Advanced control of power converters : techniques and Matlab/Simulink implementation / / Hasan Komurcugil [and four others] |
Autore | Komurcugil Hasan |
Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley, , [2023] |
Descrizione fisica | 1 online resource (467 pages) |
Disciplina | 621.3815322 |
Collana | IEEE Press Series on Control Systems Theory and Applications Series |
Soggetto topico |
Convertidors de corrent elèctric
Control no lineal, Teoria de Electric current converters Nonlinear control theory |
Soggetto non controllato |
Electronics
Electric Power System Theory Technology & Engineering Science |
ISBN |
9781119854432
1-119-85443-1 1-119-85441-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- About the Authors -- List of Abbreviations -- Preface -- Acknowledgment -- About the Companion Website -- Chapter 1 Introduction -- 1.1 General Remarks -- 1.2 Basic Closed-Loop Control for Power Converters -- 1.3 Mathematical Modeling of Power Converters -- 1.4 Basic Control Objectives -- 1.4.1 Closed-Loop Stability -- 1.4.2 Settling Time -- 1.4.3 Steady-State Error -- 1.4.4 Robustness to Parameter Variations and Disturbances -- 1.5 Performance Evaluation -- 1.5.1 Simulation-Based Method -- 1.5.2 Experimental Method -- 1.6 Contents of the Book -- References -- Chapter 2 Introduction to Advanced Control Methods -- 2.1 Classical Control Methods for Power Converters -- 2.2 Sliding Mode Control -- 2.3 Lyapunov Function-Based Control -- 2.3.1 Lyapunov's Linearization Method -- 2.3.2 Lyapunov's Direct Method -- 2.4 Model Predictive Control -- 2.4.1 Functional Principle -- 2.4.2 Basic Concept -- 2.4.3 Cost Function -- References -- Chapter 3 Design of Sliding Mode Control for Power Converters -- 3.1 Introduction -- 3.2 Sliding Mode Control of DC-DC Buck and Cuk Converters -- 3.3 Sliding Mode Control Design Procedure -- 3.3.1 Selection of Sliding Surface Function -- 3.3.2 Control Input Design -- 3.4 Chattering Mitigation Techniques -- 3.4.1 Hysteresis Function Technique -- 3.4.2 Boundary Layer Technique -- 3.4.3 State Observer Technique -- 3.5 Modulation Techniques -- 3.5.1 Hysteresis Modulation Technique -- 3.5.2 Sinusoidal Pulse Width Modulation Technique -- 3.5.3 Space Vector Modulation Technique -- 3.6 Other Types of Sliding Mode Control -- 3.6.1 Terminal Sliding Mode Control -- 3.6.2 Second-Order Sliding Mode Control -- References -- Chapter 4 Design of Lyapunov Function-Based Control for Power Converters -- 4.1 Introduction -- 4.2 Lyapunov-Function-Based Control Design Using Direct Method.
4.3 Lyapunov Function-Based Control of DC-DC Buck Converter -- 4.4 Lyapunov Function-Based Control of DC-DC Boost Converter -- References -- Chapter 5 Design of Model Predictive Control -- 5.1 Introduction -- 5.2 Predictive Control Methods -- 5.3 FCS Model Predictive Control -- 5.3.1 Design Procedure -- 5.3.2 Tutorial 1: Implementation of FCS-MPC for Three-Phase VSI -- 5.4 CCS Model Predictive Control -- 5.4.1 Incremental Models -- 5.4.2 Predictive Model -- 5.4.3 Cost Function in CCSMPC -- 5.4.4 Cost Function Minimization -- 5.4.5 Receding Control Horizon Principle -- 5.4.6 Closed-Loop of an MPC System -- 5.4.7 Discrete Linear Quadratic Regulators -- 5.4.8 Formulation of the Constraints in MPC -- 5.4.9 Optimization with Equality Constraints -- 5.4.10 Optimization with Inequality Constraints -- 5.4.11 MPC for Multi-Input Multi-Output Systems -- 5.4.12 Tutorial 2: MPC Design For a Grid-Connected VSI in dq Frame -- 5.5 Design and Implementation Issues -- 5.5.1 Cost Function Selection -- 5.5.1.1 Examples for Primary Control Objectives -- 5.5.1.2 Examples for Secondary Control Objectives -- 5.5.2 Weighting Factor Design -- 5.5.2.1 Empirical Selection Method -- 5.5.2.2 Equal-Weighted Cost-Function-Based Selection Method -- 5.5.2.3 Lookup Table-Based Selection Method -- References -- Chapter 6 MATLAB/Simulink Tutorial on Physical Modeling and Experimental Setup -- 6.1 Introduction -- 6.2 Building Simulation Model for Power Converters -- 6.2.1 Building Simulation Model for Single-Phase Grid-Connected Inverter Based on Sliding Mode Control -- 6.2.2 Building Simulation Model for Three-Phase Rectifier Based on Lyapunov-Function-Based Control -- 6.2.3 Building Simulation Model for Quasi-Z Source Three-Phase Four-Leg Inverter Based on Model Predictive Control -- 6.2.4 Building Simulation Model for Distributed Generations in Islanded AC Microgrid. 6.3 Building Real-Time Model for a Single-Phase T-Type Rectifier -- 6.4 Building Rapid Control Prototyping for a Single-Phase T-Type Rectifier -- 6.4.1 Components in the Experimental Testbed -- 6.4.1.1 Grid Simulator -- 6.4.1.2 A Single-Phase T-Type Rectifier Prototype -- 6.4.1.3 Measurement Board -- 6.4.1.4 Programmable Load -- 6.4.1.5 Controller -- 6.4.2 Building Control Structure on OP-5707 -- References -- Chapter 7 Sliding Mode Control of Various Power Converters -- 7.1 Introduction -- 7.2 Single-Phase Grid-Connected Inverter with LCL Filter -- 7.2.1 Mathematical Modeling of Grid-Connected Inverter with LCL Filter -- 7.2.2 Sliding Mode Control -- 7.2.3 PWM Signal Generation Using Hysteresis Modulation -- 7.2.3.1 Single-Band Hysteresis Function -- 7.2.3.2 Double-Band Hysteresis Function -- 7.2.4 Switching Frequency Computation -- 7.2.4.1 Switching Frequency Computation with Single-Band Hysteresis Modulation -- 7.2.4.2 Switching Frequency Computation with Double-Band Hysteresis Modulation -- 7.2.5 Selection of Control Gains -- 7.2.6 Simulation Study -- 7.2.7 Experimental Study -- 7.3 Three-Phase Grid-Connected Inverter with LCL Filter -- 7.3.1 Physical Model Equations for a Three-Phase Grid-Connected VSI with an LCL Filter -- 7.3.2 Control System -- 7.3.2.1 Reduced State-Space Model of the Converter -- 7.3.2.2 Model Discretization and KF Adaptive Equation -- 7.3.2.3 Sliding Surfaces with Active Damping Capability -- 7.3.3 Stability Analysis -- 7.3.3.1 Discrete-Time Equivalent Control Deduction -- 7.3.3.2 Closed-Loop System Equations -- 7.3.3.3 Test of Robustness Against Parameters Uncertainties -- 7.3.4 Experimental Study -- 7.3.4.1 Test of Robustness Against Grid Inductance Variations -- 7.3.4.2 Test of Stability in Case of Grid Harmonics Near the Resonance Frequency -- 7.3.4.3 Test of the VSI Against Sudden Changes in the Reference Current. 7.3.4.4 Test of the VSI Under Distorted Grid -- 7.3.4.5 Test of the VSI Under Voltage Sags -- 7.3.5 Computational Load and Performances of the Control Algorithm -- 7.4 Three-Phase AC-DC Rectifier -- 7.4.1 Nonlinear Model of the Unity Power Factor Rectifier -- 7.4.2 Problem Formulation -- 7.4.3 Axis-Decoupling Based on an Estimator -- 7.4.4 Control System -- 7.4.4.1 Kalman Filter -- 7.4.4.2 Practical Considerations: Election of Q and R Matrices -- 7.4.4.3 Practical Considerations: Computational Burden Reduction -- 7.4.5 Sliding Mode Control -- 7.4.5.1 Inner Control Loop -- 7.4.5.2 Outer Control Loop -- 7.4.6 Hysteresis Band Generator with Switching Decision Algorithm -- 7.4.7 Experimental Study -- 7.5 Three-Phase Transformerless Dynamic Voltage Restorer -- 7.5.1 Mathematical Modeling of Transformerless Dynamic Voltage Restorer -- 7.5.2 Design of Sliding Mode Control for TDVR -- 7.5.3 Time-Varying Switching Frequency with Single-Band Hysteresis -- 7.5.4 Constant Switching Frequency with Boundary Layer -- 7.5.5 Simulation Study -- 7.5.6 Experimental Study -- 7.6 Three-Phase Shunt Active Power Filter -- 7.6.1 Nonlinear Model of the SAPF -- 7.6.2 Problem Formulation -- 7.6.3 Control System -- 7.6.3.1 State Model of the Converter -- 7.6.3.2 Kalman Filter -- 7.6.3.3 Sliding Mode Control -- 7.6.3.4 Hysteresis Band Generator with SDA -- 7.6.4 Experimental Study -- 7.6.4.1 Response of the SAPF to Load Variations -- 7.6.4.2 SAPF Performances Under a Distorted Grid -- 7.6.4.3 SAPF Performances Under Grid Voltage Sags -- 7.6.4.4 Spectrum of the Control Signal -- References -- Chapter 8 Design of Lyapunov Function-Based Control of Various Power Converters -- 8.1 Introduction -- 8.2 Single-Phase Grid-Connected Inverter with LCL Filter -- 8.2.1 Mathematical Modeling and Controller Design -- 8.2.2 Controller Modification with Capacitor Voltage Feedback. 8.2.3 Inverter-Side Current Reference Generation Using Proportional-Resonant Controller -- 8.2.4 Grid Current Transfer Function -- 8.2.5 Harmonic Attenuation and Harmonic Impedance -- 8.2.6 Results -- 8.3 Single-Phase Quasi-Z-Source Grid-Connected Inverter with LCL Filter -- 8.3.1 Quasi-Z-Source Network Modeling -- 8.3.2 Grid-Connected Inverter Modeling -- 8.3.3 Control of Quasi-Z-Source Network -- 8.3.4 Control of Grid-Connected Inverter -- 8.3.5 Reference Generation Using Cascaded PR Control -- 8.3.6 Results -- 8.4 Single-Phase Uninterruptible Power Supply Inverter -- 8.4.1 Mathematical Modeling of Uninterruptible Power Supply Inverter -- 8.4.2 Controller Design -- 8.4.3 Criteria for Selecting Control Parameters -- 8.4.4 Results -- 8.5 Three-Phase Voltage-Source AC-DC Rectifier -- 8.5.1 Mathematical Modeling of Rectifier -- 8.5.2 Controller Design -- 8.5.3 Results -- References -- Chapter 9 Model Predictive Control of Various Converters -- 9.1 CCS MPC Method for a Three-Phase Grid-Connected VSI -- 9.1.1 Model Predictive Control Design -- 9.1.1.1 VSI Incremental Model with an Embedded Integrator -- 9.1.1.2 Predictive Model of the Converter -- 9.1.1.3 Cost Function Minimization -- 9.1.1.4 Inclusion of Constraints -- 9.1.2 MATLAB®/Simulink® Implementation -- 9.1.3 Simulation Studies -- 9.2 Model Predictive Control Method for Single-Phase Three-Level Shunt Active Filter -- 9.2.1 Modeling of Shunt Active Filter (SAPF) -- 9.2.2 The Energy-Function-Based MPC -- 9.2.2.1 Design of Energy-Function-Based MPC -- 9.2.2.2 Discrete-Time Model -- 9.2.3 Experimental Studies -- 9.2.3.1 Steady-State and Dynamic Response Tests -- 9.2.3.2 Comparison with Classical MPC Method -- 9.3 Model Predictive Control of Quasi-Z Source Three-Phase Four-Leg Inverter -- 9.3.1 qZS Four-Leg Inverter Model -- 9.3.2 MPC Algorithm -- 9.3.2.1 Determination of References. 9.3.2.2 Discrete-Time Models of the System. |
Record Nr. | UNINA-9910735566603321 |
Komurcugil Hasan | ||
Hoboken, New Jersey : , : Wiley, , [2023] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Power electronics for renewable energy systems, transportation, and industrial applications / / edited by Haitham Abu-Rub, Mariusz Malinowski, Kamal Al-Haddad |
Edizione | [1st edition] |
Pubbl/distr/stampa | Chichester, West Sussex, United Kingdom ; ; Hoboken, New Jersey : , : Wiley/IEEE, 2014 |
Descrizione fisica | 1 online resource (827 pages) : illustrations |
Disciplina | 621.31/7 |
Soggetto topico |
Power electronics
Industries - Power supply |
ISBN |
1-306-86226-4
1-118-75552-9 1-118-75551-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
11.3 DC-Link Capacitors Voltage Balancing in Diode-Clamped Converter 334 -- 11.4 Control Algorithms for AC / DC / AC Converters 345 -- 11.5 AC / DC / AC Converter with Active Power FeedForward 356 -- 11.6 Summary and Conclusions 361 -- References 362 -- 12 Power Electronics for More Electric Aircraft 365 -- 12.1 Introduction 365 -- 12.2 More Electric Aircraft 367 -- 12.3 More Electric Engine (MEE) 372 -- 12.4 Electric Power Generation Strategies 374 -- 12.5 Power Electronics and Power Conversion 378 -- 12.6 Power Distribution 381 -- 12.7 Conclusions 384 -- References 385 -- 13 Electric and Plug-In Hybrid Electric Vehicles 387 -- 13.1 Introduction 387 -- 13.2 Electric, Hybrid Electric and Plug-In Hybrid Electric Vehicle Topologies 388 -- 13.3 EV and PHEV Charging Infrastructures 392 -- 13.4 Power Electronics for EV and PHEV Charging Infrastructure 404 -- 13.5 Vehicle-to-Grid (V2G) and Vehicle-to-Home (V2H) Concepts 407 -- 13.6 Power Electronics for PEV Charging 410 -- References 419 -- 14 Multilevel Converter/Inverter Topologies and Applications 422 -- 14.1 Introduction 422 -- 14.2 Fundamentals of Multilevel Converters/Inverters 423 -- 14.3 Cascaded Multilevel Inverters and Their Applications 432 -- 14.4 Emerging Applications and Discussions 444 -- 14.5 Summary 459 -- Acknowledgment 461 -- References 461 -- 15 Multiphase Matrix Converter Topologies and Control 463 -- 15.1 Introduction 463 -- 15.2 Three-Phase Input with Five-Phase Output Matrix Converter 464 -- 15.3 Simulation and Experimental Results 484 -- 15.4 Matrix Converter with Five-Phase Input and Three-Phase Output 488 -- 15.5 Sample Results 499 -- Acknowledgment 501 -- References 501 -- 16 Boost Preregulators for Power Factor Correction in Single-Phase Rectifiers 503 -- 16.1 Introduction 503 -- 16.2 Basic Boost PFC 504 -- 16.3 Half-Bridge Asymmetric Boost PFC 511 -- 16.4 Interleaved Dual-Boost PFC 519 -- 16.5 Conclusion 528 -- References 529 -- 17 Active Power Filter 534 -- 17.1 Introduction 534 -- 17.2 Harmonics 535.
17.3 Effects and Negative Consequences of Harmonics 535 -- 17.4 International Standards for Harmonics 536 -- 17.5 Types of Harmonics 537 -- 17.5.1 Harmonic Current Sources 537 -- 17.5.2 Harmonic Voltage Sources 537 -- 17.6 Passive Filters 539 -- 17.7 Power Definitions 540 -- 17.8 Active Power Filters 543 -- 17.9 APF Switching Frequency Choice Methodology 547 -- 17.10 Harmonic Current Extraction Techniques (HCET) 548 -- 17.11 Shunt Active Power Filter 555 -- 17.12 Series Active Power Filter 564 -- 17.13 Unified Power Quality Conditioner 565 -- Acknowledgment 569 -- References 569 -- 18A Hardware-in-the-Loop Systems with Power Electronics: A Powerful Simulation Tool 573 -- 18A.1 Background 573 -- 18A.2 Increasing the Performance of the Power Stage 575 -- 18A.3 Machine Model of an Asynchronous Machine 581 -- 18A.4 Results and Conclusions 583 -- References 589 -- 18B Real-Time Simulation of Modular Multilevel Converters (MMCs) 591 -- 18B.1 Introduction 591 -- 18B.2 Choice of Modeling for MMC and Its Limitations 597 -- 18B.3 Hardware Technology for Real-Time Simulation 598 -- 18B.4 Implementation for Real-Time Simulator Using Different Approach 601 -- 18B.5 Conclusion 606 -- References 606 -- 19 Model Predictive Speed Control of Electrical Machines 608 -- 19.1 Introduction 608 -- 19.2 Review of Classical Speed Control Schemes for Electrical Machines 609 -- 19.3 Predictive Current Control 613 -- 19.4 Predictive Torque Control 617 -- 19.5 Predictive Torque Control Using a Direct Matrix Converter 619 -- 19.6 Predictive Speed Control 622 -- 19.7 Conclusions 626 -- Acknowledgment 627 -- References 627 -- 20 The Electrical Drive Systems with the Current Source Converter 630 -- 20.1 Introduction 630 -- 20.2 The Drive System Structure 631 -- 20.3 The PWM in CSCs 633 -- 20.4 The Generalized Control of a CSR 636 -- 20.5 The Mathematical Model of an Asynchronous and a Permanent Magnet Synchronous Motor 639 -- 20.6 The Current and Voltage Control of an Induction Machine 641 -- 20.7 The Current and Voltage Control of Permanent Magnet Synchronous Motor 651. 20.8 The Control System of a Doubly Fed Motor Supplied by a CSC 657 -- 20.9 Conclusion 661 -- References 662 -- 21 Common-Mode Voltage and Bearing Currents in PWM Inverters: Causes, Effects and Prevention 664 -- 21.1 Introduction 664 -- 21.2 Determination of the Induction Motor Common-Mode Parameters 671 -- 21.3 Prevention of Common-Mode Current: Passive Methods 674 -- 21.4 Active Systems for Reducing the CM Current 682 -- 21.5 Common-Mode Current Reduction by PWM Algorithm Modifications 683 -- 21.6 Summary 692 -- References 692 -- 22 High-Power Drive Systems for Industrial Applications: Practical Examples 695 -- 22.1 Introduction 695 -- 22.2 LNG Plants 696 -- 22.3 Gas Turbines (GTs): the Conventional Compressor Drives 697 -- 22.4 Technical and Economic Impact of VFDs 699 -- 22.5 High-Power Electric Motors 700 -- 22.6 High-Power Electric Drives 705 -- 22.7 Switching Devices 705 -- 22.8 High-Power Converter Topologies 709 -- 22.9 Multilevel VSI Topologies 711 -- 22.10 Control of High-Power Electric Drives 719 -- 22.11 Conclusion 723 -- Acknowledgment 724 -- References 724 -- 23 Modulation and Control of Single-Phase Grid-Side Converters 727 -- 23.1 Introduction 727 -- 23.2 Modulation Techniques in Single-Phase Voltage Source Converters 729 -- 23.3 Control of AC / DC Single-Phase Voltage Source Converters 748 -- 23.4 Summary 763 -- References 763 -- 24 Impedance Source Inverters 766 -- 24.1 Multilevel Inverters 766 -- 24.2 Quasi-Z-Source Inverter 767 -- 24.3 qZSI-Based Cascade Multilevel PV System 775 -- 24.4 Hardware Implementation 780 -- Acknowledgments 782 -- References 782 -- Index 787. Foreword xix -- Preface xxi -- Acknowledgements xxv -- List of Contributors xxvii -- 1 Energy, Global Warming and Impact of Power Electronics in the Present Century 1 -- 1.1 Introduction 1 -- 1.2 Energy 2 -- 1.3 Environmental Pollution: Global Warming Problem 3 -- 1.4 Impact of Power Electronics on Energy Systems 8 -- 1.5 Smart Grid 20 -- 1.6 Electric/Hybrid Electric Vehicles 21 -- 1.7 Conclusion and Future Prognosis 23 -- References 25 -- 2 Challenges of the Current Energy Scenario: The Power Electronics Contribution 27 -- 2.1 Introduction 27 -- 2.2 Energy Transmission and Distribution Systems 28 -- 2.3 Renewable Energy Systems 34 -- 2.4 Transportation Systems 41 -- 2.5 Energy Storage Systems 42 -- 2.6 Conclusions 47 -- References 47 -- 3 An Overview on Distributed Generation and Smart Grid Concepts and Technologies 50 -- 3.1 Introduction 50 -- 3.2 Requirements of Distributed Generation Systems and Smart Grids 51 -- 3.3 Photovoltaic Generators 52 -- 3.4 Wind and Mini-hydro Generators 55 -- 3.5 Energy Storage Systems 56 -- 3.6 Electric Vehicles 57 -- 3.7 Microgrids 57 -- 3.8 Smart Grid Issues 59 -- 3.9 Active Management of Distribution Networks 60 -- 3.10 Communication Systems in Smart Grids 61 -- 3.11 Advanced Metering Infrastructure and Real-Time Pricing 62 -- 3.12 Standards for Smart Grids 63 -- References 65 -- 4 Recent Advances in Power Semiconductor Technology 69 -- 4.1 Introduction 69 -- 4.2 Silicon Power Transistors 70 -- 4.3 Overview of SiC Transistor Designs 75 -- 4.4 Gate and Base Drivers for SiC Devices 80 -- 4.5 Parallel Connection of Transistors 89 -- 4.6 Overview of Applications 97 -- 4.7 Gallium Nitride Transistors 100 -- 4.8 Summary 102 -- References 102 -- 5 AC-Link Universal Power Converters: A New Class of Power Converters for Renewable Energy and Transportation 107 -- 5.1 Introduction 107 -- 5.2 Hard Switching ac-Link Universal Power Converter 108 -- 5.3 Soft Switching ac-Link Universal Power Converter 112 -- 5.4 Principle of Operation of the Soft Switching ac-Link Universal Power Converter 113. 5.5 Design Procedure 122 -- 5.6 Analysis 123 -- 5.7 Applications 126 -- 5.8 Summary 133 -- Acknowledgment 133 -- References 133 -- 6 High Power Electronics: Key Technology forWind Turbines 136 -- 6.1 Introduction 136 -- 6.2 Development of Wind Power Generation 137 -- 6.3 Wind Power Conversion 138 -- 6.4 Power Converters for Wind Turbines 143 -- 6.5 Power Semiconductors for Wind Power Converter 149 -- 6.6 Controls and Grid Requirements for Modern Wind Turbines 150 -- 6.7 Emerging Reliability Issues for Wind Power System 155 -- 6.8 Conclusion 156 -- References 156 -- 7 Photovoltaic Energy Conversion Systems 160 -- 7.1 Introduction 160 -- 7.2 Power Curves and Maximum Power Point of PV Systems 162 -- 7.3 Grid-Connected PV System Configurations 165 -- 7.4 Control of Grid-Connected PV Systems 181 -- 7.5 Recent Developments in Multilevel Inverter-Based PV Systems 192 -- 7.6 Summary 195 -- References 195 -- 8 Controllability Analysis of Renewable Energy Systems 199 -- 8.1 Introduction 199 -- 8.2 Zero Dynamics of the Nonlinear System 201 -- 8.3 Controllability of Wind Turbine Connected through L Filter to the Grid 202 -- 8.4 Controllability of Wind Turbine Connected through LCL Filter to the Grid 208 -- 8.5 Controllability and Stability Analysis of PV System Connected to Current Source Inverter 219 -- 8.6 Conclusions 228 -- References 229 -- 9 Universal Operation of Small/Medium-Sized Renewable Energy Systems 231 -- 9.1 Distributed Power Generation Systems 231 -- 9.2 Control of Power Converters for Grid-Interactive Distributed Power Generation Systems 243 -- 9.3 Ancillary Feature 259 -- 9.4 Summary 267 -- References 268 -- 10 Properties and Control of a Doubly Fed Induction Machine 270 -- 10.1 Introduction. Basic principles of DFIM 270 -- 10.2 Vector Control of DFIM Using an AC/DC/AC Converter 280 -- 10.3 DFIM-Based Wind Energy Conversion Systems 305 -- References 317 -- 11 AC / DC / AC Converters for Distributed Power Generation Systems 319 -- 11.1 Introduction 319 -- 11.2 Pulse-Width Modulation for AC / DC / AC Topologies 328. |
Record Nr. | UNINA-9910208817203321 |
Chichester, West Sussex, United Kingdom ; ; Hoboken, New Jersey : , : Wiley/IEEE, 2014 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|