top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Charge management optimization for future TOU rates : preprint / / Jiucai Zhang and Tony Markel
Charge management optimization for future TOU rates : preprint / / Jiucai Zhang and Tony Markel
Autore Zhang Jiucai
Pubbl/distr/stampa Golden, CO : , : National Renewable Energy Laboratory, , 2016
Descrizione fisica 1 online resource (10 pages) : color illustrations
Collana NREL/CP
Soggetto topico Electric vehicles
Wireless power transmission
Electric power production - Research
Renewable energy sources
Electric power systems - Evaluation
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Charge management optimization for future TOU rates
Record Nr. UNINA-9910707311603321
Zhang Jiucai  
Golden, CO : , : National Renewable Energy Laboratory, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Dynamic wireless power transfer : grid impacts analysis / / Tony Markel, Andrew Meintz, and Jeff Gonder
Dynamic wireless power transfer : grid impacts analysis / / Tony Markel, Andrew Meintz, and Jeff Gonder
Autore Markel A. J (Anthony J.)
Pubbl/distr/stampa [Washington, D.C.] : , : National Renewable Energy Laboratory, , [2015]
Descrizione fisica 1 online resource (17 pages) : color illustrations, color map
Collana NREL/PR
Soggetto topico Electric vehicles
Wireless power transmission
City traffic
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Dynamic wireless power transfer
Record Nr. UNINA-9910707331303321
Markel A. J (Anthony J.)  
[Washington, D.C.] : , : National Renewable Energy Laboratory, , [2015]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Far-Field Wireless Power Transfer and Energy Harvesting / / edited by Naoki Shinohara and Jiafeng Zhou
Far-Field Wireless Power Transfer and Energy Harvesting / / edited by Naoki Shinohara and Jiafeng Zhou
Edizione [First edition.]
Pubbl/distr/stampa Norwood, MA : , : Artech House, , [2023]
Descrizione fisica 1 online resource (233 pages)
Disciplina 002
Soggetto topico Energy harvesting
Wireless power transmission
ISBN 1-63081-913-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Far-Field Wireless Power Transferand Energy Harvesting -- Contents -- Preface -- Chapter 1 General Introduction -- 1.1 History of Wireless Power Transfer and Energy Harvesting -- 1.2 Technical Introduction of WPT/Harvesting -- 1.2.1 Rectennas for WPT/Harvesting -- 1.2.2 Beamforming for WPT -- 1.3 Current Status of Commercialization/Regulation/Research on WPT/Harvesting -- References -- Chapter 2 In-Room Wide-Beam WPT and Its Applications -- 2.1 Overview of Wide-Beam WPT -- 2.2 Approximation of Received Power -- 2.3 Design of Receiving Antenna -- 2.4 Management of Received Power -- 2.5 Application of Health Monitoring Sensor -- 2.6 Application of Infrastructure Monitoring Sensor -- 2.7 Distributed WPT -- 2.8 Conclusion -- References -- Chapter 3 Radiative Wireless Power Transfer -- 3.1 Introduction -- 3.2 Transmitter -- 3.2.1 Wireless Power Transmitter -- 3.2.2 PWSN: Passive Nodes -- 3.3 Wireless Experimental Results -- 3.4 Discussion -- References -- Chapter 4 Wireless Power Transfer Enabled Wireless Communication -- 4.1 Introduction -- 4.2 WPT and Backscatter Channels -- 4.3 Backscatter Communication Principle and Channel Model -- 4.3.1 The Principle of Backscatter Communication -- 4.3.2 Channel Coding in Backscatter Communication -- 4.3.3 Dyadic Backscatter Channel and MIMO Backscatter -- 4.4 Demodulation of Backscatter Signal -- 4.4.1 Pulsewidth Measurement Demodulation -- 4.4.2 PSK Demodulation -- References -- Chapter 5 Medical Applications -- 5.1 Introduction -- 5.2 Planar Phase-Controlled Metasurface -- 5.2.1 Conformal Metasurfaces for Wireless Power Transfer -- 5.2.2 Wireless Power Transfer for Implantable Devices In Vivo -- 5.3 Wireless Optogenetics -- 5.3.1 Cavity Resonator Capable of Powering Ultrasmall Wireless Optogenetics -- 5.3.2 Peripheral Nerves Stimulations.
5.4 Introduction to Long-Range Wireless Communication Technology -- 5.5 Conclusion -- References -- Chapter 6 Indoor/Outdoor-Beam WPT with Beamforming -- 6.1 Indoor-Beam WPT -- 6.2 Outdoor-Beam WPT -- 6.3 Beam WPT in Space -- References -- Chapter 7 Solar Power Satellite -- 7.1 Introduction -- 7.2 History -- 7.3 Concepts -- 7.4 Challenges -- 7.4.1 Technical -- 7.4.2 Economic -- 7.4.3 Legal -- 7.4.4 Schedule -- 7.5 Conclusion -- References -- Chapter 8 Low-Power Integrated Circuit Design for Energy Harvesting -- 8.1 Introduction -- 8.2 RF Energy Harvesting System -- 8.3 RF Rectifier -- 8.3.1 Basic Topology of a Rectifier -- 8.3.2 Operating Principle -- 8.3.3 Internal Resistance Modeling of Multistage Rectifier -- 8.4 Design Challenge of Low-Power Active Rectifier IC -- 8.4.1 Transit Frequency -- 8.4.2 Structure of MOSFET Devices in n-Well Process -- 8.4.3 Vdrop Comparison -- 8.4.4 Cross-Coupled Architecture of an Active Rectifier -- 8.4.5 Multistage RF Active Rectifier -- 8.4.6 Design and Optimization of Flying Capacitance -- 8.5 Design Examples -- 8.5.1 Example No. 1 -- 8.5.2 Example No. 2 -- 8.5.3 Example No.3 -- 8.6 Conclusion -- References -- Chapter 9 Energy Harvesting for Smart Grid Application -- 9.1 Self-Powered Wireless Sensors in Smart Grid -- 9.2 Magnetic Field Energy Harvesting -- 9.2.1 Cabled-Clamped Magnetic Field Energy Harvester -- 9.2.2 Free-Standing Magnetic Field Energy Harvester -- 9.3 Electric Field Energy Harvesting -- 9.4 Conclusions -- References -- Chapter 10 Energy Harvesting from Low-Power Density Environments -- 10.1 Introduction -- 10.2 Wideband Antenna Design -- 10.3 Wide Beamwidth Antenna Design -- 10.3.1 Potential Modes of a Metasurface -- 10.3.2 Geometry of the Proposed Metasurface Antenna -- 10.3.3 Rectifier Design -- 10.3.4 Measurement Result -- 10.4 Conclusion -- References.
Chapter 11 Metamaterials and Metasurfaces for Wireless Energy Harvesting -- 11.1 Introduction -- 11.2 Design of Single-Mode Resonant Metasurfaces for Energy Harvesting -- 11.2.1 Design of Ring-Shaped Wi-Fi Band Energy Harvester -- 11.2.2 Complementary Split-Ring Resonator High-Frequency Wi-Fi Energy Harvester Design -- 11.3 Design of Multimode Resonant Metasurfaces for Energy Harvesting -- 11.3.1 Design of Energy Harvester with Nested Ring Structure -- 11.3.2 Design of Butterfly-Type Metasurfaces for Three-Band Energy Harvester -- 11.4 Design of Rectifying Metasurfaces -- 11.4.1 Metasurfaces Element and Rectifier Design -- 11.4.2 Array Design and Testing of RMS -- 11.5 An Optically Transparent Metantenna for RF Wireless Energy Harvesting -- 11.5.1 Design of Optically Transparent Metantenna -- 11.5.2 Wireless Energy Harvesting Performance -- 11.6 Summary and Conclusion -- References -- List of Acronyms -- About the Editors -- List of Contributors -- Index.
Record Nr. UNINA-9910795723903321
Norwood, MA : , : Artech House, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Far-Field Wireless Power Transfer and Energy Harvesting / / edited by Naoki Shinohara and Jiafeng Zhou
Far-Field Wireless Power Transfer and Energy Harvesting / / edited by Naoki Shinohara and Jiafeng Zhou
Edizione [First edition.]
Pubbl/distr/stampa Norwood, MA : , : Artech House, , [2023]
Descrizione fisica 1 online resource (233 pages)
Disciplina 002
Soggetto topico Energy harvesting
Wireless power transmission
ISBN 1-63081-913-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Far-Field Wireless Power Transferand Energy Harvesting -- Contents -- Preface -- Chapter 1 General Introduction -- 1.1 History of Wireless Power Transfer and Energy Harvesting -- 1.2 Technical Introduction of WPT/Harvesting -- 1.2.1 Rectennas for WPT/Harvesting -- 1.2.2 Beamforming for WPT -- 1.3 Current Status of Commercialization/Regulation/Research on WPT/Harvesting -- References -- Chapter 2 In-Room Wide-Beam WPT and Its Applications -- 2.1 Overview of Wide-Beam WPT -- 2.2 Approximation of Received Power -- 2.3 Design of Receiving Antenna -- 2.4 Management of Received Power -- 2.5 Application of Health Monitoring Sensor -- 2.6 Application of Infrastructure Monitoring Sensor -- 2.7 Distributed WPT -- 2.8 Conclusion -- References -- Chapter 3 Radiative Wireless Power Transfer -- 3.1 Introduction -- 3.2 Transmitter -- 3.2.1 Wireless Power Transmitter -- 3.2.2 PWSN: Passive Nodes -- 3.3 Wireless Experimental Results -- 3.4 Discussion -- References -- Chapter 4 Wireless Power Transfer Enabled Wireless Communication -- 4.1 Introduction -- 4.2 WPT and Backscatter Channels -- 4.3 Backscatter Communication Principle and Channel Model -- 4.3.1 The Principle of Backscatter Communication -- 4.3.2 Channel Coding in Backscatter Communication -- 4.3.3 Dyadic Backscatter Channel and MIMO Backscatter -- 4.4 Demodulation of Backscatter Signal -- 4.4.1 Pulsewidth Measurement Demodulation -- 4.4.2 PSK Demodulation -- References -- Chapter 5 Medical Applications -- 5.1 Introduction -- 5.2 Planar Phase-Controlled Metasurface -- 5.2.1 Conformal Metasurfaces for Wireless Power Transfer -- 5.2.2 Wireless Power Transfer for Implantable Devices In Vivo -- 5.3 Wireless Optogenetics -- 5.3.1 Cavity Resonator Capable of Powering Ultrasmall Wireless Optogenetics -- 5.3.2 Peripheral Nerves Stimulations.
5.4 Introduction to Long-Range Wireless Communication Technology -- 5.5 Conclusion -- References -- Chapter 6 Indoor/Outdoor-Beam WPT with Beamforming -- 6.1 Indoor-Beam WPT -- 6.2 Outdoor-Beam WPT -- 6.3 Beam WPT in Space -- References -- Chapter 7 Solar Power Satellite -- 7.1 Introduction -- 7.2 History -- 7.3 Concepts -- 7.4 Challenges -- 7.4.1 Technical -- 7.4.2 Economic -- 7.4.3 Legal -- 7.4.4 Schedule -- 7.5 Conclusion -- References -- Chapter 8 Low-Power Integrated Circuit Design for Energy Harvesting -- 8.1 Introduction -- 8.2 RF Energy Harvesting System -- 8.3 RF Rectifier -- 8.3.1 Basic Topology of a Rectifier -- 8.3.2 Operating Principle -- 8.3.3 Internal Resistance Modeling of Multistage Rectifier -- 8.4 Design Challenge of Low-Power Active Rectifier IC -- 8.4.1 Transit Frequency -- 8.4.2 Structure of MOSFET Devices in n-Well Process -- 8.4.3 Vdrop Comparison -- 8.4.4 Cross-Coupled Architecture of an Active Rectifier -- 8.4.5 Multistage RF Active Rectifier -- 8.4.6 Design and Optimization of Flying Capacitance -- 8.5 Design Examples -- 8.5.1 Example No. 1 -- 8.5.2 Example No. 2 -- 8.5.3 Example No.3 -- 8.6 Conclusion -- References -- Chapter 9 Energy Harvesting for Smart Grid Application -- 9.1 Self-Powered Wireless Sensors in Smart Grid -- 9.2 Magnetic Field Energy Harvesting -- 9.2.1 Cabled-Clamped Magnetic Field Energy Harvester -- 9.2.2 Free-Standing Magnetic Field Energy Harvester -- 9.3 Electric Field Energy Harvesting -- 9.4 Conclusions -- References -- Chapter 10 Energy Harvesting from Low-Power Density Environments -- 10.1 Introduction -- 10.2 Wideband Antenna Design -- 10.3 Wide Beamwidth Antenna Design -- 10.3.1 Potential Modes of a Metasurface -- 10.3.2 Geometry of the Proposed Metasurface Antenna -- 10.3.3 Rectifier Design -- 10.3.4 Measurement Result -- 10.4 Conclusion -- References.
Chapter 11 Metamaterials and Metasurfaces for Wireless Energy Harvesting -- 11.1 Introduction -- 11.2 Design of Single-Mode Resonant Metasurfaces for Energy Harvesting -- 11.2.1 Design of Ring-Shaped Wi-Fi Band Energy Harvester -- 11.2.2 Complementary Split-Ring Resonator High-Frequency Wi-Fi Energy Harvester Design -- 11.3 Design of Multimode Resonant Metasurfaces for Energy Harvesting -- 11.3.1 Design of Energy Harvester with Nested Ring Structure -- 11.3.2 Design of Butterfly-Type Metasurfaces for Three-Band Energy Harvester -- 11.4 Design of Rectifying Metasurfaces -- 11.4.1 Metasurfaces Element and Rectifier Design -- 11.4.2 Array Design and Testing of RMS -- 11.5 An Optically Transparent Metantenna for RF Wireless Energy Harvesting -- 11.5.1 Design of Optically Transparent Metantenna -- 11.5.2 Wireless Energy Harvesting Performance -- 11.6 Summary and Conclusion -- References -- List of Acronyms -- About the Editors -- List of Contributors -- Index.
Record Nr. UNINA-9910815759403321
Norwood, MA : , : Artech House, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
IEEE Wireless Power Transfer Conference
IEEE Wireless Power Transfer Conference
Pubbl/distr/stampa Piscataway, NJ : , : Institute of Electrical and Electronics Engineers Incorporated, , 2014-
Disciplina 621
Soggetto topico Wireless power transmission
Electric power transmission
Soggetto genere / forma Conference papers and proceedings.
ISSN 2573-7651
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Altri titoli varianti WPTC ..
Wireless Power Transfer Conference, IEEE
IEEE Wireless Power Transfer Conference proceedings
Proceedings, IEEE Wireless Power Transfer Conference
Record Nr. UNINA-9910626138203321
Piscataway, NJ : , : Institute of Electrical and Electronics Engineers Incorporated, , 2014-
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
IEEE Wireless Power Transfer Conference
IEEE Wireless Power Transfer Conference
Pubbl/distr/stampa Piscataway, NJ : , : Institute of Electrical and Electronics Engineers Incorporated, , 2014-
Disciplina 621
Soggetto topico Wireless power transmission
Electric power transmission
Soggetto genere / forma Conference papers and proceedings.
ISSN 2573-7651
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Altri titoli varianti WPTC ..
Wireless Power Transfer Conference, IEEE
IEEE Wireless Power Transfer Conference proceedings
Proceedings, IEEE Wireless Power Transfer Conference
Record Nr. UNISA-996581527703316
Piscataway, NJ : , : Institute of Electrical and Electronics Engineers Incorporated, , 2014-
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
IMWS-Bio 2014 : IEEE International Microwave Workshop Series : conference proceedings : Canary Wharf, London, United Kingdom, December 8-10, 2014 : 2014 IEEE MTT-S International Microwave Workshop Series on: RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-Bio 2014) / / sponsored by IEEE [and four others]
IMWS-Bio 2014 : IEEE International Microwave Workshop Series : conference proceedings : Canary Wharf, London, United Kingdom, December 8-10, 2014 : 2014 IEEE MTT-S International Microwave Workshop Series on: RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-Bio 2014) / / sponsored by IEEE [and four others]
Pubbl/distr/stampa Piscataway, New Jersey : , : Institute of Electrical and Electronics Engineers, , 2014
Descrizione fisica 1 online resource (378 pages)
Disciplina 621
Soggetto topico Wireless power transmission
Medical technology
Telecommunication in medicine
ISBN 1-4799-5447-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910142027803321
Piscataway, New Jersey : , : Institute of Electrical and Electronics Engineers, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
IMWS-Bio 2014 : IEEE International Microwave Workshop Series : conference proceedings : Canary Wharf, London, United Kingdom, December 8-10, 2014 : 2014 IEEE MTT-S International Microwave Workshop Series on: RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-Bio 2014) / / sponsored by IEEE [and four others]
IMWS-Bio 2014 : IEEE International Microwave Workshop Series : conference proceedings : Canary Wharf, London, United Kingdom, December 8-10, 2014 : 2014 IEEE MTT-S International Microwave Workshop Series on: RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-Bio 2014) / / sponsored by IEEE [and four others]
Pubbl/distr/stampa Piscataway, New Jersey : , : Institute of Electrical and Electronics Engineers, , 2014
Descrizione fisica 1 online resource (378 pages)
Disciplina 621
Soggetto topico Wireless power transmission
Medical technology
Telecommunication in medicine
ISBN 1-4799-5447-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996280000303316
Piscataway, New Jersey : , : Institute of Electrical and Electronics Engineers, , 2014
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Inductive links for wireless power transfer : fundamental concepts for designing high-efficiency wireless power transfer links / / Pablo Pérez-Nicoli, Fernando Silveira, Maysam Ghovanloo
Inductive links for wireless power transfer : fundamental concepts for designing high-efficiency wireless power transfer links / / Pablo Pérez-Nicoli, Fernando Silveira, Maysam Ghovanloo
Autore Pérez-Nicoli Pablo
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (230 pages)
Disciplina 621.319
Soggetto topico Wireless power transmission
Electric inductors
ISBN 3-030-65477-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Acronyms -- 1 Introduction to Wireless Power Transfer -- 1.1 Why Wireless? -- 1.2 Wireless Links Classifications -- 1.3 Inductive Wireless Power Transfer -- 1.3.1 Transmitter DC-DC Converter -- 1.3.2 Inverter -- 1.3.3 Tx Matching Network -- 1.3.4 Inductive Link -- 1.3.5 Rx Matching Network -- 1.3.6 Rectifier -- 1.3.7 Receiver DC-DC Converter -- References -- 2 Inductive Link: Basic Theoretical Model -- 2.1 Reflected Load Theory in a 2-Coil Link -- 2.1.1 Underlying Physical Principles of Inductive Coupling: Self-Inductance (L), Mutual Inductance (M), and Coupling Coefficient (k) -- 2.1.2 Equivalent Circuit Model -- 2.1.3 Calculation of Link Efficiency, ηLink -- 2.1.4 Calculation of Power Delivered to the Rx-circuit, PMN -- 2.1.5 Effects of Coils' Quality Factor (Q) and Coupling Coefficient (k) on the Link -- 2.1.6 Effect of Tx and Rx Resonance on the Link -- 2.1.7 Frequency Splitting Effect -- 2.1.7.1 Analysis of Frequency Splitting Effect Based on T-Type Transformer Model -- 2.2 Reflected Load Theory in Systems with AdditionalResonant Coils -- 2.2.1 Link Efficiency, ηLink, and Power Delivered to the Rx-circuit, PMN, in a 3-Coil Link -- 2.2.2 Generalization to N-Coil Links -- 2.2.3 Link Efficiency, ηLink, and Power Delivered to the Rx-circuit, PMN, in a 4-Coil Link -- 2.3 Comparison Between 2-, 3-, and 4-Coil Links -- Appendices -- A.1 PMN Calculation for a Voltage Source and Series Tx Resonance -- A.2 PMN Calculation for a Voltage Source and Parallel TxResonance -- A.3 PMN Calculation for a Current Source and Series Tx Resonance -- A.4 PMN Calculation for a Current Source and Parallel Tx Resonance -- References -- 3 Inductive Link: Practical Aspects -- 3.1 Coil Design -- 3.1.1 Square-Shaped Printed Spiral Coil -- 3.1.1.1 Self-Inductance, L -- 3.1.1.2 Equivalent Series Resistance(ESR).
3.1.1.3 Parasitic Capacitance, C -- 3.1.1.4 Mutual Inductance, M -- 3.1.1.5 Square-Shaped Printed Spiral Coil Example -- 3.2 Influence of Foreign Object -- 3.2.1 Effects of Conductive Materials -- 3.2.2 Effect of Ferrites -- 3.3 Safety and Electromagnetic Compatibility Considerations -- 3.3.1 Electromagnetic Compatibility(EMC) -- 3.3.2 Safety -- References -- 4 Back Telemetry -- 4.1 The Need for and Role of Back Telemetry in WPT Links -- 4.2 Design of Power Transfer Links that Need to Support Back Telemetry -- 4.3 Examples of Implementation -- 4.3.1 Load Shift Keying(LSK) -- 4.3.1.1 Example of Use in AIMDs -- 4.3.2 Frequency Shift Keying(FSK) -- 4.3.2.1 Example of Using FSK in Low-Frequency RFID -- References -- 5 Achieving the Optimum Operating Point(OOP) -- 5.1 Introduction -- 5.2 Maximum Efficiency Point(MEP) in 2-Coil Links -- 5.3 Maximum Power Point(MPP) in 2-Coil Links -- 5.3.1 MPP, Tx-circuit with a Voltage Source and a Series Resonant Capacitor -- 5.3.2 MPP, Tx-circuit with a Current Source and a Series Resonant Capacitor -- 5.4 Choosing Between MEP and MPP -- 5.5 MEP and MPP in N-Coil Links -- 5.6 Using Matching Networks to Achieve the OOP -- 5.7 Comparing 2-Coil and 3-Coil Links at the MEP -- 5.8 Design of a 3-Coil Link to Operate at the MEP -- Appendices -- B.1 Deduction of QLoptη Which Maximizes ηLink -- B.2 Deduction of ηLinkmax -- B.3 Deduction of QLoptPMN (Voltage Source Tx with a Series Resonant Capacitor) -- B.4 Deduction of PMNmax (Voltage Source Tx with a Series Resonant Capacitor) -- B.5 Deduction of QLoptPMN (Current Tx Source with a Series Resonant Capacitor) -- B.6 Deduction of PMNmax (Current Tx Source with a Series Resonant Capacitor) -- B.7 Deduction of QLoptη Which Maximizes ηLink in a 3-Coil Link -- B.8 Deduction of ηLinkmax (3-Coil) -- B.9 Deduction of QLoptPMN (3-Coil, Voltage Source, and a Series Resonant Tx).
B.10 Deduction of PMNmax (3-Coil, Voltage Source, and a Series Resonant Tx) -- References -- 6 Adaptive Circuits to Track the Optimum Operating Point(OOP) -- 6.1 Introduction -- 6.2 Using the Rx DC-DC Converter to Achieve the OOP -- 6.2.1 Switched-Inductor Converters -- 6.2.2 Switched-Capacitor Converters -- 6.3 Using an Active Rectifier to Achieve the OOP -- 6.3.1 Modifying the Control Signals -- 6.3.2 Reconfigurable Multiple-Gain Architectures -- 6.4 OOP Tracking in the AC Domain -- 6.4.1 Q-Modulation -- 6.4.2 Adaptive Matching Network -- 6.4.3 Reconfigurable Resonant Coil -- 6.5 Combining Adaptive and Nonadaptive Approaches to Achieve the OOP -- References -- 7 Closed-Loop WPT Links -- 7.1 Output Voltage Regulation -- 7.2 Tracking the Maximum Efficiency Point(MEP)in a Closed-Loop -- 7.3 The Joint Use of Output Voltage Regulation and MEP Tracking Feedbacks -- 7.4 Tracking the MEP in Links with Preregulated Output Voltage -- 7.5 Tracking the MEP in Links with Postregulated Output Voltage -- 7.5.1 Effect of Rx-circuit in the Operating Point -- 7.5.2 2-Coil Links -- 7.5.2.1 Analysis with Non-resonant Tx-circuit -- 7.5.3 3-Coil Links -- 7.5.4 N-Coil Links -- 7.5.5 Measurement Results -- 7.5.6 Concluding Remarks -- Appendices -- C.1 Deduction of (7.11) and (7.12) -- C.2 Deduction of (7.14) and (7.16) -- C.3 Proof of (7.19) -- C.4 Deduction of Table 7.6 -- References -- 8 System Design Examples -- 8.1 Radio Frequency Identification(RFID) -- 8.1.1 RFID Link Introduction -- 8.1.2 2-Coil RFID Link -- 8.1.2.1 Charging Phase -- 8.1.2.2 Reading Phase -- 8.1.3 3-Coil RFID Link -- 8.1.3.1 Charging Phase -- 8.1.3.2 Reading Phase -- 8.2 Introduction to WPT Links for Visual Prosthesis -- 8.2.1 WPT Link for Visual Prostheses -- 8.2.2 Rx Matching Network Design: Series Versus Parallel -- 8.2.3 Tracking OOP Under Load Variations -- 8.3 Smartphones.
8.4 Electric Vehicles -- References -- Index.
Record Nr. UNINA-9910492147303321
Pérez-Nicoli Pablo  
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Integrating PEVs with renewables and the grid / / Andrew Meintz [and three others]
Integrating PEVs with renewables and the grid / / Andrew Meintz [and three others]
Autore Meintz Andrew
Pubbl/distr/stampa [Golden, Colo.] : , : National Renewable Energy Laboratory, , 2016
Descrizione fisica 1 online resource (25 pages) : color illustrations
Collana NREL/PR
Soggetto topico Electric vehicles - Batteries - Economic aspects
Wireless power transmission
Hybrid electric vehicles - Cost of operation - Evaluation
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910707471203321
Meintz Andrew  
[Golden, Colo.] : , : National Renewable Energy Laboratory, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui