top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Hybrid Intelligent Approaches for Smart Energy : Practical Applications
Hybrid Intelligent Approaches for Smart Energy : Practical Applications
Autore Mohan Senthil Kumar
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2022
Descrizione fisica 1 online resource (339 pages)
Altri autori (Persone) AJohn
PadmanabanSanjeevikumar
HamidYasir
Collana Next Generation Computing and Communication Engineering Ser.
Soggetto genere / forma Electronic books.
ISBN 1-119-82187-8
1-119-82186-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910595596403321
Mohan Senthil Kumar  
Newark : , : John Wiley & Sons, Incorporated, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Spatiotemporal Data Analytics and Modeling : Techniques and Applications / / edited by John A, Satheesh Abimannan, El-Sayed M. El-Alfy, Yue-Shan Chang
Spatiotemporal Data Analytics and Modeling : Techniques and Applications / / edited by John A, Satheesh Abimannan, El-Sayed M. El-Alfy, Yue-Shan Chang
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (253 pages)
Disciplina 005.7
Collana Big Data Management
Soggetto topico Data mining
Quantitative research
Big data
Engineering - Data processing
Data Mining and Knowledge Discovery
Data Analysis and Big Data
Big Data
Data Engineering
ISBN 981-9996-51-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto PART I. Spatiotemporal Data Management Techniques. – Chapter 1. Introduction to Spatiotemporal Data -- Chapter 2. Recommendation System using Spatial-Temporal Network for Vehicle Demand Prediction -- Chapter 3. Spatial-based Big Data and Large-Scale Network Management -- Chapter 4. Handling Uncertainty in Spatiotemporal Data -- Chapter 5. Multimodal Spatial-Temporal Prediction and Classification using Deep Learning -- Chapter 6. Spatiotemporal Object Detection and Activity Recognition -- PART II. Applications of Spatiotemporal Data Analytics -- Chapter 7. Spatiotemporal Data Analytics for e-waste Management System using Hybrid Deep Belief Networks -- Chapter 8. Spatiotemporal and Intelligent Transportation Forecasting -- Chapter 9. Spatiotemporal Supply Chains and E-Commerce -- Chapter 10. Spatiotemporal Renewable Energy Techniques and Applications.-Chapter 11. Environmental Spatiotemporal Data Analytics -- Chapter 12. Future and ResearchPerspectives of Spatiotemporal Data Analytics and Modelling. .
Record Nr. UNINA-9910847575403321
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui