top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced control of power converters : techniques and Matlab/Simulink implementation / / Hasan Komurcugil [and four others]
Advanced control of power converters : techniques and Matlab/Simulink implementation / / Hasan Komurcugil [and four others]
Autore Komurcugil Hasan
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , [2023]
Descrizione fisica 1 online resource (467 pages)
Disciplina 621.3815322
Collana IEEE Press Series on Control Systems Theory and Applications Series
Soggetto topico Convertidors de corrent elèctric
Control no lineal, Teoria de
Electric current converters
Nonlinear control theory
Soggetto non controllato Electronics
Electric Power
System Theory
Technology & Engineering
Science
ISBN 9781119854432
1-119-85443-1
1-119-85441-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- About the Authors -- List of Abbreviations -- Preface -- Acknowledgment -- About the Companion Website -- Chapter 1 Introduction -- 1.1 General Remarks -- 1.2 Basic Closed-Loop Control for Power Converters -- 1.3 Mathematical Modeling of Power Converters -- 1.4 Basic Control Objectives -- 1.4.1 Closed-Loop Stability -- 1.4.2 Settling Time -- 1.4.3 Steady-State Error -- 1.4.4 Robustness to Parameter Variations and Disturbances -- 1.5 Performance Evaluation -- 1.5.1 Simulation-Based Method -- 1.5.2 Experimental Method -- 1.6 Contents of the Book -- References -- Chapter 2 Introduction to Advanced Control Methods -- 2.1 Classical Control Methods for Power Converters -- 2.2 Sliding Mode Control -- 2.3 Lyapunov Function-Based Control -- 2.3.1 Lyapunov's Linearization Method -- 2.3.2 Lyapunov's Direct Method -- 2.4 Model Predictive Control -- 2.4.1 Functional Principle -- 2.4.2 Basic Concept -- 2.4.3 Cost Function -- References -- Chapter 3 Design of Sliding Mode Control for Power Converters -- 3.1 Introduction -- 3.2 Sliding Mode Control of DC-DC Buck and Cuk Converters -- 3.3 Sliding Mode Control Design Procedure -- 3.3.1 Selection of Sliding Surface Function -- 3.3.2 Control Input Design -- 3.4 Chattering Mitigation Techniques -- 3.4.1 Hysteresis Function Technique -- 3.4.2 Boundary Layer Technique -- 3.4.3 State Observer Technique -- 3.5 Modulation Techniques -- 3.5.1 Hysteresis Modulation Technique -- 3.5.2 Sinusoidal Pulse Width Modulation Technique -- 3.5.3 Space Vector Modulation Technique -- 3.6 Other Types of Sliding Mode Control -- 3.6.1 Terminal Sliding Mode Control -- 3.6.2 Second-Order Sliding Mode Control -- References -- Chapter 4 Design of Lyapunov Function-Based Control for Power Converters -- 4.1 Introduction -- 4.2 Lyapunov-Function-Based Control Design Using Direct Method.
4.3 Lyapunov Function-Based Control of DC-DC Buck Converter -- 4.4 Lyapunov Function-Based Control of DC-DC Boost Converter -- References -- Chapter 5 Design of Model Predictive Control -- 5.1 Introduction -- 5.2 Predictive Control Methods -- 5.3 FCS Model Predictive Control -- 5.3.1 Design Procedure -- 5.3.2 Tutorial 1: Implementation of FCS-MPC for Three-Phase VSI -- 5.4 CCS Model Predictive Control -- 5.4.1 Incremental Models -- 5.4.2 Predictive Model -- 5.4.3 Cost Function in CCSMPC -- 5.4.4 Cost Function Minimization -- 5.4.5 Receding Control Horizon Principle -- 5.4.6 Closed-Loop of an MPC System -- 5.4.7 Discrete Linear Quadratic Regulators -- 5.4.8 Formulation of the Constraints in MPC -- 5.4.9 Optimization with Equality Constraints -- 5.4.10 Optimization with Inequality Constraints -- 5.4.11 MPC for Multi-Input Multi-Output Systems -- 5.4.12 Tutorial 2: MPC Design For a Grid-Connected VSI in dq Frame -- 5.5 Design and Implementation Issues -- 5.5.1 Cost Function Selection -- 5.5.1.1 Examples for Primary Control Objectives -- 5.5.1.2 Examples for Secondary Control Objectives -- 5.5.2 Weighting Factor Design -- 5.5.2.1 Empirical Selection Method -- 5.5.2.2 Equal-Weighted Cost-Function-Based Selection Method -- 5.5.2.3 Lookup Table-Based Selection Method -- References -- Chapter 6 MATLAB/Simulink Tutorial on Physical Modeling and Experimental Setup -- 6.1 Introduction -- 6.2 Building Simulation Model for Power Converters -- 6.2.1 Building Simulation Model for Single-Phase Grid-Connected Inverter Based on Sliding Mode Control -- 6.2.2 Building Simulation Model for Three-Phase Rectifier Based on Lyapunov-Function-Based Control -- 6.2.3 Building Simulation Model for Quasi-Z Source Three-Phase Four-Leg Inverter Based on Model Predictive Control -- 6.2.4 Building Simulation Model for Distributed Generations in Islanded AC Microgrid.
6.3 Building Real-Time Model for a Single-Phase T-Type Rectifier -- 6.4 Building Rapid Control Prototyping for a Single-Phase T-Type Rectifier -- 6.4.1 Components in the Experimental Testbed -- 6.4.1.1 Grid Simulator -- 6.4.1.2 A Single-Phase T-Type Rectifier Prototype -- 6.4.1.3 Measurement Board -- 6.4.1.4 Programmable Load -- 6.4.1.5 Controller -- 6.4.2 Building Control Structure on OP-5707 -- References -- Chapter 7 Sliding Mode Control of Various Power Converters -- 7.1 Introduction -- 7.2 Single-Phase Grid-Connected Inverter with LCL Filter -- 7.2.1 Mathematical Modeling of Grid-Connected Inverter with LCL Filter -- 7.2.2 Sliding Mode Control -- 7.2.3 PWM Signal Generation Using Hysteresis Modulation -- 7.2.3.1 Single-Band Hysteresis Function -- 7.2.3.2 Double-Band Hysteresis Function -- 7.2.4 Switching Frequency Computation -- 7.2.4.1 Switching Frequency Computation with Single-Band Hysteresis Modulation -- 7.2.4.2 Switching Frequency Computation with Double-Band Hysteresis Modulation -- 7.2.5 Selection of Control Gains -- 7.2.6 Simulation Study -- 7.2.7 Experimental Study -- 7.3 Three-Phase Grid-Connected Inverter with LCL Filter -- 7.3.1 Physical Model Equations for a Three-Phase Grid-Connected VSI with an LCL Filter -- 7.3.2 Control System -- 7.3.2.1 Reduced State-Space Model of the Converter -- 7.3.2.2 Model Discretization and KF Adaptive Equation -- 7.3.2.3 Sliding Surfaces with Active Damping Capability -- 7.3.3 Stability Analysis -- 7.3.3.1 Discrete-Time Equivalent Control Deduction -- 7.3.3.2 Closed-Loop System Equations -- 7.3.3.3 Test of Robustness Against Parameters Uncertainties -- 7.3.4 Experimental Study -- 7.3.4.1 Test of Robustness Against Grid Inductance Variations -- 7.3.4.2 Test of Stability in Case of Grid Harmonics Near the Resonance Frequency -- 7.3.4.3 Test of the VSI Against Sudden Changes in the Reference Current.
7.3.4.4 Test of the VSI Under Distorted Grid -- 7.3.4.5 Test of the VSI Under Voltage Sags -- 7.3.5 Computational Load and Performances of the Control Algorithm -- 7.4 Three-Phase AC-DC Rectifier -- 7.4.1 Nonlinear Model of the Unity Power Factor Rectifier -- 7.4.2 Problem Formulation -- 7.4.3 Axis-Decoupling Based on an Estimator -- 7.4.4 Control System -- 7.4.4.1 Kalman Filter -- 7.4.4.2 Practical Considerations: Election of Q and R Matrices -- 7.4.4.3 Practical Considerations: Computational Burden Reduction -- 7.4.5 Sliding Mode Control -- 7.4.5.1 Inner Control Loop -- 7.4.5.2 Outer Control Loop -- 7.4.6 Hysteresis Band Generator with Switching Decision Algorithm -- 7.4.7 Experimental Study -- 7.5 Three-Phase Transformerless Dynamic Voltage Restorer -- 7.5.1 Mathematical Modeling of Transformerless Dynamic Voltage Restorer -- 7.5.2 Design of Sliding Mode Control for TDVR -- 7.5.3 Time-Varying Switching Frequency with Single-Band Hysteresis -- 7.5.4 Constant Switching Frequency with Boundary Layer -- 7.5.5 Simulation Study -- 7.5.6 Experimental Study -- 7.6 Three-Phase Shunt Active Power Filter -- 7.6.1 Nonlinear Model of the SAPF -- 7.6.2 Problem Formulation -- 7.6.3 Control System -- 7.6.3.1 State Model of the Converter -- 7.6.3.2 Kalman Filter -- 7.6.3.3 Sliding Mode Control -- 7.6.3.4 Hysteresis Band Generator with SDA -- 7.6.4 Experimental Study -- 7.6.4.1 Response of the SAPF to Load Variations -- 7.6.4.2 SAPF Performances Under a Distorted Grid -- 7.6.4.3 SAPF Performances Under Grid Voltage Sags -- 7.6.4.4 Spectrum of the Control Signal -- References -- Chapter 8 Design of Lyapunov Function-Based Control of Various Power Converters -- 8.1 Introduction -- 8.2 Single-Phase Grid-Connected Inverter with LCL Filter -- 8.2.1 Mathematical Modeling and Controller Design -- 8.2.2 Controller Modification with Capacitor Voltage Feedback.
8.2.3 Inverter-Side Current Reference Generation Using Proportional-Resonant Controller -- 8.2.4 Grid Current Transfer Function -- 8.2.5 Harmonic Attenuation and Harmonic Impedance -- 8.2.6 Results -- 8.3 Single-Phase Quasi-Z-Source Grid-Connected Inverter with LCL Filter -- 8.3.1 Quasi-Z-Source Network Modeling -- 8.3.2 Grid-Connected Inverter Modeling -- 8.3.3 Control of Quasi-Z-Source Network -- 8.3.4 Control of Grid-Connected Inverter -- 8.3.5 Reference Generation Using Cascaded PR Control -- 8.3.6 Results -- 8.4 Single-Phase Uninterruptible Power Supply Inverter -- 8.4.1 Mathematical Modeling of Uninterruptible Power Supply Inverter -- 8.4.2 Controller Design -- 8.4.3 Criteria for Selecting Control Parameters -- 8.4.4 Results -- 8.5 Three-Phase Voltage-Source AC-DC Rectifier -- 8.5.1 Mathematical Modeling of Rectifier -- 8.5.2 Controller Design -- 8.5.3 Results -- References -- Chapter 9 Model Predictive Control of Various Converters -- 9.1 CCS MPC Method for a Three-Phase Grid-Connected VSI -- 9.1.1 Model Predictive Control Design -- 9.1.1.1 VSI Incremental Model with an Embedded Integrator -- 9.1.1.2 Predictive Model of the Converter -- 9.1.1.3 Cost Function Minimization -- 9.1.1.4 Inclusion of Constraints -- 9.1.2 MATLAB®/Simulink® Implementation -- 9.1.3 Simulation Studies -- 9.2 Model Predictive Control Method for Single-Phase Three-Level Shunt Active Filter -- 9.2.1 Modeling of Shunt Active Filter (SAPF) -- 9.2.2 The Energy-Function-Based MPC -- 9.2.2.1 Design of Energy-Function-Based MPC -- 9.2.2.2 Discrete-Time Model -- 9.2.3 Experimental Studies -- 9.2.3.1 Steady-State and Dynamic Response Tests -- 9.2.3.2 Comparison with Classical MPC Method -- 9.3 Model Predictive Control of Quasi-Z Source Three-Phase Four-Leg Inverter -- 9.3.1 qZS Four-Leg Inverter Model -- 9.3.2 MPC Algorithm -- 9.3.2.1 Determination of References.
9.3.2.2 Discrete-Time Models of the System.
Record Nr. UNINA-9910735566603321
Komurcugil Hasan  
Hoboken, New Jersey : , : Wiley, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Power electronics for renewable energy systems, transportation, and industrial applications / / edited by Haitham Abu-Rub, Mariusz Malinowski, Kamal Al-Haddad
Power electronics for renewable energy systems, transportation, and industrial applications / / edited by Haitham Abu-Rub, Mariusz Malinowski, Kamal Al-Haddad
Edizione [1st edition]
Pubbl/distr/stampa Chichester, West Sussex, United Kingdom ; ; Hoboken, New Jersey : , : Wiley/IEEE, 2014
Descrizione fisica 1 online resource (827 pages) : illustrations
Disciplina 621.31/7
Soggetto topico Power electronics
Industries - Power supply
ISBN 1-306-86226-4
1-118-75552-9
1-118-75551-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 11.3 DC-Link Capacitors Voltage Balancing in Diode-Clamped Converter 334 -- 11.4 Control Algorithms for AC / DC / AC Converters 345 -- 11.5 AC / DC / AC Converter with Active Power FeedForward 356 -- 11.6 Summary and Conclusions 361 -- References 362 -- 12 Power Electronics for More Electric Aircraft 365 -- 12.1 Introduction 365 -- 12.2 More Electric Aircraft 367 -- 12.3 More Electric Engine (MEE) 372 -- 12.4 Electric Power Generation Strategies 374 -- 12.5 Power Electronics and Power Conversion 378 -- 12.6 Power Distribution 381 -- 12.7 Conclusions 384 -- References 385 -- 13 Electric and Plug-In Hybrid Electric Vehicles 387 -- 13.1 Introduction 387 -- 13.2 Electric, Hybrid Electric and Plug-In Hybrid Electric Vehicle Topologies 388 -- 13.3 EV and PHEV Charging Infrastructures 392 -- 13.4 Power Electronics for EV and PHEV Charging Infrastructure 404 -- 13.5 Vehicle-to-Grid (V2G) and Vehicle-to-Home (V2H) Concepts 407 -- 13.6 Power Electronics for PEV Charging 410 -- References 419 -- 14 Multilevel Converter/Inverter Topologies and Applications 422 -- 14.1 Introduction 422 -- 14.2 Fundamentals of Multilevel Converters/Inverters 423 -- 14.3 Cascaded Multilevel Inverters and Their Applications 432 -- 14.4 Emerging Applications and Discussions 444 -- 14.5 Summary 459 -- Acknowledgment 461 -- References 461 -- 15 Multiphase Matrix Converter Topologies and Control 463 -- 15.1 Introduction 463 -- 15.2 Three-Phase Input with Five-Phase Output Matrix Converter 464 -- 15.3 Simulation and Experimental Results 484 -- 15.4 Matrix Converter with Five-Phase Input and Three-Phase Output 488 -- 15.5 Sample Results 499 -- Acknowledgment 501 -- References 501 -- 16 Boost Preregulators for Power Factor Correction in Single-Phase Rectifiers 503 -- 16.1 Introduction 503 -- 16.2 Basic Boost PFC 504 -- 16.3 Half-Bridge Asymmetric Boost PFC 511 -- 16.4 Interleaved Dual-Boost PFC 519 -- 16.5 Conclusion 528 -- References 529 -- 17 Active Power Filter 534 -- 17.1 Introduction 534 -- 17.2 Harmonics 535.
17.3 Effects and Negative Consequences of Harmonics 535 -- 17.4 International Standards for Harmonics 536 -- 17.5 Types of Harmonics 537 -- 17.5.1 Harmonic Current Sources 537 -- 17.5.2 Harmonic Voltage Sources 537 -- 17.6 Passive Filters 539 -- 17.7 Power Definitions 540 -- 17.8 Active Power Filters 543 -- 17.9 APF Switching Frequency Choice Methodology 547 -- 17.10 Harmonic Current Extraction Techniques (HCET) 548 -- 17.11 Shunt Active Power Filter 555 -- 17.12 Series Active Power Filter 564 -- 17.13 Unified Power Quality Conditioner 565 -- Acknowledgment 569 -- References 569 -- 18A Hardware-in-the-Loop Systems with Power Electronics: A Powerful Simulation Tool 573 -- 18A.1 Background 573 -- 18A.2 Increasing the Performance of the Power Stage 575 -- 18A.3 Machine Model of an Asynchronous Machine 581 -- 18A.4 Results and Conclusions 583 -- References 589 -- 18B Real-Time Simulation of Modular Multilevel Converters (MMCs) 591 -- 18B.1 Introduction 591 -- 18B.2 Choice of Modeling for MMC and Its Limitations 597 -- 18B.3 Hardware Technology for Real-Time Simulation 598 -- 18B.4 Implementation for Real-Time Simulator Using Different Approach 601 -- 18B.5 Conclusion 606 -- References 606 -- 19 Model Predictive Speed Control of Electrical Machines 608 -- 19.1 Introduction 608 -- 19.2 Review of Classical Speed Control Schemes for Electrical Machines 609 -- 19.3 Predictive Current Control 613 -- 19.4 Predictive Torque Control 617 -- 19.5 Predictive Torque Control Using a Direct Matrix Converter 619 -- 19.6 Predictive Speed Control 622 -- 19.7 Conclusions 626 -- Acknowledgment 627 -- References 627 -- 20 The Electrical Drive Systems with the Current Source Converter 630 -- 20.1 Introduction 630 -- 20.2 The Drive System Structure 631 -- 20.3 The PWM in CSCs 633 -- 20.4 The Generalized Control of a CSR 636 -- 20.5 The Mathematical Model of an Asynchronous and a Permanent Magnet Synchronous Motor 639 -- 20.6 The Current and Voltage Control of an Induction Machine 641 -- 20.7 The Current and Voltage Control of Permanent Magnet Synchronous Motor 651.
20.8 The Control System of a Doubly Fed Motor Supplied by a CSC 657 -- 20.9 Conclusion 661 -- References 662 -- 21 Common-Mode Voltage and Bearing Currents in PWM Inverters: Causes, Effects and Prevention 664 -- 21.1 Introduction 664 -- 21.2 Determination of the Induction Motor Common-Mode Parameters 671 -- 21.3 Prevention of Common-Mode Current: Passive Methods 674 -- 21.4 Active Systems for Reducing the CM Current 682 -- 21.5 Common-Mode Current Reduction by PWM Algorithm Modifications 683 -- 21.6 Summary 692 -- References 692 -- 22 High-Power Drive Systems for Industrial Applications: Practical Examples 695 -- 22.1 Introduction 695 -- 22.2 LNG Plants 696 -- 22.3 Gas Turbines (GTs): the Conventional Compressor Drives 697 -- 22.4 Technical and Economic Impact of VFDs 699 -- 22.5 High-Power Electric Motors 700 -- 22.6 High-Power Electric Drives 705 -- 22.7 Switching Devices 705 -- 22.8 High-Power Converter Topologies 709 -- 22.9 Multilevel VSI Topologies 711 -- 22.10 Control of High-Power Electric Drives 719 -- 22.11 Conclusion 723 -- Acknowledgment 724 -- References 724 -- 23 Modulation and Control of Single-Phase Grid-Side Converters 727 -- 23.1 Introduction 727 -- 23.2 Modulation Techniques in Single-Phase Voltage Source Converters 729 -- 23.3 Control of AC / DC Single-Phase Voltage Source Converters 748 -- 23.4 Summary 763 -- References 763 -- 24 Impedance Source Inverters 766 -- 24.1 Multilevel Inverters 766 -- 24.2 Quasi-Z-Source Inverter 767 -- 24.3 qZSI-Based Cascade Multilevel PV System 775 -- 24.4 Hardware Implementation 780 -- Acknowledgments 782 -- References 782 -- Index 787.
Foreword xix -- Preface xxi -- Acknowledgements xxv -- List of Contributors xxvii -- 1 Energy, Global Warming and Impact of Power Electronics in the Present Century 1 -- 1.1 Introduction 1 -- 1.2 Energy 2 -- 1.3 Environmental Pollution: Global Warming Problem 3 -- 1.4 Impact of Power Electronics on Energy Systems 8 -- 1.5 Smart Grid 20 -- 1.6 Electric/Hybrid Electric Vehicles 21 -- 1.7 Conclusion and Future Prognosis 23 -- References 25 -- 2 Challenges of the Current Energy Scenario: The Power Electronics Contribution 27 -- 2.1 Introduction 27 -- 2.2 Energy Transmission and Distribution Systems 28 -- 2.3 Renewable Energy Systems 34 -- 2.4 Transportation Systems 41 -- 2.5 Energy Storage Systems 42 -- 2.6 Conclusions 47 -- References 47 -- 3 An Overview on Distributed Generation and Smart Grid Concepts and Technologies 50 -- 3.1 Introduction 50 -- 3.2 Requirements of Distributed Generation Systems and Smart Grids 51 -- 3.3 Photovoltaic Generators 52 -- 3.4 Wind and Mini-hydro Generators 55 -- 3.5 Energy Storage Systems 56 -- 3.6 Electric Vehicles 57 -- 3.7 Microgrids 57 -- 3.8 Smart Grid Issues 59 -- 3.9 Active Management of Distribution Networks 60 -- 3.10 Communication Systems in Smart Grids 61 -- 3.11 Advanced Metering Infrastructure and Real-Time Pricing 62 -- 3.12 Standards for Smart Grids 63 -- References 65 -- 4 Recent Advances in Power Semiconductor Technology 69 -- 4.1 Introduction 69 -- 4.2 Silicon Power Transistors 70 -- 4.3 Overview of SiC Transistor Designs 75 -- 4.4 Gate and Base Drivers for SiC Devices 80 -- 4.5 Parallel Connection of Transistors 89 -- 4.6 Overview of Applications 97 -- 4.7 Gallium Nitride Transistors 100 -- 4.8 Summary 102 -- References 102 -- 5 AC-Link Universal Power Converters: A New Class of Power Converters for Renewable Energy and Transportation 107 -- 5.1 Introduction 107 -- 5.2 Hard Switching ac-Link Universal Power Converter 108 -- 5.3 Soft Switching ac-Link Universal Power Converter 112 -- 5.4 Principle of Operation of the Soft Switching ac-Link Universal Power Converter 113.
5.5 Design Procedure 122 -- 5.6 Analysis 123 -- 5.7 Applications 126 -- 5.8 Summary 133 -- Acknowledgment 133 -- References 133 -- 6 High Power Electronics: Key Technology forWind Turbines 136 -- 6.1 Introduction 136 -- 6.2 Development of Wind Power Generation 137 -- 6.3 Wind Power Conversion 138 -- 6.4 Power Converters for Wind Turbines 143 -- 6.5 Power Semiconductors for Wind Power Converter 149 -- 6.6 Controls and Grid Requirements for Modern Wind Turbines 150 -- 6.7 Emerging Reliability Issues for Wind Power System 155 -- 6.8 Conclusion 156 -- References 156 -- 7 Photovoltaic Energy Conversion Systems 160 -- 7.1 Introduction 160 -- 7.2 Power Curves and Maximum Power Point of PV Systems 162 -- 7.3 Grid-Connected PV System Configurations 165 -- 7.4 Control of Grid-Connected PV Systems 181 -- 7.5 Recent Developments in Multilevel Inverter-Based PV Systems 192 -- 7.6 Summary 195 -- References 195 -- 8 Controllability Analysis of Renewable Energy Systems 199 -- 8.1 Introduction 199 -- 8.2 Zero Dynamics of the Nonlinear System 201 -- 8.3 Controllability of Wind Turbine Connected through L Filter to the Grid 202 -- 8.4 Controllability of Wind Turbine Connected through LCL Filter to the Grid 208 -- 8.5 Controllability and Stability Analysis of PV System Connected to Current Source Inverter 219 -- 8.6 Conclusions 228 -- References 229 -- 9 Universal Operation of Small/Medium-Sized Renewable Energy Systems 231 -- 9.1 Distributed Power Generation Systems 231 -- 9.2 Control of Power Converters for Grid-Interactive Distributed Power Generation Systems 243 -- 9.3 Ancillary Feature 259 -- 9.4 Summary 267 -- References 268 -- 10 Properties and Control of a Doubly Fed Induction Machine 270 -- 10.1 Introduction. Basic principles of DFIM 270 -- 10.2 Vector Control of DFIM Using an AC/DC/AC Converter 280 -- 10.3 DFIM-Based Wind Energy Conversion Systems 305 -- References 317 -- 11 AC / DC / AC Converters for Distributed Power Generation Systems 319 -- 11.1 Introduction 319 -- 11.2 Pulse-Width Modulation for AC / DC / AC Topologies 328.
Record Nr. UNINA-9910208817203321
Chichester, West Sussex, United Kingdom ; ; Hoboken, New Jersey : , : Wiley/IEEE, 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui