top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Artificial Intelligence for Edge Computing / / Mudhakar Srivatsa, Tarek Abdelzaher, and Ting He, editors
Artificial Intelligence for Edge Computing / / Mudhakar Srivatsa, Tarek Abdelzaher, and Ting He, editors
Edizione [First edition.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2023]
Descrizione fisica 1 online resource (373 pages)
Disciplina 006.3
Soggetto topico Artificial intelligence
Edge computing
ISBN 3-031-40787-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Part 1: Core Problems -- Part 2: Distributed Problems -- Part 3: Cross-Cutting Thoughts -- Contents -- Contributors -- Part I Core Problems -- 1 Neural Network Models for Time Series Data -- 1 Introduction -- 2 DeepSense Framework -- 2.1 Convolutional Layers -- 2.2 Recurrent Layers -- 2.3 Output Layer -- 3 Task-Specific Customization -- 3.1 General Customization Process -- 3.2 Customize Mobile Sensing Tasks -- 4 Evaluation -- 4.1 Data Collection and Datasets -- 4.2 Evaluation Platforms -- 4.3 Algorithms in Comparison -- 4.4 Effectiveness -- 4.4.1 CarTrack -- 4.4.2 HHAR -- 4.4.3 UserID -- 4.5 Latency and Energy -- References -- 2 Self-Supervised Learning from Unlabeled IoT Data -- 1 Introduction -- 1.1 Time-Domain Self-Supervised Contrastive Learning -- 1.2 Frequency-Domain Self-Supervised Contrastive Learning -- 1.3 Semi-Supervised Contrastive Learning -- 1.4 Spectrogram Masked Autoencoder for IoT Applications -- 1.5 A Case Study: Self-Supervised Learning on IoBT-OS -- 1.6 Chapter Organization -- 2 Time-Domain Self-Supervised Contrastive Learning Framework for IoT -- 2.1 Overview -- 2.2 Signal Model -- 2.3 Architecture of SemiAMC -- 2.4 Self-Supervised Contrastive Pre-Training -- 2.4.1 Data Augmentation -- 2.4.2 Encoder -- 2.4.3 Projection Head -- 2.4.4 Contrastive Loss -- 2.5 Evaluation -- 2.5.1 Dataset -- 2.5.2 Experimental Setup -- 2.5.3 Comparison with Supervised Frameworks -- 2.5.4 Performance under Different Amount of Labeled Data -- 2.5.5 Performance under Different Amount of Unlabeled Data -- 3 Frequency-Domain Self-Supervised Contrastive Learning Framework for IoT -- 3.1 Overview -- 3.2 Background and Related Work -- 3.2.1 Deep Neural Network for IoT Applications -- 3.2.2 Self-Supervised Learning -- 3.2.3 Representation Learning -- 3.3 Design of STFNet -- 3.3.1 STFNet Overview -- 3.3.2 STFNet Block Fundamentals.
3.3.3 STFNet Hologram Interleaving -- 3.3.4 STFNet-Filtering Operation -- 3.3.5 STFNet-Convolution Operation -- 3.3.6 STFNet-Pooling Operation -- 3.4 Design of STF-CLS -- 3.4.1 Overview -- 3.4.2 Contrastive Self-Supervised Learning Framework -- 3.4.3 Data Augmentation -- 3.4.4 Design of the STFNet-Based Encoder -- 3.5 Evaluation -- 3.5.1 Datasets -- 3.5.2 Experiment Setup -- 3.5.3 Results -- 3.6 Discussion and Limitations -- 4 Frequency-Domain Semi-Supervised Contrastive Learning Framework for IoT -- 4.1 Overview -- 4.2 Preliminary and Motivation -- 4.2.1 Self-Supervised Contrastive Learning -- 4.2.2 Supervised Contrastive Learning -- 4.2.3 Motivation -- 4.3 Design of SemiC-HAR -- 4.3.1 Overview -- 4.3.2 Supervised Training -- 4.3.3 Self-Labeling -- 4.3.4 Semi-Supervised Contrastive Pre-Training -- 4.3.5 Downstream HAR Task -- 4.4 Evaluation -- 4.4.1 Experiment Setup -- 4.4.2 Results -- 5 Spectrogram Masked Autoencoder for IoT -- 5.1 Overview -- 5.2 Self-Supervised Learning for Sensing Data -- 5.3 Design of SMAE -- 5.3.1 Overview of SMAE -- 5.3.2 Masking -- 5.3.3 SMAE Encoder -- 5.3.4 SMAE Decoder -- 5.3.5 SMAE Loss Function -- 5.4 Evaluation -- 5.4.1 Datasets -- 5.4.2 Experiment Setup -- 5.4.3 Comparison with Previous Self-Supervised Approaches -- 5.4.4 Performance Under Different Number of Training Data -- 5.4.5 Performance Under Different Augmentation Strategies -- 6 A Case Study: Self-Supervised Learning on IoBT-OS -- 6.1 Overview -- 6.2 Background: The Decision Loop -- 6.3 IoBT-OS -- 6.4 The Case Study -- 6.4.1 Hardware Set-Up and Execution Loop -- 6.4.2 Experimentation Results -- 7 Chapter Summary and Future Work -- 7.1 Summary -- 7.1.1 Time-Domain Self-Supervised Contrastive Learning for IoT -- 7.1.2 Frequency-Domain Self-Supervised Contrastive Learning for IoT -- 7.1.3 Semi-Supervised Contrastive Learning for IoT.
7.1.4 Spectrogram Masked AutoEncoder for IoT -- 7.1.5 A Case Study: Self-Supervised Learning on IoBT-OS -- 7.2 Lessons -- 7.2.1 Self-Supervised Contrastive Learning -- 7.2.2 Masked Autoencoding -- 7.3 Future Work -- 7.3.1 Self-Supervised Learning Frameworks For Multi-Modality Inputs -- 7.3.2 Training/Inferencing Deep Neural Network Models with Noisy Data -- 7.3.3 Model Compression for Self-Supervised Learning Frameworks -- References -- 3 On the Generalization Power of Overfitted Two-Layer Neural Tangent Kernel Models -- 1 Introduction -- 2 Problem Setup -- 3 Learnable Functions and Generalization Performance -- 4 What Exactly Are the Functions in the Learnable Set? -- 4.1 A Special Case: When d=2 -- 5 Proof Sketch of Theorem 1 -- 6 Conclusions -- References -- 4 Out of Distribution Detection -- 1 Introduction -- 2 Related Work -- 3 Our Method: NeuralFP -- 3.1 Problem Statement -- 3.2 Motivating Example -- 3.3 Design Details -- 3.3.1 Fingerprinting on the Cloud -- 3.3.2 OOD Detection in the Edge -- 4 Experiments -- 4.1 Experimental Setup -- 4.1.1 Dataset and Model Architectures -- 4.1.2 Metrics -- 4.2 Detection Effectiveness -- 4.2.1 Detecting Statistical OOD Data -- 4.2.2 Detecting Adversarial OOD Data -- 4.2.3 Effectiveness of One-Out Integration Strategy -- 4.3 Advantageous over Previous State-of-the-Arts -- 4.4 Guidelines for Parameter Selection -- 4.5 Fingerprinting-Based Model Ranking -- 5 Conclusion -- References -- 5 Model Compression for Edge Computing -- 1 Introduction -- 2 The Design of DeepIoT Framework -- 2.1 Dropout Operations in the Original Neural Network -- 2.2 Compressor Neural Network -- 2.3 Compressor-Critic Framework -- 3 The Evaluation of DeepIoT -- 3.1 Evaluation Platforms -- 3.2 Baseline Algorithms -- 3.2.1 Handwritten Digits Recognition with LeNet5 -- 3.3 Image Recognition with VGGNet.
3.4 Speech Recognition with Deep Bidirectional LSTM -- 3.5 Supporting Human-Centric Context Sensing -- 4 The Design of FastDeepIoT -- 4.1 Nonlinearities: Evidence and Exploitation -- 4.2 Profiling Module -- 4.2.1 Neural Network Profiling -- 4.2.2 Execution Time Model Building -- 4.2.3 Execution Time Model with Statistical Analysis -- 4.3 Compression Steering Module -- 5 The Evaluation of FastDeepIoT -- 5.1 Implementation -- 5.2 Execution Time Model -- 5.3 Compression Steering Module -- 5.3.1 Image Recognition on CIFAR-10 -- 5.3.2 Large-Scale Image Recognition on ImageNet -- 5.3.3 Heterogeneous Human Activity Recognition -- References -- Part II Distributed Problems -- 6 Communication Efficient Distributed Learning -- 1 Introduction -- 1.1 Chapter Organization -- 2 Problem Setup and Notation -- 3 Techniques for Communication-Efficient Training -- 3.1 Compression Operation -- 3.1.1 Quantization -- 3.1.2 Sparsification -- 3.1.3 Composition of Quantization and Sparsification -- 3.2 Local Iterations -- 3.3 Triggering Based Updates -- 4 Distributed Training-Qsparse-Local-SGD -- 4.1 Error Compensation -- 4.2 Theoretical Results -- 5 Decentralized Training-SQuARM-SGD -- 5.1 Theoretical Results -- 6 Experimental Results -- 6.1 Distributed Training -- 6.1.1 Setup -- 6.1.2 Results -- 6.2 Decentralized Training -- 6.2.1 Setup -- 6.2.2 Results -- 7 Other Related Works and Discussion -- References -- 7 Coreset-Based Data Reduction for Machine Learning at the Edge -- 1 Introduction -- 2 Background and Preliminaries -- 2.1 General Approaches for Learning over Distributed Data -- 2.2 Cost Function and Coreset -- 2.3 Overview of Coreset Construction Algorithms -- 3 Robust Coreset Construction -- 3.1 Centralized Construction of Robust Coreset -- 3.1.1 Motivating Experiment -- 3.1.2 The k-Clustering Problem -- 3.1.3 Coreset Construction by Optimal k-Clustering.
3.1.4 Coreset Construction by Suboptimal k-Clustering -- 3.1.5 Coreset Construction Algorithm -- 3.2 Distributed Construction of Robust Coreset -- 3.2.1 Algorithm for Distributed Robust Coreset Construction -- 3.2.2 Performance Analysis for Distributed Robust Coreset Construction -- 3.3 Performance Evaluation for Robust Coreset Construction -- 3.3.1 Experiment Setup -- 3.3.2 Experiment Results -- 4 Joint Coreset Construction and Quantization -- 4.1 Background on Coreset and Quantization -- 4.2 Preliminaries -- 4.2.1 Data Representation -- 4.2.2 Coreset Construction -- 4.2.3 Quantization -- 4.3 Budgeted Optimization of Coreset Construction and Quantization -- 4.3.1 Workflow Design -- 4.3.2 Error Bound Analysis -- 4.3.3 Configuration Optimization -- 4.4 Efficient Algorithms for MECB -- 4.4.1 Eigenvalue Decomposition Based Algorithm for MECB (EVD-MECB) -- 4.4.2 Max-Distance Based Algorithm for MECB (MD-MECB) -- 4.4.3 Discussions -- 4.5 Budget Allocation in Distributed Setting -- 4.5.1 Problem Formulation in Distributed Setting -- 4.5.2 Optimal Budget Allocation Algorithm for MECBD (OBA-MECBD) -- 4.6 Performance Evaluation -- 4.6.1 Experiment Setup -- 4.6.2 Experiment Results -- 5 Conclusion -- References -- 8 Lightweight Collaborative Perception at the Edge -- 1 Introduction -- 2 Collaboration Between Sensors and Edge Nodes -- 2.1 Understanding the 2D Scene -- 2.1.1 Opportunities for Collaboration in Multi-Camera Deployments -- 2.1.2 Lightweight State Sharing for Improved Perception -- 2.1.3 Content-Aware Collaboration: Attention and Scheduling -- 2.2 Collaboration for 3D Sensing -- 2.2.1 V2V Lidar 3D Point Cloud State Sharing -- 2.2.2 Physical Navigation in Virtual Reality -- 2.2.3 Localisation and Wayfinding in Robotics and Autonomous Vehicles (AV) -- 3 Cross-Model Collaborative Execution -- 4 Conclusion -- References.
9 Dynamic Placement of Services at the Edge.
Record Nr. UNINA-9910799497203321
Cham, Switzerland : , : Springer, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Distributed Computing in Sensor Systems [[electronic resource] ] : Second IEEE International Conference, DCOSS 2006, San Francisco, CA, USA, June 18-20, 2006, Proceedings / / edited by Phil Gibbons, Tarek Abdelzaher, James Aspnes, Ramesh Rao
Distributed Computing in Sensor Systems [[electronic resource] ] : Second IEEE International Conference, DCOSS 2006, San Francisco, CA, USA, June 18-20, 2006, Proceedings / / edited by Phil Gibbons, Tarek Abdelzaher, James Aspnes, Ramesh Rao
Edizione [1st ed. 2006.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2006
Descrizione fisica 1 online resource (XIV, 570 p.)
Disciplina 681/.2
Collana Computer Communication Networks and Telecommunications
Soggetto topico Computer communication systems
Algorithms
Computer science—Mathematics
Data structures (Computer science)
Operating systems (Computers)
Electrical engineering
Computer Communication Networks
Algorithm Analysis and Problem Complexity
Discrete Mathematics in Computer Science
Data Structures
Operating Systems
Communications Engineering, Networks
ISBN 3-540-35228-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Evaluating Local Contributions to Global Performance in Wireless Sensor and Actuator Networks -- Roadmap Query for Sensor Network Assisted Navigation in Dynamic Environments -- Stabilizing Consensus in Mobile Networks -- When Birds Die: Making Population Protocols Fault-Tolerant -- Stochastically Consistent Caching and Dynamic Duty Cycling for Erratic Sensor Sources -- Distributed Model-Free Stochastic Optimization in Wireless Sensor Networks -- Agimone: Middleware Support for Seamless Integration of Sensor and IP Networks -- Gappa: Gossip Based Multi-channel Reprogramming for Sensor Networks -- The Virtual Pheromone Communication Primitive -- Logical Neighborhoods: A Programming Abstraction for Wireless Sensor Networks -- Y-Threads: Supporting Concurrency in Wireless Sensor Networks -- Comparative Analysis of Push-Pull Query Strategies for Wireless Sensor Networks -- Using Data Aggregation to Prevent Traffic Analysis in Wireless Sensor Networks -- Efficient and Robust Data Dissemination Using Limited Extra Network Knowledge -- Distance-Sensitive Information Brokerage in Sensor Networks -- Efficient In-Network Processing Through Local Ad-Hoc Information Coalescence -- Distributed Optimal Estimation from Relative Measurements for Localization and Time Synchronization -- GIST: Group-Independent Spanning Tree for Data Aggregation in Dense Sensor Networks -- Distributed User Access Control in Sensor Networks -- Locating Compromised Sensor Nodes Through Incremental Hashing Authentication -- COTA: A Robust Multi-hop Localization Scheme in Wireless Sensor Networks -- Contour Approximation in Sensor Networks -- A Distortion-Aware Scheduling Approach for Wireless Sensor Networks -- Optimal Placement and Selection of Camera Network Nodes for Target Localization -- An Optimal Data Propagation Algorithm for Maximizing the Lifespan of Sensor Networks -- Lifetime Maximization of Sensor Networks Under Connectivity and k-Coverage Constraints -- Network Power Scheduling for TinyOS Applications -- Approximation Algorithms for Power-Aware Scheduling of Wireless Sensor Networks with Rate and Duty-Cycle Constraints -- MobiRoute: Routing Towards a Mobile Sink for Improving Lifetime in Sensor Networks -- SenCar: An Energy Efficient Data Gathering Mechanism for Large Scale Multihop Sensor Networks -- A Distributed Linear Least Squares Method for Precise Localization with Low Complexity in Wireless Sensor Networks -- Consistency-Based On-line Localization in Sensor Networks -- The Robustness of Localization Algorithms to Signal Strength Attacks: A Comparative Study.
Record Nr. UNISA-996465734903316
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2006
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
IPSN'13 : proceedings of the 12th International Conference on Information Processing in Sensor Networks : April 8-11, 2013, Philadelphia, PA, USA / / general chair Tarek Abdelzaher ; program chairs Kay Römer, Raj Rajkumar ; sponsored by ACM SIGBED & IEEE
IPSN'13 : proceedings of the 12th International Conference on Information Processing in Sensor Networks : April 8-11, 2013, Philadelphia, PA, USA / / general chair Tarek Abdelzaher ; program chairs Kay Römer, Raj Rajkumar ; sponsored by ACM SIGBED & IEEE
Pubbl/distr/stampa New York : , : ACM, , 2013
Descrizione fisica 1 online resource (360 pages)
Soggetto topico Sensor networks
Signal processing
Information networks
Multisensor data fusion
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996278256003316
New York : , : ACM, , 2013
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
IPSN'13 : proceedings of the 12th International Conference on Information Processing in Sensor Networks : April 8-11, 2013, Philadelphia, PA, USA / / general chair Tarek Abdelzaher ; program chairs Kay Römer, Raj Rajkumar ; sponsored by ACM SIGBED & IEEE
IPSN'13 : proceedings of the 12th International Conference on Information Processing in Sensor Networks : April 8-11, 2013, Philadelphia, PA, USA / / general chair Tarek Abdelzaher ; program chairs Kay Römer, Raj Rajkumar ; sponsored by ACM SIGBED & IEEE
Pubbl/distr/stampa New York : , : ACM, , 2013
Descrizione fisica 1 online resource (360 pages)
Soggetto topico Sensor networks
Signal processing
Information networks
Multisensor data fusion
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910135168403321
New York : , : ACM, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Principles of Distributed Systems : 13th International Conference, OPODIS 2009, Nimes, France, December 15-18, 2009. Proceedings / / Tarej Abdelzaher, Michel Raynal, Nicola Santoro (Eds.)
