Vai al contenuto principale della pagina

Approximation and Stability Properties of Numerical Methods for Hyperbolic Conservation Laws / / by Philipp Öffner



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Öffner Philipp Visualizza persona
Titolo: Approximation and Stability Properties of Numerical Methods for Hyperbolic Conservation Laws / / by Philipp Öffner Visualizza cluster
Pubblicazione: Wiesbaden : , : Springer Fachmedien Wiesbaden : , : Imprint : Springer Spektrum, , 2023
Edizione: 1st ed. 2023.
Descrizione fisica: 1 online resource (486 pages)
Disciplina: 518
Soggetto topico: Mathematics - Data processing
Mathematics
Computational Mathematics and Numerical Analysis
Applications of Mathematics
Nota di contenuto: Introduction -- Foundations of Hyperbolic Problems and Numerical Methods -- Recent Progresses -- Attachments.
Sommario/riassunto: The book focuses on stability and approximation results concerning recent numerical methods for the numerical solution of hyperbolic conservation laws. The work begins with a detailed and thorough introduction of hyperbolic conservation/balance laws and their numerical treatment. In the main part, recent results in such context are presented focusing on the investigation of approximation properties of discontinuous Galerkin and flux reconstruction methods, the construction of (entropy) stable numerical methods and the extension of existing (entropy) stability results for both semidiscrete and fully discrete schemes, and development of new high-order methods. About the author Philipp Öffner is a research associate in the numerical mathematics group at Johannes Gutenberg University Mainz. In his research he focuses on numerical methods for partial differential equations and on scientific computing.
Titolo autorizzato: Approximation and Stability Properties of Numerical Methods for Hyperbolic Conservation Laws  Visualizza cluster
ISBN: 9783658426200
3658426209
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910739426103321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui