kempf's distortion function for the Kepler manifold; 4. TYZ expansion for the Kepler manifold; Acknowledgments; References; Kershner's tilings of type 6 by congruent pentagons are not Dirichlet Atsushi KUBOTA and Toshiaki ADACHI; 1. Introduction; 2. Kershner's tilings of type 6; 3. The Dirichlet property of Kershner's tilings of type 6; 4. Tessellations of type 6 by congruent pentagons; References Eleven classes of almost paracontact manifolds with semi- Riemannian metric of (n + 1, n) Galia NAKOVA and Simeon ZAMKOVOY |
Record Nr. | UNINA-9910778811203321 |
Hackensack, N.J., : World Scientific, 2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Recent progress in differential geometry and its related fields : proceedings of the 2nd International Colloquium on Differential Geometry and Its Related Fields, Veliko Tarnovo, Bulgaria, 6-10 September, 2010 / / editors, Toshiaki Adachi, Hideya Hashimoto, Milen J. Hristov |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Hackensack, N.J., : World Scientific, 2012 |
Descrizione fisica | 1 online resource (207 p.) |
Disciplina | 516.36 |
Altri autori (Persone) |
AdachiToshiaki
HashimotoHideya HristovMilen Y |
Soggetto topico | Geometry, Differential |
ISBN |
1-280-37558-2
9786613555403 981-4355-47-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
8.1. Case of Sp(3)/(U(1) x U(1) x Sp(1))8.2. Case of Sp(4)/(U(1) x U(1) x Sp(2)); 8.3. Case of Sp(4)/(U(2) x U(1) x Sp(1)); Acknowledgments; References; On G -invariants of curves in purely imaginary octonions Misa OHASHI; 1. Introduction; 2. Preliminaries; 3. G -congruence theorem of curves in Im C; 3.1. G -frame field along a curve; 3.2. G -invariants; 3.3. G -congruence theorem; 4. Curves in 3-dimensional Euclidean space V Im C; 5. Curves in 4-dimensional Euclidean space V Im C; References; Magnetic Jacobi fields for K hler magnetic fields Toshiaki ADACHI; 1. Introduction
2. Magnetic exponential maps3. Magnetic Jacobi fields; 4. Magnetic conjugate points on complex space forms; 5. Comparison theorems on magnetic Jacobi fields; References; Geometry for q-exponential families Hiroshi MATSUZOE and Atsumi OHARA; Introduction; 1. Preliminaries; 1.1. Statistical models; 1.2. Statistical manifolds; 1.3. Generalized conformal relations on statistical manifolds; 2. Geometry for q-exponential families; 2.1. The q-escort probability and the q-expectation; 2.2. The q-exponential family; 2.3. Geometry for q-exponential families; 3. An application to statistical inferences 3.1. Generalization of independence3.2. Geometry for q-likelihood estimators; Acknowledgment; References; Sasakian magnetic fields on homogeneous real hypersurfaces in a complex hyperbolic space Tuya BAO; 1. Introduction; 2. K ahler and Sasakian magnetic fields; 3. Real hypersurfaces in a complex hyperbolic space; 4. Circles and curves of order two; 5. Circular trajectories for Sasakian magnetic fields; 6. Characterization of hypersurfaces of type (A); 7. Extrinsic shapes of trajectories; 8. Asymptotic behaviors of circular trajectories; 9. Lengths of circular trajectories; References TYZ expansions for some rotation invariant K hler metrics Todor GRAMCHEV and Andrea LOI1. Introduction; 2. On the remainder term for the cylindrical metric on C; 3. Representation of Kempf's distortion function for the Kepler manifold; 4. TYZ expansion for the Kepler manifold; Acknowledgments; References; Kershner's tilings of type 6 by congruent pentagons are not Dirichlet Atsushi KUBOTA and Toshiaki ADACHI; 1. Introduction; 2. Kershner's tilings of type 6; 3. The Dirichlet property of Kershner's tilings of type 6; 4. Tessellations of type 6 by congruent pentagons; References Eleven classes of almost paracontact manifolds with semi- Riemannian metric of (n + 1, n) Galia NAKOVA and Simeon ZAMKOVOY |
Record Nr. | UNINA-9910822384303321 |
Hackensack, N.J., : World Scientific, 2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|