Principles of Distributed Systems : 13th International Conference, OPODIS 2009, Nimes, France, December 15-18, 2009. Proceedings / / Tarej Abdelzaher, Michel Raynal, Nicola Santoro (Eds.)
Edizione [1st ed. 2009.]
Pubbl/distr/stampa Berlin ; ; New York, : Springer, c2009
Descrizione fisica 1 online resource (XIII, 373 p.)
Disciplina 004.6
Altri autori (Persone) AbdelzaherTarek
RaynalM (Michel)
SantoroN <1951-> (Nicola)
Collana Lecture notes in computer science
Soggetto topico Computer networks
Electronic data processing - Distributed processing
ISBN 3-642-10877-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Invited Talks -- Transactional Memory Today: A Status Report -- Navigating the Web 2.0 with Gossple -- Distributed Scheduling -- Transactional Scheduling for Read-Dominated Workloads -- Performance Evaluation of Work Stealing for Streaming Applications -- Not All Fair Probabilistic Schedulers Are Equivalent -- Brief Announcement: Relay: A Cache-Coherence Protocol for Distributed Transactional Memory -- Distributed Robotics -- Byzantine Convergence in Robot Networks: The Price of Asynchrony -- Deaf, Dumb, and Chatting Asynchronous Robots -- Synchronization Helps Robots to Detect Black Holes in Directed Graphs -- Fault and Failure Detection -- The Fault Detection Problem -- The Minimum Information about Failures for Solving Non-local Tasks in Message-Passing Systems -- Enhanced Fault-Tolerance through Byzantine Failure Detection -- Wireless and Social Networks -- Decentralized Polling with Respectable Participants -- Efficient Power Utilization in Multi-radio Wireless Ad Hoc Networks -- Adversarial Multiple Access Channel with Individual Injection Rates -- Synchronization -- NB-FEB: A Universal Scalable Easy-to-Use Synchronization Primitive for Manycore Architectures -- Gradient Clock Synchronization Using Reference Broadcasts -- Brief Announcement: Communication-Efficient Self-stabilizing Protocols for Spanning-Tree Construction -- Storage Systems -- On the Impact of Serializing Contention Management on STM Performance -- On the Efficiency of Atomic Multi-reader, Multi-writer Distributed Memory -- Abortable Fork-Linearizable Storage -- Distributed Agreement -- On the Computational Power of Shared Objects -- Weak Synchrony Models and Failure Detectors for Message Passing (k-)Set Agreement -- Unifying Byzantine Consensus Algorithms with Weak Interactive Consistency -- Distributed Algorithms -- Safe and Eventually Safe: Comparing Self-stabilizing and Non-stabilizing Algorithms on a Common Ground -- Proactive Fortification of Fault-Tolerant Services -- Robustness of the Rotor-router Mechanism -- Brief Annoucement: Analysis of an Optimal Bit Complexity Randomised Distributed Vertex Colouring Algorithm -- Brief Annoucement: Distributed Swap Edges Computation for Minimum Routing Cost Spanning Trees.
Record Nr. UNINA-9910484650803321
Berlin ; ; New York, : Springer, c2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Proceedings of the 9th Acm/Ieee International Conference on Information Processing in Sensor Networks
Proceedings of the 9th Acm/Ieee International Conference on Information Processing in Sensor Networks
Autore Abdelzaher Tarek
Pubbl/distr/stampa [Place of publication not identified] : , : Association for Computing Machinery, , 2010
Descrizione fisica 1 online resource (460 pages)
Collana ACM Conferences.
Soggetto topico Information Technology - Computer Science (Hardware & Networks)
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti IPSN '10
Record Nr. UNINA-9910376067603321
Abdelzaher Tarek  
[Place of publication not identified] : , : Association for Computing Machinery, , 2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Social sensing : building reliable systems on unreliable data / / Dong Wang, Tarek Abdelzaher, Lance Kaplan
Social sensing : building reliable systems on unreliable data / / Dong Wang, Tarek Abdelzaher, Lance Kaplan
Autore Wang Dong
Edizione [First edition.]
Pubbl/distr/stampa Amsterdam : , : Elsevier, , [2015]
Descrizione fisica 1 online resource (232 p.)
Disciplina 302.30285
Soggetto topico Social media - Data processing
Information technology
Soggetto genere / forma Electronic books.
ISBN 0-12-800867-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Front Cover""; ""Social Sensing: Building Reliable Systems on Unreliable Data""; ""Copyright""; ""Dedication""; ""Contents""; ""Acknowledgments""; ""Authors""; ""Dong Wang""; ""Tarek Abdelzaher""; ""Lance M. Kaplan""; ""Foreword""; ""Preface""; ""Chapter 1: A new information age""; ""1.1 Overview""; ""1.2 Challenges""; ""1.3 State of the Art""; ""1.3.1 Efforts on Discount Fusion""; ""1.3.2 Efforts on Trust and Reputation Systems""; ""1.3.3 Efforts on Fact-Finding""; ""1.4 Organization""; ""Chapter 2: Social Sensing Trends and Applications""; ""2.1 Information Sharing: The Paradigm Shift""
""2.2 An Application Taxonomy""""2.3 Early Research""; ""2.4 The Present Time""; ""2.5 ANote on Privacy""; ""Chapter 3: Mathematical foundations of social sensing: An introductory tutorial""; ""3.1 AMultidisciplinary Background""; ""3.2 Basics of Generic Networks""; ""3.3 Basics of Bayesian Analysis""; ""3.4 Basics of Maximum Likelihood Estimation""; ""3.5 Basics of Expectation Maximization""; ""3.6 Basics of Confidence Intervals""; ""3.7 Putting It All Together""; ""Chapter 4: Fact-finding in information networks""; ""4.1 Facts, Fact-Finders, and the Existence of Ground Truth""
""4.2 Overview of Fact-Finders in Information Networks""""4.3 A Bayesian Interpretation of Basic Fact-Finding""; ""4.3.1 Claim Credibility""; ""4.3.2 Source Credibility""; ""4.4 The Iterative Algorithm""; ""4.5 Examples and Results""; ""4.6 Discussion""; ""Appendix""; ""Chapter 5: Social Sensing: A maximum likelihood estimation approach""; ""5.1 The Social Sensing Problem""; ""5.2 Expectation Maximization""; ""5.2.1 Background""; ""5.2.2 Mathematical Formulation""; ""5.2.3 Deriving the E-Step and M-Step""; ""5.3 The EM Fact-Finding Algorithm""; ""5.4 Examples and Results""
""5.4.1 A Simulation Study""""5.4.2 A Geotagging Case Study""; ""5.4.3 A Real World Application""; ""5.5 Discussion""; ""Chapter 6: Confidence bounds in social sensing""; ""6.1 The Reliability Assurance Problem""; ""6.2 Actual Cramer-Rao Lower Bound""; ""6.3 Asymptotic Cramer-Rao Lower Bound""; ""6.4 Confidence Interval Derivation""; ""6.5 Examples and Results""; ""6.5.1 Evaluation of Confidence Interval""; ""6.5.2 Evaluation of CRLB""; ""Scalability study""; ""Trustworthiness and assertiveness study""; ""Robustness study""
""6.5.3 Evaluation of Estimated False Positives/Negatives on Claim Classification""""Scalability study""; ""Trustworthiness and assertiveness study""; ""Robustness study""; ""6.5.4 AReal World Case Study""; ""6.6 Discussion""; ""Appendix""; ""Chapter 7: Resolving conflicting observations and non-binary claims""; ""7.1 Handling Conflicting Binary Observations""; ""7.1.1 Extended Model""; ""7.1.2 Re-Derive the E-Step and M-Step""; ""7.1.3 The Binary Conflict EM Algorithm""; ""7.2 Handling Non-Binary Claims""; ""7.2.1 Generalized E and M Steps for Non-Binary Measured Variables""
""7.2.2 The Generalized EM Algorithm for Non-Binary Measured Variables""
Record Nr. UNISA-996426329703316
Wang Dong  
Amsterdam : , : Elsevier, , [2015]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Social sensing : building reliable systems on unreliable data / / Dong Wang, Tarek Abdelzaher, Lance Kaplan
Social sensing : building reliable systems on unreliable data / / Dong Wang, Tarek Abdelzaher, Lance Kaplan
Autore Wang Dong
Edizione [First edition.]
Pubbl/distr/stampa Amsterdam : , : Elsevier, , [2015]
Descrizione fisica 1 online resource (232 p.)
Disciplina 302.30285
Soggetto topico Social media - Data processing
Information technology
ISBN 0-12-800867-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Front Cover""; ""Social Sensing: Building Reliable Systems on Unreliable Data""; ""Copyright""; ""Dedication""; ""Contents""; ""Acknowledgments""; ""Authors""; ""Dong Wang""; ""Tarek Abdelzaher""; ""Lance M. Kaplan""; ""Foreword""; ""Preface""; ""Chapter 1: A new information age""; ""1.1 Overview""; ""1.2 Challenges""; ""1.3 State of the Art""; ""1.3.1 Efforts on Discount Fusion""; ""1.3.2 Efforts on Trust and Reputation Systems""; ""1.3.3 Efforts on Fact-Finding""; ""1.4 Organization""; ""Chapter 2: Social Sensing Trends and Applications""; ""2.1 Information Sharing: The Paradigm Shift""
""2.2 An Application Taxonomy""""2.3 Early Research""; ""2.4 The Present Time""; ""2.5 ANote on Privacy""; ""Chapter 3: Mathematical foundations of social sensing: An introductory tutorial""; ""3.1 AMultidisciplinary Background""; ""3.2 Basics of Generic Networks""; ""3.3 Basics of Bayesian Analysis""; ""3.4 Basics of Maximum Likelihood Estimation""; ""3.5 Basics of Expectation Maximization""; ""3.6 Basics of Confidence Intervals""; ""3.7 Putting It All Together""; ""Chapter 4: Fact-finding in information networks""; ""4.1 Facts, Fact-Finders, and the Existence of Ground Truth""
""4.2 Overview of Fact-Finders in Information Networks""""4.3 A Bayesian Interpretation of Basic Fact-Finding""; ""4.3.1 Claim Credibility""; ""4.3.2 Source Credibility""; ""4.4 The Iterative Algorithm""; ""4.5 Examples and Results""; ""4.6 Discussion""; ""Appendix""; ""Chapter 5: Social Sensing: A maximum likelihood estimation approach""; ""5.1 The Social Sensing Problem""; ""5.2 Expectation Maximization""; ""5.2.1 Background""; ""5.2.2 Mathematical Formulation""; ""5.2.3 Deriving the E-Step and M-Step""; ""5.3 The EM Fact-Finding Algorithm""; ""5.4 Examples and Results""
""5.4.1 A Simulation Study""""5.4.2 A Geotagging Case Study""; ""5.4.3 A Real World Application""; ""5.5 Discussion""; ""Chapter 6: Confidence bounds in social sensing""; ""6.1 The Reliability Assurance Problem""; ""6.2 Actual Cramer-Rao Lower Bound""; ""6.3 Asymptotic Cramer-Rao Lower Bound""; ""6.4 Confidence Interval Derivation""; ""6.5 Examples and Results""; ""6.5.1 Evaluation of Confidence Interval""; ""6.5.2 Evaluation of CRLB""; ""Scalability study""; ""Trustworthiness and assertiveness study""; ""Robustness study""
""6.5.3 Evaluation of Estimated False Positives/Negatives on Claim Classification""""Scalability study""; ""Trustworthiness and assertiveness study""; ""Robustness study""; ""6.5.4 AReal World Case Study""; ""6.6 Discussion""; ""Appendix""; ""Chapter 7: Resolving conflicting observations and non-binary claims""; ""7.1 Handling Conflicting Binary Observations""; ""7.1.1 Extended Model""; ""7.1.2 Re-Derive the E-Step and M-Step""; ""7.1.3 The Binary Conflict EM Algorithm""; ""7.2 Handling Non-Binary Claims""; ""7.2.1 Generalized E and M Steps for Non-Binary Measured Variables""
""7.2.2 The Generalized EM Algorithm for Non-Binary Measured Variables""
Record Nr. UNINA-9910797002403321
Wang Dong  
Amsterdam : , : Elsevier, , [2015]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Social sensing : building reliable systems on unreliable data / / Dong Wang, Tarek Abdelzaher, Lance Kaplan
Social sensing : building reliable systems on unreliable data / / Dong Wang, Tarek Abdelzaher, Lance Kaplan
Autore Wang Dong
Edizione [First edition.]
Pubbl/distr/stampa Amsterdam : , : Elsevier, , [2015]
Descrizione fisica 1 online resource (232 p.)
Disciplina 302.30285
Soggetto topico Social media - Data processing
Information technology
ISBN 0-12-800867-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Front Cover""; ""Social Sensing: Building Reliable Systems on Unreliable Data""; ""Copyright""; ""Dedication""; ""Contents""; ""Acknowledgments""; ""Authors""; ""Dong Wang""; ""Tarek Abdelzaher""; ""Lance M. Kaplan""; ""Foreword""; ""Preface""; ""Chapter 1: A new information age""; ""1.1 Overview""; ""1.2 Challenges""; ""1.3 State of the Art""; ""1.3.1 Efforts on Discount Fusion""; ""1.3.2 Efforts on Trust and Reputation Systems""; ""1.3.3 Efforts on Fact-Finding""; ""1.4 Organization""; ""Chapter 2: Social Sensing Trends and Applications""; ""2.1 Information Sharing: The Paradigm Shift""
""2.2 An Application Taxonomy""""2.3 Early Research""; ""2.4 The Present Time""; ""2.5 ANote on Privacy""; ""Chapter 3: Mathematical foundations of social sensing: An introductory tutorial""; ""3.1 AMultidisciplinary Background""; ""3.2 Basics of Generic Networks""; ""3.3 Basics of Bayesian Analysis""; ""3.4 Basics of Maximum Likelihood Estimation""; ""3.5 Basics of Expectation Maximization""; ""3.6 Basics of Confidence Intervals""; ""3.7 Putting It All Together""; ""Chapter 4: Fact-finding in information networks""; ""4.1 Facts, Fact-Finders, and the Existence of Ground Truth""
""4.2 Overview of Fact-Finders in Information Networks""""4.3 A Bayesian Interpretation of Basic Fact-Finding""; ""4.3.1 Claim Credibility""; ""4.3.2 Source Credibility""; ""4.4 The Iterative Algorithm""; ""4.5 Examples and Results""; ""4.6 Discussion""; ""Appendix""; ""Chapter 5: Social Sensing: A maximum likelihood estimation approach""; ""5.1 The Social Sensing Problem""; ""5.2 Expectation Maximization""; ""5.2.1 Background""; ""5.2.2 Mathematical Formulation""; ""5.2.3 Deriving the E-Step and M-Step""; ""5.3 The EM Fact-Finding Algorithm""; ""5.4 Examples and Results""
""5.4.1 A Simulation Study""""5.4.2 A Geotagging Case Study""; ""5.4.3 A Real World Application""; ""5.5 Discussion""; ""Chapter 6: Confidence bounds in social sensing""; ""6.1 The Reliability Assurance Problem""; ""6.2 Actual Cramer-Rao Lower Bound""; ""6.3 Asymptotic Cramer-Rao Lower Bound""; ""6.4 Confidence Interval Derivation""; ""6.5 Examples and Results""; ""6.5.1 Evaluation of Confidence Interval""; ""6.5.2 Evaluation of CRLB""; ""Scalability study""; ""Trustworthiness and assertiveness study""; ""Robustness study""
""6.5.3 Evaluation of Estimated False Positives/Negatives on Claim Classification""""Scalability study""; ""Trustworthiness and assertiveness study""; ""Robustness study""; ""6.5.4 AReal World Case Study""; ""6.6 Discussion""; ""Appendix""; ""Chapter 7: Resolving conflicting observations and non-binary claims""; ""7.1 Handling Conflicting Binary Observations""; ""7.1.1 Extended Model""; ""7.1.2 Re-Derive the E-Step and M-Step""; ""7.1.3 The Binary Conflict EM Algorithm""; ""7.2 Handling Non-Binary Claims""; ""7.2.1 Generalized E and M Steps for Non-Binary Measured Variables""
""7.2.2 The Generalized EM Algorithm for Non-Binary Measured Variables""
Record Nr. UNINA-9910810570403321
Wang Dong  
Amsterdam : , : Elsevier, , [2015]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Wireless Sensor Networks [[electronic resource] ] : 12th European Conference, EWSN 2015, Porto, Portugal, February 9-11, 2015, Proceedings / / edited by Tarek Abdelzaher, Nuno Pereira, Eduardo Tovar
Wireless Sensor Networks [[electronic resource] ] : 12th European Conference, EWSN 2015, Porto, Portugal, February 9-11, 2015, Proceedings / / edited by Tarek Abdelzaher, Nuno Pereira, Eduardo Tovar
Edizione [1st ed. 2015.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
Descrizione fisica 1 online resource (XII, 310 p. 146 illus.) : online resource
Disciplina 681
Collana Computer Communication Networks and Telecommunications
Soggetto topico Computer communication systems
Special purpose computers
Computer system failures
Algorithms
Software engineering
Application software
Computer Communication Networks
Special Purpose and Application-Based Systems
System Performance and Evaluation
Algorithm Analysis and Problem Complexity
Software Engineering
Information Systems Applications (incl. Internet)
ISBN 3-319-15582-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Services and applications -- Mobility and delay-tolerance -- Routing and data dissemination -- Human-centric sensing.
Record Nr. UNISA-996198830503316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui