Applied predictive analytics : principles and techniques for the professional data analyst / / Dean Abbott |
Autore | Abbott Dean |
Pubbl/distr/stampa | Indianapolis, Indiana : , : John Wiley & Sons, , 2014 |
Descrizione fisica | 1 online resource (453 p.) |
Disciplina | 006.312 |
Soggetto topico |
Business - Data processing
Business planning - Data processing Business - Computer programs |
Soggetto genere / forma | Electronic books. |
ISBN |
1-118-72769-X
1-118-72793-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Title Page; Copyright; Contents; Chapter 1 Overview of Predictive Analytics; What Is Analytics?; What Is Predictive Analytics?; Supervised vs. Unsupervised Learning; Parametric vs. Non-Parametric Models; Business Intelligence; Predictive Analytics vs. Business Intelligence; Do Predictive Models Just State the Obvious?; Similarities between Business Intelligence and Predictive Analytics; Predictive Analytics vs. Statistics; Statistics and Analytics; Predictive Analytics and Statistics Contrasted; Predictive Analytics vs. Data Mining; Who Uses Predictive Analytics?
Challenges in Using Predictive AnalyticsObstacles in Management; Obstacles with Data; Obstacles with Modeling; Obstacles in Deployment; What Educational Background Is Needed to Become a Predictive Modeler?; Chapter 2 Setting Up the Problem; Predictive Analytics Processing Steps: CRISP-DM; Business Understanding; The Three-Legged Stool; Business Objectives; Defining Data for Predictive Modeling; Defining the Columns as Measures; Defining the Unit of Analysis; Which Unit of Analysis?; Defining the Target Variable; Temporal Considerations for Target Variable Defining Measures of Success for Predictive ModelsSuccess Criteria for Classification; Success Criteria for Estimation; Other Customized Success Criteria; Doing Predictive Modeling Out of Order; Building Models First; Early Model Deployment; Case Study: Recovering Lapsed Donors; Overview; Business Objectives; Data for the Competition; The Target Variables; Modeling Objectives; Model Selection and Evaluation Criteria; Model Deployment; Case Study: Fraud Detection; Overview; Business Objectives; Data for the Project; The Target Variables; Modeling Objectives Model Selection and Evaluation CriteriaModel Deployment; Summary; Chapter 3 Data Understanding; What the Data Looks Like; Single Variable Summaries; Mean; Standard Deviation; The Normal Distribution; Uniform Distribution; Applying Simple Statistics in Data Understanding; Skewness; Kurtosis; Rank-Ordered Statistics; Categorical Variable Assessment; Data Visualization in One Dimension; Histograms; Multiple Variable Summaries; Hidden Value in Variable Interactions: Simpson's Paradox; The Combinatorial Explosion of Interactions; Correlations; Spurious Correlations; Back to Correlations; Crosstabs Data Visualization, Two or Higher DimensionsScatterplots; Anscombe's Quartet; Scatterplot Matrices; Overlaying the Target Variable in Summary; Scatterplots in More Than Two Dimensions; The Value of Statistical Significance; Pulling It All Together into a Data Audit; Summary; Chapter 4 Data Preparation; Variable Cleaning; Incorrect Values; Consistency in Data Formats; Outliers; Multidimensional Outliers; Missing Values; Fixing Missing Data; Feature Creation; Simple Variable Transformations; Fixing Skew; Binning Continuous Variables; Numeric Variable Scaling; Nominal Variable Transformation Ordinal Variable Transformations |
Record Nr. | UNINA-9910453816403321 |
Abbott Dean | ||
Indianapolis, Indiana : , : John Wiley & Sons, , 2014 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Applied predictive analytics : principles and techniques for the professional data analyst / / Dean Abbott |
Autore | Abbott Dean |
Pubbl/distr/stampa | Indianapolis, Indiana : , : John Wiley & Sons, , 2014 |
Descrizione fisica | 1 online resource (453 p.) |
Disciplina | 006.312 |
Soggetto topico |
Business - Data processing
Business planning - Data processing Business - Computer programs |
ISBN |
1-118-72769-X
1-118-72793-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Title Page; Copyright; Contents; Chapter 1 Overview of Predictive Analytics; What Is Analytics?; What Is Predictive Analytics?; Supervised vs. Unsupervised Learning; Parametric vs. Non-Parametric Models; Business Intelligence; Predictive Analytics vs. Business Intelligence; Do Predictive Models Just State the Obvious?; Similarities between Business Intelligence and Predictive Analytics; Predictive Analytics vs. Statistics; Statistics and Analytics; Predictive Analytics and Statistics Contrasted; Predictive Analytics vs. Data Mining; Who Uses Predictive Analytics?
Challenges in Using Predictive AnalyticsObstacles in Management; Obstacles with Data; Obstacles with Modeling; Obstacles in Deployment; What Educational Background Is Needed to Become a Predictive Modeler?; Chapter 2 Setting Up the Problem; Predictive Analytics Processing Steps: CRISP-DM; Business Understanding; The Three-Legged Stool; Business Objectives; Defining Data for Predictive Modeling; Defining the Columns as Measures; Defining the Unit of Analysis; Which Unit of Analysis?; Defining the Target Variable; Temporal Considerations for Target Variable Defining Measures of Success for Predictive ModelsSuccess Criteria for Classification; Success Criteria for Estimation; Other Customized Success Criteria; Doing Predictive Modeling Out of Order; Building Models First; Early Model Deployment; Case Study: Recovering Lapsed Donors; Overview; Business Objectives; Data for the Competition; The Target Variables; Modeling Objectives; Model Selection and Evaluation Criteria; Model Deployment; Case Study: Fraud Detection; Overview; Business Objectives; Data for the Project; The Target Variables; Modeling Objectives Model Selection and Evaluation CriteriaModel Deployment; Summary; Chapter 3 Data Understanding; What the Data Looks Like; Single Variable Summaries; Mean; Standard Deviation; The Normal Distribution; Uniform Distribution; Applying Simple Statistics in Data Understanding; Skewness; Kurtosis; Rank-Ordered Statistics; Categorical Variable Assessment; Data Visualization in One Dimension; Histograms; Multiple Variable Summaries; Hidden Value in Variable Interactions: Simpson's Paradox; The Combinatorial Explosion of Interactions; Correlations; Spurious Correlations; Back to Correlations; Crosstabs Data Visualization, Two or Higher DimensionsScatterplots; Anscombe's Quartet; Scatterplot Matrices; Overlaying the Target Variable in Summary; Scatterplots in More Than Two Dimensions; The Value of Statistical Significance; Pulling It All Together into a Data Audit; Summary; Chapter 4 Data Preparation; Variable Cleaning; Incorrect Values; Consistency in Data Formats; Outliers; Multidimensional Outliers; Missing Values; Fixing Missing Data; Feature Creation; Simple Variable Transformations; Fixing Skew; Binning Continuous Variables; Numeric Variable Scaling; Nominal Variable Transformation Ordinal Variable Transformations |
Record Nr. | UNINA-9910790941503321 |
Abbott Dean | ||
Indianapolis, Indiana : , : John Wiley & Sons, , 2014 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Applied predictive analytics : principles and techniques for the professional data analyst / / Dean Abbott |
Autore | Abbott Dean |
Pubbl/distr/stampa | Indianapolis, Indiana : , : John Wiley & Sons, , 2014 |
Descrizione fisica | 1 online resource (453 p.) |
Disciplina | 006.312 |
Soggetto topico |
Business - Data processing
Business planning - Data processing Business - Computer programs |
ISBN |
1-118-72769-X
1-118-72793-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Title Page; Copyright; Contents; Chapter 1 Overview of Predictive Analytics; What Is Analytics?; What Is Predictive Analytics?; Supervised vs. Unsupervised Learning; Parametric vs. Non-Parametric Models; Business Intelligence; Predictive Analytics vs. Business Intelligence; Do Predictive Models Just State the Obvious?; Similarities between Business Intelligence and Predictive Analytics; Predictive Analytics vs. Statistics; Statistics and Analytics; Predictive Analytics and Statistics Contrasted; Predictive Analytics vs. Data Mining; Who Uses Predictive Analytics?
Challenges in Using Predictive AnalyticsObstacles in Management; Obstacles with Data; Obstacles with Modeling; Obstacles in Deployment; What Educational Background Is Needed to Become a Predictive Modeler?; Chapter 2 Setting Up the Problem; Predictive Analytics Processing Steps: CRISP-DM; Business Understanding; The Three-Legged Stool; Business Objectives; Defining Data for Predictive Modeling; Defining the Columns as Measures; Defining the Unit of Analysis; Which Unit of Analysis?; Defining the Target Variable; Temporal Considerations for Target Variable Defining Measures of Success for Predictive ModelsSuccess Criteria for Classification; Success Criteria for Estimation; Other Customized Success Criteria; Doing Predictive Modeling Out of Order; Building Models First; Early Model Deployment; Case Study: Recovering Lapsed Donors; Overview; Business Objectives; Data for the Competition; The Target Variables; Modeling Objectives; Model Selection and Evaluation Criteria; Model Deployment; Case Study: Fraud Detection; Overview; Business Objectives; Data for the Project; The Target Variables; Modeling Objectives Model Selection and Evaluation CriteriaModel Deployment; Summary; Chapter 3 Data Understanding; What the Data Looks Like; Single Variable Summaries; Mean; Standard Deviation; The Normal Distribution; Uniform Distribution; Applying Simple Statistics in Data Understanding; Skewness; Kurtosis; Rank-Ordered Statistics; Categorical Variable Assessment; Data Visualization in One Dimension; Histograms; Multiple Variable Summaries; Hidden Value in Variable Interactions: Simpson's Paradox; The Combinatorial Explosion of Interactions; Correlations; Spurious Correlations; Back to Correlations; Crosstabs Data Visualization, Two or Higher DimensionsScatterplots; Anscombe's Quartet; Scatterplot Matrices; Overlaying the Target Variable in Summary; Scatterplots in More Than Two Dimensions; The Value of Statistical Significance; Pulling It All Together into a Data Audit; Summary; Chapter 4 Data Preparation; Variable Cleaning; Incorrect Values; Consistency in Data Formats; Outliers; Multidimensional Outliers; Missing Values; Fixing Missing Data; Feature Creation; Simple Variable Transformations; Fixing Skew; Binning Continuous Variables; Numeric Variable Scaling; Nominal Variable Transformation Ordinal Variable Transformations |
Record Nr. | UNINA-9910812118003321 |
Abbott Dean | ||
Indianapolis, Indiana : , : John Wiley & Sons, , 2014 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|