top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Introduction to mobile network engineering : GSM, 3G-WCDMA, LTE and the road to 5G / / by Alexander Kukushkin
Introduction to mobile network engineering : GSM, 3G-WCDMA, LTE and the road to 5G / / by Alexander Kukushkin
Autore Kukushkin Alexander
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, , 2018
Descrizione fisica 1 online resource (491 pages)
Disciplina 621.3845/6
Soggetto topico Mobile communication systems
Wireless metropolitan area networks
Soggetto genere / forma Electronic books.
ISBN 1-119-48410-3
1-119-48422-7
1-119-48419-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Foreword xvii / /Acknowledgements xix -- Abbreviations xxi -- 1 Introduction 1 -- 2 Types of Mobile Network by Multiple-Access Scheme 3 -- 3 Cellular System 5 -- 3.1 Historical Background 5 -- 3.2 Cellular Concept 5 -- 3.3 Carrier-to-Interference Ratio 6 -- 3.4 Formation of Clusters 8 -- 3.5 Sectorization 9 -- 3.6 Frequency Allocation 10 -- 3.7 Trunking Effect 11 -- 3.8 Erlang Formulas 13 -- 3.9 Erlang B Formula 13 -- 3.10 Worked Examples 14 -- 3.10.1 Problem 1 14 -- 3.10.2 Problem 2 16 -- 3.10.3 Problem 3 16 -- 4 Radio Propagation 19 -- 4.1 Propagation Mechanisms 19 -- 4.1.1 Free-Space Propagation 19 -- 4.1.2 Propagation Models for Path Loss (Global Mean) Prediction 22 -- 5 Mobile Radio Channel 27 -- 5.1 Channel Characterization 28 -- 5.1.1 Narrowband Flat Channel 31 -- 5.1.2 Wideband Frequency Selective Channel 31 -- 5.1.3 Doppler Shift 34 -- 5.2 Worked Examples 36 -- 5.2.1 Problem 1 36 -- 5.2.2 Problem 2 36 -- 5.3 Fading 36 -- 5.3.1 Shadowing/Slow Fading 37 -- 5.3.2 Fast Fading/Rayleigh Fading 40 -- 5.4 Diversity to Mitigate Multipath Fading 42 -- 5.4.1 Space and Polarization Diversity 42 -- 5.5 Worked Examples 44 -- 5.5.1 Problem 1 44 -- 5.5.2 Problem 2 44 -- 5.5.3 Problem 3 45 -- 5.6 Receiver Noise Factor (Noise Figure) 45 -- 6 Radio Network Planning 49 -- 6.1 Generic Link Budget 49 -- 6.1.1 Receiver Sensitivity Level 50 -- 6.1.2 Design Level 50 -- 6.1.2.1 Rayleigh Fading Margin 51 -- 6.1.2.2 Lognormal Fading Margin 51 -- 6.1.2.3 Body Loss 51 -- 6.1.2.4 Car Penetration Loss 51 -- 6.1.2.5 Design Level 51 -- 6.1.2.6 Building Penetration Loss 52 -- 6.1.2.7 Outdoor-to-Indoor Design Level 52 -- 6.1.3 Power Link Budget 52 -- 6.1.4 Power Balance 53 -- 6.2 Worked Examples 56 -- 6.2.1 Problem 1 56 -- 6.2.2 Problem 2 57 -- 6.2.3 Problem 3 58 -- 7 Global System Mobile, GSM, 2G 59 -- 7.1 General Concept for GSM System Development 59 -- 7.2 GSM System Architecture 59 -- 7.2.1 Location Area Identity (LAI) 62 -- 7.2.2 The SIM Concept 63 -- 7.2.3 User Addressing in the GSM Network 63.
7.2.4 International Mobile Station Equipment Identity (IMEI) 63 -- 7.2.5 International Mobile Subscriber Identity (IMSI) 64 -- 7.2.6 Different Roles of MSISDN and IMSI 64 -- 7.2.7 Mobile Station Routing Number 64 -- 7.2.8 Calls to Mobile Terminals 65 -- 7.2.9 Temporary Mobile Subscriber Identity (TMSI) 66 -- 7.2.10 Security-Related Network Functions: Authentication and Encryption 66 -- 7.2.11 Call Security 67 -- 7.2.12 Operation and Maintenance Security 69 -- 7.3 Radio Specifications 69 -- 7.3.1 Spectrum Efficiency 69 -- 7.3.2 Access Technology 71 -- 7.3.3 MAHO and Measurements Performed by Mobile 72 -- 7.3.4 Time Slot and Burst 73 -- 7.3.4.1 Normal Burst 74 -- 7.3.4.2 Frequency Correction Burst (FB) 74 -- 7.3.4.3 Synchronization Burst 75 -- 7.3.4.4 Access Burst 75 -- 7.3.4.5 Dummy Burst 75 -- 7.3.5 GSM Adaptation to a Wideband Propagation Channel 76 -- 7.3.5.1 Training Sequence and Equalization 76 -- 7.3.5.2 The Channel Equalization 77 -- 7.3.5.3 Diversity Against Fast Fading 78 -- 7.3.5.4 Frequency Hopping 79 -- 7.4 Background for the Choice of Radio Parameters 81 -- 7.4.1 Guard Period, Timing Advance 83 -- 7.5 Communication Channels in GSM 84 -- 7.5.1 Traffic Channels (TCHs) 84 -- 7.5.2 Control Channels 85 -- 7.5.2.1 Common Control Channels 85 -- 7.5.2.2 Dedicated Control Channels 86 -- 7.6 Mapping the Logical Channels onto Physical Channels 86 -- 7.6.1 Frame Format 87 -- 7.6.2 Transmission of User Information: Fast Associated Control Channel 88 -- 7.6.2.1 Data Rates 88 -- 7.6.3 Signalling Multiframe, 51-Frame Multiframe 88 -- 7.6.4 Synchronization 89 -- 7.6.4.1 Frequency Synchronization 90 -- 7.6.4.2 Time Synchronization 90 -- 7.6.5 Signalling Procedures over the Air Interface 90 -- 7.6.5.1 Synchronization to the Base Station 90 -- 7.6.5.2 Registering With the Base Station 91 -- 7.6.5.3 Call Setup 91 -- 7.7 Signalling During a Call 93 -- 7.7.1 Measuring the Signal Levels from Adjacent Cells 93 -- 7.7.2 Handover 94 -- 7.7.2.1 Intra-Cell and Inter-Cell Handover 95.
7.7.2.2 Intra- and Inter-BSC Handover 95 -- 7.7.2.3 Intra- and Inter-MSC Handover 95 -- 7.7.2.4 Intra- and Inter-PLMN Handover 95 -- 7.7.2.5 Handover Triggering 95 -- 7.7.3 Power Control 96 -- 7.8 Signal Processing Chain 97 -- 7.8.1 Speech and Channel Coding 97 -- 7.8.2 Reordering and Interleaving of the TCH 99 -- 7.9 Estimating Required Signalling Capacity in the Cell 100 -- 7.9.1 SDCCH Configuration 100 -- 7.9.2 Worked Example 101 -- 7.9.2.1 Problem 1 101 -- References 102 -- 8 EGPRS: GPRS/EDGE 103 -- 8.1 GPRS Support Nodes 103 -- 8.2 GPRS Interfaces 104 -- 8.3 GPRS Procedures in Packet Call Setups 104 -- 8.4 GPRS Mobility Management 105 -- 8.4.1 Mobility Management States 106 -- 8.4.1.1 IDLE State 106 -- 8.4.1.2 READY State 106 -- 8.4.1.3 STANDBY State 106 -- 8.4.2 PDP Context Activation 107 -- 8.4.3 Location Management 108 -- 8.5 Layered Overview of the Radio Interface 108 -- 8.5.1 SNDP 108 -- 8.5.2 Layer Services 109 -- 8.5.3 Radio Link Layer 110 -- 8.5.3.1 RLC Block Structure 110 -- 8.5.4 GPRS Logical Channels 111 -- 8.5.5 Mapping to Physical GPRS Channels 111 -- 8.5.6 Channel Sharing 112 -- 8.5.6.1 Downlink Radio Channel 113 -- 8.5.6.2 Uplink Radio Channel 113 -- 8.5.7 TBF 113 -- 8.5.7.1 TBF Establishment 113 -- 8.5.7.2 DL TBF Establishment 113 -- 8.5.8 EGPRS Channel Coding and Modulation 15 -- 8.6 GPRS/GSM Territory in a Base-Station Transceiver 115 -- 8.6.1 PS Capacity in the Base Station/Cell 116 -- 8.7 Summary 118 -- References 119 -- 9 Third Generation Network (3G), UMTS 121 -- 9.1 The WCDMA Concept 123 -- 9.1.1 Spreading (Channelization) 124 -- 9.1.2 Scrambling 127 -- 9.1.3 Multiservice Capacity 128 -- 9.1.4 Power Control 129 -- 9.1.4.1 Open-Loop Power Control 130 -- 9.1.4.2 Outer-Loop Power Control 130 -- 9.1.5 Handover 132 -- 9.1.5.1 Softer Handover 132 -- 9.1.5.2 Other Handovers 134 -- 9.1.5.3 Compressed Mode 134 -- 9.1.6 RAKE Reception 135 -- 9.2 Major Parameters of 3G WCDMA Air Interface 136 -- 9.3 Spectrum Allocation for 3G WCDMA 136 -- 9.4 3G Services 138.
9.4.1 Bearer Service and QoS 138 -- 9.5 UMTS Reference Network Architecture and Interfaces 140 -- 9.5.1 The NodeB (Base Station) Functions in the 3G Network 141 -- 9.5.2 Role of the RNC in 3G Network 141 -- 9.6 Air-Interface Architecture and Processing 142 -- 9.6.1 Physical Layer (Layer 1) 144 -- 9.6.2 Medium Access Control (MAC) on Layer 2 144 -- 9.6.3 Radio Link Control (RLC) on Layer 2 145 -- 9.6.4 RRC on Layer 3 in the Control Plane 145 -- 9.7 Channels on the Air Interface 146 -- 9.7.1 Logical Channels 146 -- 9.7.2 Transport Channels 146 -- 9.7.2.1 Dedicated Transport Channel (DCH) 147 -- 9.7.2.2 Common Transport Channels 147 -- 9.7.3 Physical Channels and Physical Signals 148 -- 9.7.4 Parameters of the Transport Channel 148 -- 9.8 Physical-Layer Procedures 150 -- 9.8.1 Processing of Transport Blocks 151 -- 9.8.2 Spreading and Modulation 154 -- 9.8.3 Modulation Scheme in UTRAN FDD 155 -- 9.8.4 Composition of the Physical Channels 157 -- 9.8.4.1 Dedicated Physical Channel 157 -- 9.8.4.2 Common Downlink Physical Channels 160 -- 9.9 RRC States 162 -- 9.9.1 Idle Mode 162 -- 9.9.2 RRC Connected Mode 164 -- 9.9.3 RRC Connection Procedures 165 -- 9.9.4 RRC State Transition Cases 166 -- 9.10 RRM Functions 167 -- 9.10.1 Admission Control Principle 167 -- 9.10.2 Load/Congestion Control 168 -- 9.10.3 Code Management 168 -- 9.10.4 Packet Scheduling 168 -- 9.11 Initial Access to the Network 169 -- 9.12 Summary 170 -- References 171 -- 10 High-Speed Packet Data Access (HSPA) 173 -- 10.1 HSDPA, High-Speed Downlink Packet Data Access 173 -- 10.2 HSPA RRM Functions 175 -- 10.2.1 Channel-Dependent Scheduling for HS-DSCH 175 -- 10.2.2 Rate Control, Dynamic Resource Allocation, Adaptive Modulation and Coding 176 -- 10.2.3 Hybrid-ARQ with Soft Combining, HARQ 176 -- 10.2.4 Retransmission Mechanism in the NodeB 176 -- 10.2.5 Impact to Protocol Architecture 177 -- 10.2.6 HARQ Schemes 178 -- 10.3 MAC-hs and Physical-Layer Processing 181 -- 10.4 HSDPA Channels 182 -- 10.4.1 High-Speed Downlink Shared Channel (HS-DSCH) 182.
10.4.2 HSDPA Control Channels 183 -- 10.4.2.1 Fractional Downlink Power Control Channel 184 -- 10.4.3 HS-DSCH Link Adaptation 184 -- 10.5 HSUPA (Enhanced Uplink, E-DCH) 189 -- 10.5.1 Control Signalling 190 -- 10.5.2 Scheduling 190 -- 10.6 Air-Interface Dimensioning 192 -- 10.6.1 Input Parameters and Requirements 192 -- 10.6.2 Traffic Demand Estimation 193 -- 10.6.2.1 PS Data Services (Release 99) 193 -- 10.6.2.2 HSPA Data Services 193 -- 10.6.3 Standard Traffic Model 194 -- 10.6.4 Link Budgets 195 -- 10.6.4.1 Uplink Load Factor 196 -- 10.6.4.2 Downlink Load Factor 197 -- 10.6.4.3 Link Budget for R99 Bearers 198 -- 10.6.4.4 Link Budget for HSPA 199 -- 10.6.4.5 Results of Link Budget: Cell Range Calculation, Balancing UL with DL 199 -- 10.6.4.6 Link Budget for Common Pilot Channel Signal 200 -- 10.6.4.7 Link Budget Calculation for the Shared Release 99 and HSDPA Carriers 200 -- 10.6.5 Uplink Capacity Estimation 201 -- 10.6.5.1 Required Bandwidth and Load for Multiple Bearers with GOS Considerations 202 -- 10.6.5.2 Simplified Estimation of HSDPA Throughput Capacity 202 -- 10.7 Summary 203 -- References 204 -- 11 4G-Long Term Evolution (LTE) System 205 -- 11.1 Introduction 205 -- 11.2 Architecture of an Evolved Packet System 206 -- 11.3 LTE Integration with Existing 2G/3G Network 207 -- 11.3.1 EPS Reference Points and Interfaces 208 -- 11.4 E-UTRAN Interfaces 209 -- 11.5 User Equipment 210 -- 11.5.1 LTE UE Category 210 -- 11.6 QoS in LTE 211 -- 11.7 LTE Security 212 -- 11.8 LTE Mobility 214 -- 11.8.1 Idle Mode Mobility 214 -- 11.8.2 ECM-CONNECTED Mode Mobility 215 -- 11.8.3 Mobility Anchor 216 -- 11.8.4 Inter-eNB Handover 216 -- 11.8.5 3GPP Inter-RAT Handover 218 -- 11.8.6 Differences in E-UTRAN and UTRAN Mobility 218 -- 11.9 LTE Radio Interface 219 -- 11.10 Principle of OFDM 220 -- 11.11 OFDM Implementation using IFFT/FFT Processing 223 -- 11.12 Cyclic Prefix 223 -- 11.13 Channel Estimation and Reference Symbols 225 -- 11.14 OFDM Subcarrier Spacing 227.
11.15 Output RF Spectrum Emissions 227 -- 11.16 LTE Multiple-Access Scheme, OFDMA 228 -- 11.17 Single-Carrier FDMA (SC-FDMA) 229 -- 11.18 OFDMA versus SC-FDMA Operation 230 -- 11.19 SC-FDMA Receiver 231 -- 11.20 User Multiplexing with DFTS-OFDM 231 -- 11.21 MIMO Techniques 232 -- 11.21.1 Precoding 234 -- 11.21.2 Cyclic Delay Diversity (CDD) 236 -- 11.22 Link Adaptation and Frequency Domain Packet Scheduling 237 -- 11.23 Radio Protocol Architecture 238 -- 11.23.1 User Plane 239 -- 11.23.2 Control Plane 239 -- 11.23.3 Scheduler 240 -- 11.23.4 Logical and Transport Channels 240 -- 11.23.5 Physical Layer 242 -- 11.23.6 RRC State Machine 244 -- 11.23.7 Time-Frequency Structure of the LTE FDD Physical Layer 244 -- 11.24 Downlink Physical Layer Processing 248 -- 11.24.1 Multiplexing and Channel Coding for Downlink Transport Channels 248 -- 11.24.2 CRC Computation and Attachment to the Transport Block 248 -- 11.24.3 Code Block Segmentation and Code Block CRC Attachment 249 -- 11.24.4 Channel Coding 249 -- 11.24.5 Rate Matching for Turbo Coded Transport Channels 249 -- 11.24.6 Downlink Control Information Coding 250 -- 11.24.7 Physical Channel Processing 250 -- 11.24.7.1 Bit-Level Scrambling 251 -- 11.24.7.2 Data Modulation 251 -- 11.24.7.3 Layer Mapping 252 -- 11.24.7.4 Precoding 252 -- 11.24.7.5 Mapping to Resource Elements 255 -- 11.24.7.6 Downlink Reference Signals 256 -- 11.25 Downlink Control Channels 258 -- 11.25.1 Structure of the Synchronization Channel 258 -- 11.25.2 Time-Domain Position of Synchronization Signals 259 -- 11.25.3 Frequency Domain Structure of Synchronization Signals 259 -- 11.25.3.1 PSS Structure 259 -- 11.25.3.2 SSS Structure 260 -- 11.25.4 PBCH 260 -- 11.25.5 Physical Control Format Indicator Channel: PCFICH 262 -- 11.25.6 PDCCH 263 -- 11.25.7 PHICH, Physical Hybrid-ARQ Indicator Channel 264 -- 11.26 Mapping the Control Channels to Downlink Transmission Resources 264 -- 11.27 Uplink Control Signalling 264 -- 11.27.1 Processing of the Uplink Shared Transport Channel 266.
11.27.2 Channel Coding of Control Information 266 -- 11.27.3 Multiplexing and Channel Interleaving 266 -- 11.27.4 Processing for Physical Uplink Shared Channel 268 -- 11.27.5 Physical Uplink Control Channel, PUCCH 269 -- 11.27.6 Multiplexing of UEs Within a PUCCH 269 -- 11.27.7 Physical Random Access Channel (PRACH) 270 -- 11.28 Uplink Reference Signals 271 -- 11.28.1 Mapping of Reference Signals to the Uplink Frame Structure 272 -- 11.29 Physical-Layer Procedures 273 -- 11.29.1 Cell Search 273 -- 11.29.2 Random Access Procedure 274 -- 11.29.3 Link Adaptation 276 -- 11.29.4 Power Control 277 -- 11.29.5 Paging 278 -- 11.29.6 HARQ 278 -- 11.30 LTE Radio Dimensioning 279 -- 11.30.1 LTE Coverage Dimensioning: Link Budget 280 -- 11.30.1.1 Physical-Layer Overhead Factors 281 -- 11.30.1.2 Multi-Antenna Systems 284 -- 11.30.1.3 Required SINR 285 -- 11.30.1.4 Link Budget Margins 285 -- 11.30.1.5 Interference Margin 285 -- 11.30.1.6 Maximum Allowable Path Loss (MAPL) 287 -- 11.30.1.7 Required SINR 288 -- 11.30.2 Cell Range and Cell Capacity 288 -- 11.31 Summary 289 -- References 290 -- 12 LTE-A 293 -- 12.1 Carrier Aggregation 296 -- 12.2 Enhanced MIMO 300 -- 12.3 Coordinated Multi-Point Operation (CoMP) 303 -- 12.3.1 CoMP Categories 304 -- 12.3.2 Downlink CoMP 306 -- 12.3.3 Uplink CoMP 307 -- 12.4 Relay Nodes 309 -- 12.4.1 Relay Radio Access 309 -- 12.4.2 Relay Architecture 311 -- 12.4.3 Resource Assignment for DeNB-RN Link in a Type 1 Relay 314 -- 12.5 Enhanced Physical Downlink Control Channel (E-PDCCH) 315 -- 12.6 Downlink Multiuser Superposition, MUST 315 -- 12.7 Summary of LTE-A Features 317 -- References 317 -- 13 Further Development for the Fifth Generation 319 -- 13.1 Overall Operational Requirements for a 5G Network System 320 -- 13.2 Device Requirements 320 -- 13.3 Capabilities of 5G 321 -- 13.4 Spectrum Consideration 321 -- 13.5 5G Technology Components 322 -- 13.5.1 Technologies to Enhance the Radio Interface 322 -- 13.5.1.1 Advanced Modulation-and-Coding Schemes 323.
13.5.1.2 Non-Orthogonal Multiple Access (NOMA) 323 -- 13.5.1.3 Active Antenna System (AAS) 326 -- 13.5.1.4 3D Beamforming and Multiuser MIMO (MU-MIMO) 327 -- 13.5.1.5 Massive MIMO 328 -- 13.5.1.6 Full Duplex Mode 329 -- 13.5.1.7 Self-Backhauling 330 -- 13.5.2 Technologies to Enhance Network Architectures 331 -- 13.5.2.1 Software-Defined Network 332 -- 13.5.2.2 Cloud RAN 332 -- 13.5.2.3 Network Slicing 332 -- 13.5.2.4 Self-Organized Network, SON 334 -- 13.6 5G System Architecture (Release 15) 335 -- 13.6.1 General Concepts 335 -- 13.6.2 Architecture Reference Model 335 -- 13.6.3 Network Slicing Support 338 -- 13.6.3.1 General Framework 338 -- 13.6.3.2 Network Slice Selection Assistance Information (NSSAI) 338 -- 13.6.3.3 Selection of a Serving AMF Supporting the Network Slices 339 -- 13.6.3.4 UE Context Handling 340 -- 13.7 New Radio (NR) 341 -- 13.7.1 NG-RAN Architecture 341 -- 13.7.2 Functional Split 342 -- 13.7.3 Network Interfaces 343 -- 13.7.3.1 NG Interface 343 -- 13.7.4 Xn Interface 345 -- 13.7.5 NG-RAN Distributed Architecture 346 -- 13.7.5.1 F1 Interface Functions 347 -- 13.7.5.2 F1 Protocol Structure 347 -- 13.7.6 Radio Protocol Architecture 348 -- 13.7.6.1 User Plane 348 -- 13.7.7 NR Physical Channels and Modulation 350 -- 13.7.7.1 Physical-Layer Design Requirements 350 -- 13.7.7.2 Frame Structure and Physical Resources 352 -- 13.7.8 Frames and Subframes 353 -- 13.7.9 Physical Resources 354 -- 13.7.9.1 Resource Grid 354 -- 13.7.9.2 Resource Blocks 355 -- 13.7.10 Carrier Aggregation 356 -- 13.7.11 Uplink Physical Channels and Signals 356 -- 13.7.12 Downlink Physical Channels and Signals 357 -- 13.7.13 SS/PBCH Block 358 -- 13.7.14 Coding and Multiplexing 359 -- 13.7.15 NR Dual Connectivity 359 -- 13.7.16 E-UTRA and NR Multi-RAT Dual Connectivity 360 -- 13.7.16.1 Bearer Types for MR-DC Between LTE and NR 362 -- 13.7.16.2 MR-DC User-Plane Connectivity 363 -- 13.8 Summary 364 -- References 364 -- 14 Annex: Base-Station Site Solutions 367 -- 14.1 The Base-Station OBSAI Architecture 367.
14.1.1 Functional Modules 367 -- 14.1.2 Internal Interfaces 369 -- 14.1.3 RP3 Interface 369 -- 14.2 Common Public Radio Interface, CPRI 370 -- 14.3 SDR and Multiradio BTS 371 -- 14.4 Site Solution with OBSAI Type Base Stations 372 -- 14.4.1 C-RAN Site Solutions 374 -- References 375 -- Index 377.
Record Nr. UNINA-9910467004103321
Kukushkin Alexander  
Hoboken, New Jersey : , : John Wiley & Sons, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Introduction to mobile network engineering : GSM, 3G-WCDMA, LTE and the road to 5G / / by Alexander Kukushkin
Introduction to mobile network engineering : GSM, 3G-WCDMA, LTE and the road to 5G / / by Alexander Kukushkin
Autore Kukushkin Alexander
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, , 2018
Descrizione fisica 1 online resource (491 pages)
Disciplina 621.3845/6
Soggetto topico Mobile communication systems
Wireless metropolitan area networks
ISBN 1-119-48410-3
1-119-48422-7
1-119-48419-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Foreword xvii / /Acknowledgements xix -- Abbreviations xxi -- 1 Introduction 1 -- 2 Types of Mobile Network by Multiple-Access Scheme 3 -- 3 Cellular System 5 -- 3.1 Historical Background 5 -- 3.2 Cellular Concept 5 -- 3.3 Carrier-to-Interference Ratio 6 -- 3.4 Formation of Clusters 8 -- 3.5 Sectorization 9 -- 3.6 Frequency Allocation 10 -- 3.7 Trunking Effect 11 -- 3.8 Erlang Formulas 13 -- 3.9 Erlang B Formula 13 -- 3.10 Worked Examples 14 -- 3.10.1 Problem 1 14 -- 3.10.2 Problem 2 16 -- 3.10.3 Problem 3 16 -- 4 Radio Propagation 19 -- 4.1 Propagation Mechanisms 19 -- 4.1.1 Free-Space Propagation 19 -- 4.1.2 Propagation Models for Path Loss (Global Mean) Prediction 22 -- 5 Mobile Radio Channel 27 -- 5.1 Channel Characterization 28 -- 5.1.1 Narrowband Flat Channel 31 -- 5.1.2 Wideband Frequency Selective Channel 31 -- 5.1.3 Doppler Shift 34 -- 5.2 Worked Examples 36 -- 5.2.1 Problem 1 36 -- 5.2.2 Problem 2 36 -- 5.3 Fading 36 -- 5.3.1 Shadowing/Slow Fading 37 -- 5.3.2 Fast Fading/Rayleigh Fading 40 -- 5.4 Diversity to Mitigate Multipath Fading 42 -- 5.4.1 Space and Polarization Diversity 42 -- 5.5 Worked Examples 44 -- 5.5.1 Problem 1 44 -- 5.5.2 Problem 2 44 -- 5.5.3 Problem 3 45 -- 5.6 Receiver Noise Factor (Noise Figure) 45 -- 6 Radio Network Planning 49 -- 6.1 Generic Link Budget 49 -- 6.1.1 Receiver Sensitivity Level 50 -- 6.1.2 Design Level 50 -- 6.1.2.1 Rayleigh Fading Margin 51 -- 6.1.2.2 Lognormal Fading Margin 51 -- 6.1.2.3 Body Loss 51 -- 6.1.2.4 Car Penetration Loss 51 -- 6.1.2.5 Design Level 51 -- 6.1.2.6 Building Penetration Loss 52 -- 6.1.2.7 Outdoor-to-Indoor Design Level 52 -- 6.1.3 Power Link Budget 52 -- 6.1.4 Power Balance 53 -- 6.2 Worked Examples 56 -- 6.2.1 Problem 1 56 -- 6.2.2 Problem 2 57 -- 6.2.3 Problem 3 58 -- 7 Global System Mobile, GSM, 2G 59 -- 7.1 General Concept for GSM System Development 59 -- 7.2 GSM System Architecture 59 -- 7.2.1 Location Area Identity (LAI) 62 -- 7.2.2 The SIM Concept 63 -- 7.2.3 User Addressing in the GSM Network 63.
7.2.4 International Mobile Station Equipment Identity (IMEI) 63 -- 7.2.5 International Mobile Subscriber Identity (IMSI) 64 -- 7.2.6 Different Roles of MSISDN and IMSI 64 -- 7.2.7 Mobile Station Routing Number 64 -- 7.2.8 Calls to Mobile Terminals 65 -- 7.2.9 Temporary Mobile Subscriber Identity (TMSI) 66 -- 7.2.10 Security-Related Network Functions: Authentication and Encryption 66 -- 7.2.11 Call Security 67 -- 7.2.12 Operation and Maintenance Security 69 -- 7.3 Radio Specifications 69 -- 7.3.1 Spectrum Efficiency 69 -- 7.3.2 Access Technology 71 -- 7.3.3 MAHO and Measurements Performed by Mobile 72 -- 7.3.4 Time Slot and Burst 73 -- 7.3.4.1 Normal Burst 74 -- 7.3.4.2 Frequency Correction Burst (FB) 74 -- 7.3.4.3 Synchronization Burst 75 -- 7.3.4.4 Access Burst 75 -- 7.3.4.5 Dummy Burst 75 -- 7.3.5 GSM Adaptation to a Wideband Propagation Channel 76 -- 7.3.5.1 Training Sequence and Equalization 76 -- 7.3.5.2 The Channel Equalization 77 -- 7.3.5.3 Diversity Against Fast Fading 78 -- 7.3.5.4 Frequency Hopping 79 -- 7.4 Background for the Choice of Radio Parameters 81 -- 7.4.1 Guard Period, Timing Advance 83 -- 7.5 Communication Channels in GSM 84 -- 7.5.1 Traffic Channels (TCHs) 84 -- 7.5.2 Control Channels 85 -- 7.5.2.1 Common Control Channels 85 -- 7.5.2.2 Dedicated Control Channels 86 -- 7.6 Mapping the Logical Channels onto Physical Channels 86 -- 7.6.1 Frame Format 87 -- 7.6.2 Transmission of User Information: Fast Associated Control Channel 88 -- 7.6.2.1 Data Rates 88 -- 7.6.3 Signalling Multiframe, 51-Frame Multiframe 88 -- 7.6.4 Synchronization 89 -- 7.6.4.1 Frequency Synchronization 90 -- 7.6.4.2 Time Synchronization 90 -- 7.6.5 Signalling Procedures over the Air Interface 90 -- 7.6.5.1 Synchronization to the Base Station 90 -- 7.6.5.2 Registering With the Base Station 91 -- 7.6.5.3 Call Setup 91 -- 7.7 Signalling During a Call 93 -- 7.7.1 Measuring the Signal Levels from Adjacent Cells 93 -- 7.7.2 Handover 94 -- 7.7.2.1 Intra-Cell and Inter-Cell Handover 95.
7.7.2.2 Intra- and Inter-BSC Handover 95 -- 7.7.2.3 Intra- and Inter-MSC Handover 95 -- 7.7.2.4 Intra- and Inter-PLMN Handover 95 -- 7.7.2.5 Handover Triggering 95 -- 7.7.3 Power Control 96 -- 7.8 Signal Processing Chain 97 -- 7.8.1 Speech and Channel Coding 97 -- 7.8.2 Reordering and Interleaving of the TCH 99 -- 7.9 Estimating Required Signalling Capacity in the Cell 100 -- 7.9.1 SDCCH Configuration 100 -- 7.9.2 Worked Example 101 -- 7.9.2.1 Problem 1 101 -- References 102 -- 8 EGPRS: GPRS/EDGE 103 -- 8.1 GPRS Support Nodes 103 -- 8.2 GPRS Interfaces 104 -- 8.3 GPRS Procedures in Packet Call Setups 104 -- 8.4 GPRS Mobility Management 105 -- 8.4.1 Mobility Management States 106 -- 8.4.1.1 IDLE State 106 -- 8.4.1.2 READY State 106 -- 8.4.1.3 STANDBY State 106 -- 8.4.2 PDP Context Activation 107 -- 8.4.3 Location Management 108 -- 8.5 Layered Overview of the Radio Interface 108 -- 8.5.1 SNDP 108 -- 8.5.2 Layer Services 109 -- 8.5.3 Radio Link Layer 110 -- 8.5.3.1 RLC Block Structure 110 -- 8.5.4 GPRS Logical Channels 111 -- 8.5.5 Mapping to Physical GPRS Channels 111 -- 8.5.6 Channel Sharing 112 -- 8.5.6.1 Downlink Radio Channel 113 -- 8.5.6.2 Uplink Radio Channel 113 -- 8.5.7 TBF 113 -- 8.5.7.1 TBF Establishment 113 -- 8.5.7.2 DL TBF Establishment 113 -- 8.5.8 EGPRS Channel Coding and Modulation 15 -- 8.6 GPRS/GSM Territory in a Base-Station Transceiver 115 -- 8.6.1 PS Capacity in the Base Station/Cell 116 -- 8.7 Summary 118 -- References 119 -- 9 Third Generation Network (3G), UMTS 121 -- 9.1 The WCDMA Concept 123 -- 9.1.1 Spreading (Channelization) 124 -- 9.1.2 Scrambling 127 -- 9.1.3 Multiservice Capacity 128 -- 9.1.4 Power Control 129 -- 9.1.4.1 Open-Loop Power Control 130 -- 9.1.4.2 Outer-Loop Power Control 130 -- 9.1.5 Handover 132 -- 9.1.5.1 Softer Handover 132 -- 9.1.5.2 Other Handovers 134 -- 9.1.5.3 Compressed Mode 134 -- 9.1.6 RAKE Reception 135 -- 9.2 Major Parameters of 3G WCDMA Air Interface 136 -- 9.3 Spectrum Allocation for 3G WCDMA 136 -- 9.4 3G Services 138.
9.4.1 Bearer Service and QoS 138 -- 9.5 UMTS Reference Network Architecture and Interfaces 140 -- 9.5.1 The NodeB (Base Station) Functions in the 3G Network 141 -- 9.5.2 Role of the RNC in 3G Network 141 -- 9.6 Air-Interface Architecture and Processing 142 -- 9.6.1 Physical Layer (Layer 1) 144 -- 9.6.2 Medium Access Control (MAC) on Layer 2 144 -- 9.6.3 Radio Link Control (RLC) on Layer 2 145 -- 9.6.4 RRC on Layer 3 in the Control Plane 145 -- 9.7 Channels on the Air Interface 146 -- 9.7.1 Logical Channels 146 -- 9.7.2 Transport Channels 146 -- 9.7.2.1 Dedicated Transport Channel (DCH) 147 -- 9.7.2.2 Common Transport Channels 147 -- 9.7.3 Physical Channels and Physical Signals 148 -- 9.7.4 Parameters of the Transport Channel 148 -- 9.8 Physical-Layer Procedures 150 -- 9.8.1 Processing of Transport Blocks 151 -- 9.8.2 Spreading and Modulation 154 -- 9.8.3 Modulation Scheme in UTRAN FDD 155 -- 9.8.4 Composition of the Physical Channels 157 -- 9.8.4.1 Dedicated Physical Channel 157 -- 9.8.4.2 Common Downlink Physical Channels 160 -- 9.9 RRC States 162 -- 9.9.1 Idle Mode 162 -- 9.9.2 RRC Connected Mode 164 -- 9.9.3 RRC Connection Procedures 165 -- 9.9.4 RRC State Transition Cases 166 -- 9.10 RRM Functions 167 -- 9.10.1 Admission Control Principle 167 -- 9.10.2 Load/Congestion Control 168 -- 9.10.3 Code Management 168 -- 9.10.4 Packet Scheduling 168 -- 9.11 Initial Access to the Network 169 -- 9.12 Summary 170 -- References 171 -- 10 High-Speed Packet Data Access (HSPA) 173 -- 10.1 HSDPA, High-Speed Downlink Packet Data Access 173 -- 10.2 HSPA RRM Functions 175 -- 10.2.1 Channel-Dependent Scheduling for HS-DSCH 175 -- 10.2.2 Rate Control, Dynamic Resource Allocation, Adaptive Modulation and Coding 176 -- 10.2.3 Hybrid-ARQ with Soft Combining, HARQ 176 -- 10.2.4 Retransmission Mechanism in the NodeB 176 -- 10.2.5 Impact to Protocol Architecture 177 -- 10.2.6 HARQ Schemes 178 -- 10.3 MAC-hs and Physical-Layer Processing 181 -- 10.4 HSDPA Channels 182 -- 10.4.1 High-Speed Downlink Shared Channel (HS-DSCH) 182.
10.4.2 HSDPA Control Channels 183 -- 10.4.2.1 Fractional Downlink Power Control Channel 184 -- 10.4.3 HS-DSCH Link Adaptation 184 -- 10.5 HSUPA (Enhanced Uplink, E-DCH) 189 -- 10.5.1 Control Signalling 190 -- 10.5.2 Scheduling 190 -- 10.6 Air-Interface Dimensioning 192 -- 10.6.1 Input Parameters and Requirements 192 -- 10.6.2 Traffic Demand Estimation 193 -- 10.6.2.1 PS Data Services (Release 99) 193 -- 10.6.2.2 HSPA Data Services 193 -- 10.6.3 Standard Traffic Model 194 -- 10.6.4 Link Budgets 195 -- 10.6.4.1 Uplink Load Factor 196 -- 10.6.4.2 Downlink Load Factor 197 -- 10.6.4.3 Link Budget for R99 Bearers 198 -- 10.6.4.4 Link Budget for HSPA 199 -- 10.6.4.5 Results of Link Budget: Cell Range Calculation, Balancing UL with DL 199 -- 10.6.4.6 Link Budget for Common Pilot Channel Signal 200 -- 10.6.4.7 Link Budget Calculation for the Shared Release 99 and HSDPA Carriers 200 -- 10.6.5 Uplink Capacity Estimation 201 -- 10.6.5.1 Required Bandwidth and Load for Multiple Bearers with GOS Considerations 202 -- 10.6.5.2 Simplified Estimation of HSDPA Throughput Capacity 202 -- 10.7 Summary 203 -- References 204 -- 11 4G-Long Term Evolution (LTE) System 205 -- 11.1 Introduction 205 -- 11.2 Architecture of an Evolved Packet System 206 -- 11.3 LTE Integration with Existing 2G/3G Network 207 -- 11.3.1 EPS Reference Points and Interfaces 208 -- 11.4 E-UTRAN Interfaces 209 -- 11.5 User Equipment 210 -- 11.5.1 LTE UE Category 210 -- 11.6 QoS in LTE 211 -- 11.7 LTE Security 212 -- 11.8 LTE Mobility 214 -- 11.8.1 Idle Mode Mobility 214 -- 11.8.2 ECM-CONNECTED Mode Mobility 215 -- 11.8.3 Mobility Anchor 216 -- 11.8.4 Inter-eNB Handover 216 -- 11.8.5 3GPP Inter-RAT Handover 218 -- 11.8.6 Differences in E-UTRAN and UTRAN Mobility 218 -- 11.9 LTE Radio Interface 219 -- 11.10 Principle of OFDM 220 -- 11.11 OFDM Implementation using IFFT/FFT Processing 223 -- 11.12 Cyclic Prefix 223 -- 11.13 Channel Estimation and Reference Symbols 225 -- 11.14 OFDM Subcarrier Spacing 227.
11.15 Output RF Spectrum Emissions 227 -- 11.16 LTE Multiple-Access Scheme, OFDMA 228 -- 11.17 Single-Carrier FDMA (SC-FDMA) 229 -- 11.18 OFDMA versus SC-FDMA Operation 230 -- 11.19 SC-FDMA Receiver 231 -- 11.20 User Multiplexing with DFTS-OFDM 231 -- 11.21 MIMO Techniques 232 -- 11.21.1 Precoding 234 -- 11.21.2 Cyclic Delay Diversity (CDD) 236 -- 11.22 Link Adaptation and Frequency Domain Packet Scheduling 237 -- 11.23 Radio Protocol Architecture 238 -- 11.23.1 User Plane 239 -- 11.23.2 Control Plane 239 -- 11.23.3 Scheduler 240 -- 11.23.4 Logical and Transport Channels 240 -- 11.23.5 Physical Layer 242 -- 11.23.6 RRC State Machine 244 -- 11.23.7 Time-Frequency Structure of the LTE FDD Physical Layer 244 -- 11.24 Downlink Physical Layer Processing 248 -- 11.24.1 Multiplexing and Channel Coding for Downlink Transport Channels 248 -- 11.24.2 CRC Computation and Attachment to the Transport Block 248 -- 11.24.3 Code Block Segmentation and Code Block CRC Attachment 249 -- 11.24.4 Channel Coding 249 -- 11.24.5 Rate Matching for Turbo Coded Transport Channels 249 -- 11.24.6 Downlink Control Information Coding 250 -- 11.24.7 Physical Channel Processing 250 -- 11.24.7.1 Bit-Level Scrambling 251 -- 11.24.7.2 Data Modulation 251 -- 11.24.7.3 Layer Mapping 252 -- 11.24.7.4 Precoding 252 -- 11.24.7.5 Mapping to Resource Elements 255 -- 11.24.7.6 Downlink Reference Signals 256 -- 11.25 Downlink Control Channels 258 -- 11.25.1 Structure of the Synchronization Channel 258 -- 11.25.2 Time-Domain Position of Synchronization Signals 259 -- 11.25.3 Frequency Domain Structure of Synchronization Signals 259 -- 11.25.3.1 PSS Structure 259 -- 11.25.3.2 SSS Structure 260 -- 11.25.4 PBCH 260 -- 11.25.5 Physical Control Format Indicator Channel: PCFICH 262 -- 11.25.6 PDCCH 263 -- 11.25.7 PHICH, Physical Hybrid-ARQ Indicator Channel 264 -- 11.26 Mapping the Control Channels to Downlink Transmission Resources 264 -- 11.27 Uplink Control Signalling 264 -- 11.27.1 Processing of the Uplink Shared Transport Channel 266.
11.27.2 Channel Coding of Control Information 266 -- 11.27.3 Multiplexing and Channel Interleaving 266 -- 11.27.4 Processing for Physical Uplink Shared Channel 268 -- 11.27.5 Physical Uplink Control Channel, PUCCH 269 -- 11.27.6 Multiplexing of UEs Within a PUCCH 269 -- 11.27.7 Physical Random Access Channel (PRACH) 270 -- 11.28 Uplink Reference Signals 271 -- 11.28.1 Mapping of Reference Signals to the Uplink Frame Structure 272 -- 11.29 Physical-Layer Procedures 273 -- 11.29.1 Cell Search 273 -- 11.29.2 Random Access Procedure 274 -- 11.29.3 Link Adaptation 276 -- 11.29.4 Power Control 277 -- 11.29.5 Paging 278 -- 11.29.6 HARQ 278 -- 11.30 LTE Radio Dimensioning 279 -- 11.30.1 LTE Coverage Dimensioning: Link Budget 280 -- 11.30.1.1 Physical-Layer Overhead Factors 281 -- 11.30.1.2 Multi-Antenna Systems 284 -- 11.30.1.3 Required SINR 285 -- 11.30.1.4 Link Budget Margins 285 -- 11.30.1.5 Interference Margin 285 -- 11.30.1.6 Maximum Allowable Path Loss (MAPL) 287 -- 11.30.1.7 Required SINR 288 -- 11.30.2 Cell Range and Cell Capacity 288 -- 11.31 Summary 289 -- References 290 -- 12 LTE-A 293 -- 12.1 Carrier Aggregation 296 -- 12.2 Enhanced MIMO 300 -- 12.3 Coordinated Multi-Point Operation (CoMP) 303 -- 12.3.1 CoMP Categories 304 -- 12.3.2 Downlink CoMP 306 -- 12.3.3 Uplink CoMP 307 -- 12.4 Relay Nodes 309 -- 12.4.1 Relay Radio Access 309 -- 12.4.2 Relay Architecture 311 -- 12.4.3 Resource Assignment for DeNB-RN Link in a Type 1 Relay 314 -- 12.5 Enhanced Physical Downlink Control Channel (E-PDCCH) 315 -- 12.6 Downlink Multiuser Superposition, MUST 315 -- 12.7 Summary of LTE-A Features 317 -- References 317 -- 13 Further Development for the Fifth Generation 319 -- 13.1 Overall Operational Requirements for a 5G Network System 320 -- 13.2 Device Requirements 320 -- 13.3 Capabilities of 5G 321 -- 13.4 Spectrum Consideration 321 -- 13.5 5G Technology Components 322 -- 13.5.1 Technologies to Enhance the Radio Interface 322 -- 13.5.1.1 Advanced Modulation-and-Coding Schemes 323.
13.5.1.2 Non-Orthogonal Multiple Access (NOMA) 323 -- 13.5.1.3 Active Antenna System (AAS) 326 -- 13.5.1.4 3D Beamforming and Multiuser MIMO (MU-MIMO) 327 -- 13.5.1.5 Massive MIMO 328 -- 13.5.1.6 Full Duplex Mode 329 -- 13.5.1.7 Self-Backhauling 330 -- 13.5.2 Technologies to Enhance Network Architectures 331 -- 13.5.2.1 Software-Defined Network 332 -- 13.5.2.2 Cloud RAN 332 -- 13.5.2.3 Network Slicing 332 -- 13.5.2.4 Self-Organized Network, SON 334 -- 13.6 5G System Architecture (Release 15) 335 -- 13.6.1 General Concepts 335 -- 13.6.2 Architecture Reference Model 335 -- 13.6.3 Network Slicing Support 338 -- 13.6.3.1 General Framework 338 -- 13.6.3.2 Network Slice Selection Assistance Information (NSSAI) 338 -- 13.6.3.3 Selection of a Serving AMF Supporting the Network Slices 339 -- 13.6.3.4 UE Context Handling 340 -- 13.7 New Radio (NR) 341 -- 13.7.1 NG-RAN Architecture 341 -- 13.7.2 Functional Split 342 -- 13.7.3 Network Interfaces 343 -- 13.7.3.1 NG Interface 343 -- 13.7.4 Xn Interface 345 -- 13.7.5 NG-RAN Distributed Architecture 346 -- 13.7.5.1 F1 Interface Functions 347 -- 13.7.5.2 F1 Protocol Structure 347 -- 13.7.6 Radio Protocol Architecture 348 -- 13.7.6.1 User Plane 348 -- 13.7.7 NR Physical Channels and Modulation 350 -- 13.7.7.1 Physical-Layer Design Requirements 350 -- 13.7.7.2 Frame Structure and Physical Resources 352 -- 13.7.8 Frames and Subframes 353 -- 13.7.9 Physical Resources 354 -- 13.7.9.1 Resource Grid 354 -- 13.7.9.2 Resource Blocks 355 -- 13.7.10 Carrier Aggregation 356 -- 13.7.11 Uplink Physical Channels and Signals 356 -- 13.7.12 Downlink Physical Channels and Signals 357 -- 13.7.13 SS/PBCH Block 358 -- 13.7.14 Coding and Multiplexing 359 -- 13.7.15 NR Dual Connectivity 359 -- 13.7.16 E-UTRA and NR Multi-RAT Dual Connectivity 360 -- 13.7.16.1 Bearer Types for MR-DC Between LTE and NR 362 -- 13.7.16.2 MR-DC User-Plane Connectivity 363 -- 13.8 Summary 364 -- References 364 -- 14 Annex: Base-Station Site Solutions 367 -- 14.1 The Base-Station OBSAI Architecture 367.
14.1.1 Functional Modules 367 -- 14.1.2 Internal Interfaces 369 -- 14.1.3 RP3 Interface 369 -- 14.2 Common Public Radio Interface, CPRI 370 -- 14.3 SDR and Multiradio BTS 371 -- 14.4 Site Solution with OBSAI Type Base Stations 372 -- 14.4.1 C-RAN Site Solutions 374 -- References 375 -- Index 377.
Record Nr. UNINA-9910537097603321
Kukushkin Alexander  
Hoboken, New Jersey : , : John Wiley & Sons, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Introduction to mobile network engineering : GSM, 3G-WCDMA, LTE and the road to 5G / / by Alexander Kukushkin
Introduction to mobile network engineering : GSM, 3G-WCDMA, LTE and the road to 5G / / by Alexander Kukushkin
Autore Kukushkin Alexander
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, , 2018
Descrizione fisica 1 online resource (491 pages)
Disciplina 621.3845/6
Soggetto topico Mobile communication systems
Wireless metropolitan area networks
ISBN 1-119-48410-3
1-119-48422-7
1-119-48419-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Foreword xvii / /Acknowledgements xix -- Abbreviations xxi -- 1 Introduction 1 -- 2 Types of Mobile Network by Multiple-Access Scheme 3 -- 3 Cellular System 5 -- 3.1 Historical Background 5 -- 3.2 Cellular Concept 5 -- 3.3 Carrier-to-Interference Ratio 6 -- 3.4 Formation of Clusters 8 -- 3.5 Sectorization 9 -- 3.6 Frequency Allocation 10 -- 3.7 Trunking Effect 11 -- 3.8 Erlang Formulas 13 -- 3.9 Erlang B Formula 13 -- 3.10 Worked Examples 14 -- 3.10.1 Problem 1 14 -- 3.10.2 Problem 2 16 -- 3.10.3 Problem 3 16 -- 4 Radio Propagation 19 -- 4.1 Propagation Mechanisms 19 -- 4.1.1 Free-Space Propagation 19 -- 4.1.2 Propagation Models for Path Loss (Global Mean) Prediction 22 -- 5 Mobile Radio Channel 27 -- 5.1 Channel Characterization 28 -- 5.1.1 Narrowband Flat Channel 31 -- 5.1.2 Wideband Frequency Selective Channel 31 -- 5.1.3 Doppler Shift 34 -- 5.2 Worked Examples 36 -- 5.2.1 Problem 1 36 -- 5.2.2 Problem 2 36 -- 5.3 Fading 36 -- 5.3.1 Shadowing/Slow Fading 37 -- 5.3.2 Fast Fading/Rayleigh Fading 40 -- 5.4 Diversity to Mitigate Multipath Fading 42 -- 5.4.1 Space and Polarization Diversity 42 -- 5.5 Worked Examples 44 -- 5.5.1 Problem 1 44 -- 5.5.2 Problem 2 44 -- 5.5.3 Problem 3 45 -- 5.6 Receiver Noise Factor (Noise Figure) 45 -- 6 Radio Network Planning 49 -- 6.1 Generic Link Budget 49 -- 6.1.1 Receiver Sensitivity Level 50 -- 6.1.2 Design Level 50 -- 6.1.2.1 Rayleigh Fading Margin 51 -- 6.1.2.2 Lognormal Fading Margin 51 -- 6.1.2.3 Body Loss 51 -- 6.1.2.4 Car Penetration Loss 51 -- 6.1.2.5 Design Level 51 -- 6.1.2.6 Building Penetration Loss 52 -- 6.1.2.7 Outdoor-to-Indoor Design Level 52 -- 6.1.3 Power Link Budget 52 -- 6.1.4 Power Balance 53 -- 6.2 Worked Examples 56 -- 6.2.1 Problem 1 56 -- 6.2.2 Problem 2 57 -- 6.2.3 Problem 3 58 -- 7 Global System Mobile, GSM, 2G 59 -- 7.1 General Concept for GSM System Development 59 -- 7.2 GSM System Architecture 59 -- 7.2.1 Location Area Identity (LAI) 62 -- 7.2.2 The SIM Concept 63 -- 7.2.3 User Addressing in the GSM Network 63.
7.2.4 International Mobile Station Equipment Identity (IMEI) 63 -- 7.2.5 International Mobile Subscriber Identity (IMSI) 64 -- 7.2.6 Different Roles of MSISDN and IMSI 64 -- 7.2.7 Mobile Station Routing Number 64 -- 7.2.8 Calls to Mobile Terminals 65 -- 7.2.9 Temporary Mobile Subscriber Identity (TMSI) 66 -- 7.2.10 Security-Related Network Functions: Authentication and Encryption 66 -- 7.2.11 Call Security 67 -- 7.2.12 Operation and Maintenance Security 69 -- 7.3 Radio Specifications 69 -- 7.3.1 Spectrum Efficiency 69 -- 7.3.2 Access Technology 71 -- 7.3.3 MAHO and Measurements Performed by Mobile 72 -- 7.3.4 Time Slot and Burst 73 -- 7.3.4.1 Normal Burst 74 -- 7.3.4.2 Frequency Correction Burst (FB) 74 -- 7.3.4.3 Synchronization Burst 75 -- 7.3.4.4 Access Burst 75 -- 7.3.4.5 Dummy Burst 75 -- 7.3.5 GSM Adaptation to a Wideband Propagation Channel 76 -- 7.3.5.1 Training Sequence and Equalization 76 -- 7.3.5.2 The Channel Equalization 77 -- 7.3.5.3 Diversity Against Fast Fading 78 -- 7.3.5.4 Frequency Hopping 79 -- 7.4 Background for the Choice of Radio Parameters 81 -- 7.4.1 Guard Period, Timing Advance 83 -- 7.5 Communication Channels in GSM 84 -- 7.5.1 Traffic Channels (TCHs) 84 -- 7.5.2 Control Channels 85 -- 7.5.2.1 Common Control Channels 85 -- 7.5.2.2 Dedicated Control Channels 86 -- 7.6 Mapping the Logical Channels onto Physical Channels 86 -- 7.6.1 Frame Format 87 -- 7.6.2 Transmission of User Information: Fast Associated Control Channel 88 -- 7.6.2.1 Data Rates 88 -- 7.6.3 Signalling Multiframe, 51-Frame Multiframe 88 -- 7.6.4 Synchronization 89 -- 7.6.4.1 Frequency Synchronization 90 -- 7.6.4.2 Time Synchronization 90 -- 7.6.5 Signalling Procedures over the Air Interface 90 -- 7.6.5.1 Synchronization to the Base Station 90 -- 7.6.5.2 Registering With the Base Station 91 -- 7.6.5.3 Call Setup 91 -- 7.7 Signalling During a Call 93 -- 7.7.1 Measuring the Signal Levels from Adjacent Cells 93 -- 7.7.2 Handover 94 -- 7.7.2.1 Intra-Cell and Inter-Cell Handover 95.
7.7.2.2 Intra- and Inter-BSC Handover 95 -- 7.7.2.3 Intra- and Inter-MSC Handover 95 -- 7.7.2.4 Intra- and Inter-PLMN Handover 95 -- 7.7.2.5 Handover Triggering 95 -- 7.7.3 Power Control 96 -- 7.8 Signal Processing Chain 97 -- 7.8.1 Speech and Channel Coding 97 -- 7.8.2 Reordering and Interleaving of the TCH 99 -- 7.9 Estimating Required Signalling Capacity in the Cell 100 -- 7.9.1 SDCCH Configuration 100 -- 7.9.2 Worked Example 101 -- 7.9.2.1 Problem 1 101 -- References 102 -- 8 EGPRS: GPRS/EDGE 103 -- 8.1 GPRS Support Nodes 103 -- 8.2 GPRS Interfaces 104 -- 8.3 GPRS Procedures in Packet Call Setups 104 -- 8.4 GPRS Mobility Management 105 -- 8.4.1 Mobility Management States 106 -- 8.4.1.1 IDLE State 106 -- 8.4.1.2 READY State 106 -- 8.4.1.3 STANDBY State 106 -- 8.4.2 PDP Context Activation 107 -- 8.4.3 Location Management 108 -- 8.5 Layered Overview of the Radio Interface 108 -- 8.5.1 SNDP 108 -- 8.5.2 Layer Services 109 -- 8.5.3 Radio Link Layer 110 -- 8.5.3.1 RLC Block Structure 110 -- 8.5.4 GPRS Logical Channels 111 -- 8.5.5 Mapping to Physical GPRS Channels 111 -- 8.5.6 Channel Sharing 112 -- 8.5.6.1 Downlink Radio Channel 113 -- 8.5.6.2 Uplink Radio Channel 113 -- 8.5.7 TBF 113 -- 8.5.7.1 TBF Establishment 113 -- 8.5.7.2 DL TBF Establishment 113 -- 8.5.8 EGPRS Channel Coding and Modulation 15 -- 8.6 GPRS/GSM Territory in a Base-Station Transceiver 115 -- 8.6.1 PS Capacity in the Base Station/Cell 116 -- 8.7 Summary 118 -- References 119 -- 9 Third Generation Network (3G), UMTS 121 -- 9.1 The WCDMA Concept 123 -- 9.1.1 Spreading (Channelization) 124 -- 9.1.2 Scrambling 127 -- 9.1.3 Multiservice Capacity 128 -- 9.1.4 Power Control 129 -- 9.1.4.1 Open-Loop Power Control 130 -- 9.1.4.2 Outer-Loop Power Control 130 -- 9.1.5 Handover 132 -- 9.1.5.1 Softer Handover 132 -- 9.1.5.2 Other Handovers 134 -- 9.1.5.3 Compressed Mode 134 -- 9.1.6 RAKE Reception 135 -- 9.2 Major Parameters of 3G WCDMA Air Interface 136 -- 9.3 Spectrum Allocation for 3G WCDMA 136 -- 9.4 3G Services 138.
9.4.1 Bearer Service and QoS 138 -- 9.5 UMTS Reference Network Architecture and Interfaces 140 -- 9.5.1 The NodeB (Base Station) Functions in the 3G Network 141 -- 9.5.2 Role of the RNC in 3G Network 141 -- 9.6 Air-Interface Architecture and Processing 142 -- 9.6.1 Physical Layer (Layer 1) 144 -- 9.6.2 Medium Access Control (MAC) on Layer 2 144 -- 9.6.3 Radio Link Control (RLC) on Layer 2 145 -- 9.6.4 RRC on Layer 3 in the Control Plane 145 -- 9.7 Channels on the Air Interface 146 -- 9.7.1 Logical Channels 146 -- 9.7.2 Transport Channels 146 -- 9.7.2.1 Dedicated Transport Channel (DCH) 147 -- 9.7.2.2 Common Transport Channels 147 -- 9.7.3 Physical Channels and Physical Signals 148 -- 9.7.4 Parameters of the Transport Channel 148 -- 9.8 Physical-Layer Procedures 150 -- 9.8.1 Processing of Transport Blocks 151 -- 9.8.2 Spreading and Modulation 154 -- 9.8.3 Modulation Scheme in UTRAN FDD 155 -- 9.8.4 Composition of the Physical Channels 157 -- 9.8.4.1 Dedicated Physical Channel 157 -- 9.8.4.2 Common Downlink Physical Channels 160 -- 9.9 RRC States 162 -- 9.9.1 Idle Mode 162 -- 9.9.2 RRC Connected Mode 164 -- 9.9.3 RRC Connection Procedures 165 -- 9.9.4 RRC State Transition Cases 166 -- 9.10 RRM Functions 167 -- 9.10.1 Admission Control Principle 167 -- 9.10.2 Load/Congestion Control 168 -- 9.10.3 Code Management 168 -- 9.10.4 Packet Scheduling 168 -- 9.11 Initial Access to the Network 169 -- 9.12 Summary 170 -- References 171 -- 10 High-Speed Packet Data Access (HSPA) 173 -- 10.1 HSDPA, High-Speed Downlink Packet Data Access 173 -- 10.2 HSPA RRM Functions 175 -- 10.2.1 Channel-Dependent Scheduling for HS-DSCH 175 -- 10.2.2 Rate Control, Dynamic Resource Allocation, Adaptive Modulation and Coding 176 -- 10.2.3 Hybrid-ARQ with Soft Combining, HARQ 176 -- 10.2.4 Retransmission Mechanism in the NodeB 176 -- 10.2.5 Impact to Protocol Architecture 177 -- 10.2.6 HARQ Schemes 178 -- 10.3 MAC-hs and Physical-Layer Processing 181 -- 10.4 HSDPA Channels 182 -- 10.4.1 High-Speed Downlink Shared Channel (HS-DSCH) 182.
10.4.2 HSDPA Control Channels 183 -- 10.4.2.1 Fractional Downlink Power Control Channel 184 -- 10.4.3 HS-DSCH Link Adaptation 184 -- 10.5 HSUPA (Enhanced Uplink, E-DCH) 189 -- 10.5.1 Control Signalling 190 -- 10.5.2 Scheduling 190 -- 10.6 Air-Interface Dimensioning 192 -- 10.6.1 Input Parameters and Requirements 192 -- 10.6.2 Traffic Demand Estimation 193 -- 10.6.2.1 PS Data Services (Release 99) 193 -- 10.6.2.2 HSPA Data Services 193 -- 10.6.3 Standard Traffic Model 194 -- 10.6.4 Link Budgets 195 -- 10.6.4.1 Uplink Load Factor 196 -- 10.6.4.2 Downlink Load Factor 197 -- 10.6.4.3 Link Budget for R99 Bearers 198 -- 10.6.4.4 Link Budget for HSPA 199 -- 10.6.4.5 Results of Link Budget: Cell Range Calculation, Balancing UL with DL 199 -- 10.6.4.6 Link Budget for Common Pilot Channel Signal 200 -- 10.6.4.7 Link Budget Calculation for the Shared Release 99 and HSDPA Carriers 200 -- 10.6.5 Uplink Capacity Estimation 201 -- 10.6.5.1 Required Bandwidth and Load for Multiple Bearers with GOS Considerations 202 -- 10.6.5.2 Simplified Estimation of HSDPA Throughput Capacity 202 -- 10.7 Summary 203 -- References 204 -- 11 4G-Long Term Evolution (LTE) System 205 -- 11.1 Introduction 205 -- 11.2 Architecture of an Evolved Packet System 206 -- 11.3 LTE Integration with Existing 2G/3G Network 207 -- 11.3.1 EPS Reference Points and Interfaces 208 -- 11.4 E-UTRAN Interfaces 209 -- 11.5 User Equipment 210 -- 11.5.1 LTE UE Category 210 -- 11.6 QoS in LTE 211 -- 11.7 LTE Security 212 -- 11.8 LTE Mobility 214 -- 11.8.1 Idle Mode Mobility 214 -- 11.8.2 ECM-CONNECTED Mode Mobility 215 -- 11.8.3 Mobility Anchor 216 -- 11.8.4 Inter-eNB Handover 216 -- 11.8.5 3GPP Inter-RAT Handover 218 -- 11.8.6 Differences in E-UTRAN and UTRAN Mobility 218 -- 11.9 LTE Radio Interface 219 -- 11.10 Principle of OFDM 220 -- 11.11 OFDM Implementation using IFFT/FFT Processing 223 -- 11.12 Cyclic Prefix 223 -- 11.13 Channel Estimation and Reference Symbols 225 -- 11.14 OFDM Subcarrier Spacing 227.
11.15 Output RF Spectrum Emissions 227 -- 11.16 LTE Multiple-Access Scheme, OFDMA 228 -- 11.17 Single-Carrier FDMA (SC-FDMA) 229 -- 11.18 OFDMA versus SC-FDMA Operation 230 -- 11.19 SC-FDMA Receiver 231 -- 11.20 User Multiplexing with DFTS-OFDM 231 -- 11.21 MIMO Techniques 232 -- 11.21.1 Precoding 234 -- 11.21.2 Cyclic Delay Diversity (CDD) 236 -- 11.22 Link Adaptation and Frequency Domain Packet Scheduling 237 -- 11.23 Radio Protocol Architecture 238 -- 11.23.1 User Plane 239 -- 11.23.2 Control Plane 239 -- 11.23.3 Scheduler 240 -- 11.23.4 Logical and Transport Channels 240 -- 11.23.5 Physical Layer 242 -- 11.23.6 RRC State Machine 244 -- 11.23.7 Time-Frequency Structure of the LTE FDD Physical Layer 244 -- 11.24 Downlink Physical Layer Processing 248 -- 11.24.1 Multiplexing and Channel Coding for Downlink Transport Channels 248 -- 11.24.2 CRC Computation and Attachment to the Transport Block 248 -- 11.24.3 Code Block Segmentation and Code Block CRC Attachment 249 -- 11.24.4 Channel Coding 249 -- 11.24.5 Rate Matching for Turbo Coded Transport Channels 249 -- 11.24.6 Downlink Control Information Coding 250 -- 11.24.7 Physical Channel Processing 250 -- 11.24.7.1 Bit-Level Scrambling 251 -- 11.24.7.2 Data Modulation 251 -- 11.24.7.3 Layer Mapping 252 -- 11.24.7.4 Precoding 252 -- 11.24.7.5 Mapping to Resource Elements 255 -- 11.24.7.6 Downlink Reference Signals 256 -- 11.25 Downlink Control Channels 258 -- 11.25.1 Structure of the Synchronization Channel 258 -- 11.25.2 Time-Domain Position of Synchronization Signals 259 -- 11.25.3 Frequency Domain Structure of Synchronization Signals 259 -- 11.25.3.1 PSS Structure 259 -- 11.25.3.2 SSS Structure 260 -- 11.25.4 PBCH 260 -- 11.25.5 Physical Control Format Indicator Channel: PCFICH 262 -- 11.25.6 PDCCH 263 -- 11.25.7 PHICH, Physical Hybrid-ARQ Indicator Channel 264 -- 11.26 Mapping the Control Channels to Downlink Transmission Resources 264 -- 11.27 Uplink Control Signalling 264 -- 11.27.1 Processing of the Uplink Shared Transport Channel 266.
11.27.2 Channel Coding of Control Information 266 -- 11.27.3 Multiplexing and Channel Interleaving 266 -- 11.27.4 Processing for Physical Uplink Shared Channel 268 -- 11.27.5 Physical Uplink Control Channel, PUCCH 269 -- 11.27.6 Multiplexing of UEs Within a PUCCH 269 -- 11.27.7 Physical Random Access Channel (PRACH) 270 -- 11.28 Uplink Reference Signals 271 -- 11.28.1 Mapping of Reference Signals to the Uplink Frame Structure 272 -- 11.29 Physical-Layer Procedures 273 -- 11.29.1 Cell Search 273 -- 11.29.2 Random Access Procedure 274 -- 11.29.3 Link Adaptation 276 -- 11.29.4 Power Control 277 -- 11.29.5 Paging 278 -- 11.29.6 HARQ 278 -- 11.30 LTE Radio Dimensioning 279 -- 11.30.1 LTE Coverage Dimensioning: Link Budget 280 -- 11.30.1.1 Physical-Layer Overhead Factors 281 -- 11.30.1.2 Multi-Antenna Systems 284 -- 11.30.1.3 Required SINR 285 -- 11.30.1.4 Link Budget Margins 285 -- 11.30.1.5 Interference Margin 285 -- 11.30.1.6 Maximum Allowable Path Loss (MAPL) 287 -- 11.30.1.7 Required SINR 288 -- 11.30.2 Cell Range and Cell Capacity 288 -- 11.31 Summary 289 -- References 290 -- 12 LTE-A 293 -- 12.1 Carrier Aggregation 296 -- 12.2 Enhanced MIMO 300 -- 12.3 Coordinated Multi-Point Operation (CoMP) 303 -- 12.3.1 CoMP Categories 304 -- 12.3.2 Downlink CoMP 306 -- 12.3.3 Uplink CoMP 307 -- 12.4 Relay Nodes 309 -- 12.4.1 Relay Radio Access 309 -- 12.4.2 Relay Architecture 311 -- 12.4.3 Resource Assignment for DeNB-RN Link in a Type 1 Relay 314 -- 12.5 Enhanced Physical Downlink Control Channel (E-PDCCH) 315 -- 12.6 Downlink Multiuser Superposition, MUST 315 -- 12.7 Summary of LTE-A Features 317 -- References 317 -- 13 Further Development for the Fifth Generation 319 -- 13.1 Overall Operational Requirements for a 5G Network System 320 -- 13.2 Device Requirements 320 -- 13.3 Capabilities of 5G 321 -- 13.4 Spectrum Consideration 321 -- 13.5 5G Technology Components 322 -- 13.5.1 Technologies to Enhance the Radio Interface 322 -- 13.5.1.1 Advanced Modulation-and-Coding Schemes 323.
13.5.1.2 Non-Orthogonal Multiple Access (NOMA) 323 -- 13.5.1.3 Active Antenna System (AAS) 326 -- 13.5.1.4 3D Beamforming and Multiuser MIMO (MU-MIMO) 327 -- 13.5.1.5 Massive MIMO 328 -- 13.5.1.6 Full Duplex Mode 329 -- 13.5.1.7 Self-Backhauling 330 -- 13.5.2 Technologies to Enhance Network Architectures 331 -- 13.5.2.1 Software-Defined Network 332 -- 13.5.2.2 Cloud RAN 332 -- 13.5.2.3 Network Slicing 332 -- 13.5.2.4 Self-Organized Network, SON 334 -- 13.6 5G System Architecture (Release 15) 335 -- 13.6.1 General Concepts 335 -- 13.6.2 Architecture Reference Model 335 -- 13.6.3 Network Slicing Support 338 -- 13.6.3.1 General Framework 338 -- 13.6.3.2 Network Slice Selection Assistance Information (NSSAI) 338 -- 13.6.3.3 Selection of a Serving AMF Supporting the Network Slices 339 -- 13.6.3.4 UE Context Handling 340 -- 13.7 New Radio (NR) 341 -- 13.7.1 NG-RAN Architecture 341 -- 13.7.2 Functional Split 342 -- 13.7.3 Network Interfaces 343 -- 13.7.3.1 NG Interface 343 -- 13.7.4 Xn Interface 345 -- 13.7.5 NG-RAN Distributed Architecture 346 -- 13.7.5.1 F1 Interface Functions 347 -- 13.7.5.2 F1 Protocol Structure 347 -- 13.7.6 Radio Protocol Architecture 348 -- 13.7.6.1 User Plane 348 -- 13.7.7 NR Physical Channels and Modulation 350 -- 13.7.7.1 Physical-Layer Design Requirements 350 -- 13.7.7.2 Frame Structure and Physical Resources 352 -- 13.7.8 Frames and Subframes 353 -- 13.7.9 Physical Resources 354 -- 13.7.9.1 Resource Grid 354 -- 13.7.9.2 Resource Blocks 355 -- 13.7.10 Carrier Aggregation 356 -- 13.7.11 Uplink Physical Channels and Signals 356 -- 13.7.12 Downlink Physical Channels and Signals 357 -- 13.7.13 SS/PBCH Block 358 -- 13.7.14 Coding and Multiplexing 359 -- 13.7.15 NR Dual Connectivity 359 -- 13.7.16 E-UTRA and NR Multi-RAT Dual Connectivity 360 -- 13.7.16.1 Bearer Types for MR-DC Between LTE and NR 362 -- 13.7.16.2 MR-DC User-Plane Connectivity 363 -- 13.8 Summary 364 -- References 364 -- 14 Annex: Base-Station Site Solutions 367 -- 14.1 The Base-Station OBSAI Architecture 367.
14.1.1 Functional Modules 367 -- 14.1.2 Internal Interfaces 369 -- 14.1.3 RP3 Interface 369 -- 14.2 Common Public Radio Interface, CPRI 370 -- 14.3 SDR and Multiradio BTS 371 -- 14.4 Site Solution with OBSAI Type Base Stations 372 -- 14.4.1 C-RAN Site Solutions 374 -- References 375 -- Index 377.
Record Nr. UNINA-9910816003803321
Kukushkin Alexander  
Hoboken, New Jersey : , : John Wiley & Sons, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
ISO/IEC/IEEE International Standard . Part 3, Standard for Ethernet Amendment 10: Maintenance #14: Isolation : Telecommunications and exchange between information technology systems : Requirements for local and metropolitan area networks / / IEEE
ISO/IEC/IEEE International Standard . Part 3, Standard for Ethernet Amendment 10: Maintenance #14: Isolation : Telecommunications and exchange between information technology systems : Requirements for local and metropolitan area networks / / IEEE
Pubbl/distr/stampa New York, N.Y. : , : IEEE, , 2022
Descrizione fisica 1 online resource (134 pages)
Disciplina 004.6
Collana IEEE Std
Soggetto topico Wireless metropolitan area networks
ISBN 1-5044-8806-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti 8802-3
Record Nr. UNISA-996577921903316
New York, N.Y. : , : IEEE, , 2022
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Mobile WiMAX / / Edited by Kwang-Cheng Chen, J. Roberto B. de Marca
Mobile WiMAX / / Edited by Kwang-Cheng Chen, J. Roberto B. de Marca
Pubbl/distr/stampa Chichester, England ; , : John Wiley, , c2008
Descrizione fisica 1 online resource (401 p.)
Disciplina 621.384
Altri autori (Persone) ChenKwang-Cheng
MarcaJ. Roberto B. de
Collana Wiley - iee
Soggetto topico Wireless metropolitan area networks
Metropolitan area networks (Computer networks)
ISBN 1-281-30982-6
9786611309824
0-470-72393-9
0-470-72392-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contributors -- Preface -- 1 Introduction to MobileWiMAX (Longsong Lin, and Kwang-Cheng Chen) -- 1.1 IEEE 802.16 -- 1.2 IEEE 802.16 MAC -- 1.3 IEEE 802.16e Mobile WiMAX -- 1.4 Mobile WiMAX End-to-End Network Architecture -- References -- Part One Physical Layer Transmission -- 2 An Analysis of MIMO Techniques for MobileWiMAX Systems (Bertrand Muquet, Ezio Biglieri, Andrea Goldsmith, and Hikmet Sari) -- 2.1 Introduction -- 2.2 Multiple Antenna Systems -- 2.3 M Multiple Antennas in WiMAX Systems -- -- 2.4 Conclusion -- References -- 3 Mitigation of Inter-Cell Interference in MobileWiMAX (Jae-Heung Yeom and Yong-Hwan Lee) -- 3.1 Introduction -- 3.3 Combined Use of ICI Mitigations in Mobile WiMAX -- -- 3.4 New ICI Mitigation Strategy in m-WiMAX -- 3.5 Conclusion -- References -- 4 Overview of Rate Adaptation Algorithms and Simulation Environment Based on MIMO Technology in WiMAX Networks (Tsz Ho Chan, Chui Ying Cheung, Maode Ma and Mounir Hamdi) -- 4.1 Introduction -- 4.2 WiMAX Physical and MAC Layer Description -- 4.3 Research Issues on the MIMO-based Rate Adaptation Algorithms -- 4.4 Constructing a Practical Rate Adaptation Simulation Model for Mimo-Based WiMAX Systems -- 4.5 Conclusion -- References -- 5 Phase Noise Estimation in OFDMA Uplink Communications (Yi-Ching Liao, Chung-Kei Yu, I-Hsueh Lin and Kwang-Cheng Chen) -- 5.1 Introduction -- 5.2 Modeling of Phase Noise -- 5.3 Phase Noise in OFDM -- 5.4 Phase Noise in OFDMA -- 5.5 Conclusion -- References -- Part Two Medium Access Control and Network Architecture -- 6 OptimizingWiMAX MAC Layer Operations to Enhance Application End-to-End Performance (Xiangying Yang, Muthaiah Venkatachalam, and Mohanty Shantidev) -- 6.1 Introduction -- 6.2 Overview of WiMAX MAC features -- 6.3 Asymmetric Link Adaptation for TCP -- -- 6.4 Service-Class Specific Scheduling -- 6.5 Simulations -- 6.6 Other MAC Layer Optimization Techniques -- 6.7 Conclusion -- References 108 -- 7 A Novel Algorithm for Efficient Paging in MobileWiMAX (Mohanty Shantidev, Muthaiah Venkatachalam, and Xiangying Yang).
7.1 Introduction -- 7.2 Overview of Idle Mode and Paging Operation in Mobile WiMAX Networks -- -- 7.3 Proposed Paging Algorithm for Mobile WiMAX Networks -- -- 7.4 Performance Evaluation -- 7.5 Conclusion -- References -- 8 All-IP Network Architecture for MobileWiMAX (Nat Natarajan, Prakash Iyer, Muthaiah Venkatachalam, Anand Bedekar, and Eren Gonen) -- 8.1 Introduction -- 8.2 WiMAX Network Architecture Principles -- 8.3 Network Architecture -- 8.4 MS Session Control Procedures -- 8.5 Mobility Management -- 8.6 QoS and Policy Architecture -- 8.7 Network Discovery and Selection -- 8.8 Network Interoperability -- 8.9 Conclusion -- References -- Part Three Multi-hop Relay Networks -- 9 Aggregation and Tunneling in IEEE 802.16j Multi-hop Relay Networks (Zhifeng Tao, Koon Hoo Teo, and Jinyun Zhang) -- 9.1 Introduction -- 9.2 Background and Motivation -- 9.3 Tunneling and Aggregation -- 9.4 Performance Evaluation -- 9.5 Conclusion -- References -- 10 Resource Scheduling with Directional Antennas for Multi-hop Relay Networks in a Manhattan-like Environment (Shiang-Jiun Lin, Wern-Ho Sheen, I-Kang Fu, and Chia-Chi Huang) -- 10.1 Introduction -- 10.2 System Setup and Propagation Models -- 10.3 Resource Scheduling Methods -- 10.4 Numerical Results -- 10.5 Conclusion -- References -- 11 Efficient Radio Resource Deployment for MobileWiMAX with Multi-hop Relays 1(Yong Sun, Yan Q. Bian, Andrew R. Nix, and Joseph P. McGeehan) -- 11.1 Introduction -- 11.2 System Performance and Enhancement -- 11.3 Effective Efficiency of Multi-hop Relaying -- 11.4 Relay Efficiency without Radio Resource Sharing -- 11.5 Relay Efficiency with Radio Resource Sharing -- 11.6 Directional Distributed Relay Architecture -- 11.7 Case Study of Radio Resource Sharing -- 11.8 Conclusion -- References -- 12 Dimensioning Cellular Multi-hop WiMAX Networks (Christian Hoymann and Stephan Gobbels) -- 12.1 Dimensioning Cellular 802.16 Networks -- 12.2 Dimensioning Cellular Multi-hop 802.16 Networks -- References.
Part Four Multimedia Applications, Services, and Deployment -- 13 Cross-Layer End-to-End QoS for Scalable Video over MobileWiMAX (Jenq-Neng Hwang, Chih-Wei Huang, and Chih-Wei Chang) -- 13.1 Introduction -- 13.2 Critical End-System Techniques -- 13.3 Mobile WiMAX QoS Provisioning -- 13.4 The Integrated Cross-Layer System -- 13.5 Conclusion -- References -- 14 WiBro - A 2.3 GHz MobileWiMAX: System Design, Network Deployment, and Services (Hyunpyo Kim, Jaekon Lee, and Byeong Gi Lee) -- 14.1 Introduction -- 14.2 Mobile WiMAX Network -- 14.3 ACR (ASN-GW) System Design -- 14.4 RAS (BS) System Design -- 14.5 Access Network Deployment -- 14.6 Core Network Deployment -- 14.7 WiBro Services -- References -- 15 A New WiMAX Profile for DTV Return Channel and Wireless Access (Lu1s Geraldo Pedroso Meloni) -- 15.1 Introduction -- 15.2 A Brief History of the SBTVD-T -- 15.3 WiMAX as Return Channel for DTV -- 15.4 WiMAX-700 Advantages and RC Application -- 15.5 Network Architecture -- 15.6 WiMAX-700 Channelling -- 15.7 WiMAX-700 Capacity Simulation for Interactive DTV -- 15.8 Conclusion -- References -- 16 A Packetization Technique for D-Cinema Contents Multicasting over MetropolitanWireless Networks (Paolo Micanti, Giuseppe Baruffa, and Fabrizio Frescura) -- 16.1 Introduction -- 16.2 Technical Specifications for D-Cinema -- 16.3 Multicast Protocol Overview -- 16.4 System Architecture -- 16.5 Test Application and Results -- 16.6 Conclusion -- References -- 17 WiMAX Extension to Isolated Research Data Networks: The WEIRD System (Emiliano Guainella, Eugen Borcoci, Marcos Katz, Pedro Neves, Marilia Curado, Fausto Andreotti, and Enrico Angori) -- 17.1 Introduction -- 17.2 Novel Application Scenarios for WiMAX -- 17.3 Key Technologies -- 17.4 System Architecture -- 17.5 Validating Results: Four European Testbeds -- 17.6 Conclusion -- References -- 18 Business Model for a Mobile WiMAX Deployment in Belgium (Bart Lannoo, Sofie Verbrugge, Jan Van Ooteghem, Bruno Quinart, Marc Casteleyn, Didier Colle, Mario Pickavet, and Piet Demeester).
18.1 Introduction -- 18.2 Technical and Physical Aspects of Mobile WiMAX -- 18.3 Technical Model and Planning Tool -- 18.4 Business Model -- 18.5 Economic Results for a Mobile WiMAX Rollout in Belgium -- 18.6 Conclusion -- Acknowledgements -- References -- Index.
Record Nr. UNINA-9910145551603321
Chichester, England ; , : John Wiley, , c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mobile WiMAX / / Edited by Kwang-Cheng Chen, J. Roberto B. de Marca
Mobile WiMAX / / Edited by Kwang-Cheng Chen, J. Roberto B. de Marca
Pubbl/distr/stampa Chichester, England ; , : John Wiley, , c2008
Descrizione fisica 1 online resource (401 p.)
Disciplina 621.384
Altri autori (Persone) ChenKwang-Cheng
MarcaJ. Roberto B. de
Collana Wiley - iee
Soggetto topico Wireless metropolitan area networks
Metropolitan area networks (Computer networks)
ISBN 1-281-30982-6
9786611309824
0-470-72393-9
0-470-72392-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contributors -- Preface -- 1 Introduction to MobileWiMAX (Longsong Lin, and Kwang-Cheng Chen) -- 1.1 IEEE 802.16 -- 1.2 IEEE 802.16 MAC -- 1.3 IEEE 802.16e Mobile WiMAX -- 1.4 Mobile WiMAX End-to-End Network Architecture -- References -- Part One Physical Layer Transmission -- 2 An Analysis of MIMO Techniques for MobileWiMAX Systems (Bertrand Muquet, Ezio Biglieri, Andrea Goldsmith, and Hikmet Sari) -- 2.1 Introduction -- 2.2 Multiple Antenna Systems -- 2.3 M Multiple Antennas in WiMAX Systems -- -- 2.4 Conclusion -- References -- 3 Mitigation of Inter-Cell Interference in MobileWiMAX (Jae-Heung Yeom and Yong-Hwan Lee) -- 3.1 Introduction -- 3.3 Combined Use of ICI Mitigations in Mobile WiMAX -- -- 3.4 New ICI Mitigation Strategy in m-WiMAX -- 3.5 Conclusion -- References -- 4 Overview of Rate Adaptation Algorithms and Simulation Environment Based on MIMO Technology in WiMAX Networks (Tsz Ho Chan, Chui Ying Cheung, Maode Ma and Mounir Hamdi) -- 4.1 Introduction -- 4.2 WiMAX Physical and MAC Layer Description -- 4.3 Research Issues on the MIMO-based Rate Adaptation Algorithms -- 4.4 Constructing a Practical Rate Adaptation Simulation Model for Mimo-Based WiMAX Systems -- 4.5 Conclusion -- References -- 5 Phase Noise Estimation in OFDMA Uplink Communications (Yi-Ching Liao, Chung-Kei Yu, I-Hsueh Lin and Kwang-Cheng Chen) -- 5.1 Introduction -- 5.2 Modeling of Phase Noise -- 5.3 Phase Noise in OFDM -- 5.4 Phase Noise in OFDMA -- 5.5 Conclusion -- References -- Part Two Medium Access Control and Network Architecture -- 6 OptimizingWiMAX MAC Layer Operations to Enhance Application End-to-End Performance (Xiangying Yang, Muthaiah Venkatachalam, and Mohanty Shantidev) -- 6.1 Introduction -- 6.2 Overview of WiMAX MAC features -- 6.3 Asymmetric Link Adaptation for TCP -- -- 6.4 Service-Class Specific Scheduling -- 6.5 Simulations -- 6.6 Other MAC Layer Optimization Techniques -- 6.7 Conclusion -- References 108 -- 7 A Novel Algorithm for Efficient Paging in MobileWiMAX (Mohanty Shantidev, Muthaiah Venkatachalam, and Xiangying Yang).
7.1 Introduction -- 7.2 Overview of Idle Mode and Paging Operation in Mobile WiMAX Networks -- -- 7.3 Proposed Paging Algorithm for Mobile WiMAX Networks -- -- 7.4 Performance Evaluation -- 7.5 Conclusion -- References -- 8 All-IP Network Architecture for MobileWiMAX (Nat Natarajan, Prakash Iyer, Muthaiah Venkatachalam, Anand Bedekar, and Eren Gonen) -- 8.1 Introduction -- 8.2 WiMAX Network Architecture Principles -- 8.3 Network Architecture -- 8.4 MS Session Control Procedures -- 8.5 Mobility Management -- 8.6 QoS and Policy Architecture -- 8.7 Network Discovery and Selection -- 8.8 Network Interoperability -- 8.9 Conclusion -- References -- Part Three Multi-hop Relay Networks -- 9 Aggregation and Tunneling in IEEE 802.16j Multi-hop Relay Networks (Zhifeng Tao, Koon Hoo Teo, and Jinyun Zhang) -- 9.1 Introduction -- 9.2 Background and Motivation -- 9.3 Tunneling and Aggregation -- 9.4 Performance Evaluation -- 9.5 Conclusion -- References -- 10 Resource Scheduling with Directional Antennas for Multi-hop Relay Networks in a Manhattan-like Environment (Shiang-Jiun Lin, Wern-Ho Sheen, I-Kang Fu, and Chia-Chi Huang) -- 10.1 Introduction -- 10.2 System Setup and Propagation Models -- 10.3 Resource Scheduling Methods -- 10.4 Numerical Results -- 10.5 Conclusion -- References -- 11 Efficient Radio Resource Deployment for MobileWiMAX with Multi-hop Relays 1(Yong Sun, Yan Q. Bian, Andrew R. Nix, and Joseph P. McGeehan) -- 11.1 Introduction -- 11.2 System Performance and Enhancement -- 11.3 Effective Efficiency of Multi-hop Relaying -- 11.4 Relay Efficiency without Radio Resource Sharing -- 11.5 Relay Efficiency with Radio Resource Sharing -- 11.6 Directional Distributed Relay Architecture -- 11.7 Case Study of Radio Resource Sharing -- 11.8 Conclusion -- References -- 12 Dimensioning Cellular Multi-hop WiMAX Networks (Christian Hoymann and Stephan Gobbels) -- 12.1 Dimensioning Cellular 802.16 Networks -- 12.2 Dimensioning Cellular Multi-hop 802.16 Networks -- References.
Part Four Multimedia Applications, Services, and Deployment -- 13 Cross-Layer End-to-End QoS for Scalable Video over MobileWiMAX (Jenq-Neng Hwang, Chih-Wei Huang, and Chih-Wei Chang) -- 13.1 Introduction -- 13.2 Critical End-System Techniques -- 13.3 Mobile WiMAX QoS Provisioning -- 13.4 The Integrated Cross-Layer System -- 13.5 Conclusion -- References -- 14 WiBro - A 2.3 GHz MobileWiMAX: System Design, Network Deployment, and Services (Hyunpyo Kim, Jaekon Lee, and Byeong Gi Lee) -- 14.1 Introduction -- 14.2 Mobile WiMAX Network -- 14.3 ACR (ASN-GW) System Design -- 14.4 RAS (BS) System Design -- 14.5 Access Network Deployment -- 14.6 Core Network Deployment -- 14.7 WiBro Services -- References -- 15 A New WiMAX Profile for DTV Return Channel and Wireless Access (Lu1s Geraldo Pedroso Meloni) -- 15.1 Introduction -- 15.2 A Brief History of the SBTVD-T -- 15.3 WiMAX as Return Channel for DTV -- 15.4 WiMAX-700 Advantages and RC Application -- 15.5 Network Architecture -- 15.6 WiMAX-700 Channelling -- 15.7 WiMAX-700 Capacity Simulation for Interactive DTV -- 15.8 Conclusion -- References -- 16 A Packetization Technique for D-Cinema Contents Multicasting over MetropolitanWireless Networks (Paolo Micanti, Giuseppe Baruffa, and Fabrizio Frescura) -- 16.1 Introduction -- 16.2 Technical Specifications for D-Cinema -- 16.3 Multicast Protocol Overview -- 16.4 System Architecture -- 16.5 Test Application and Results -- 16.6 Conclusion -- References -- 17 WiMAX Extension to Isolated Research Data Networks: The WEIRD System (Emiliano Guainella, Eugen Borcoci, Marcos Katz, Pedro Neves, Marilia Curado, Fausto Andreotti, and Enrico Angori) -- 17.1 Introduction -- 17.2 Novel Application Scenarios for WiMAX -- 17.3 Key Technologies -- 17.4 System Architecture -- 17.5 Validating Results: Four European Testbeds -- 17.6 Conclusion -- References -- 18 Business Model for a Mobile WiMAX Deployment in Belgium (Bart Lannoo, Sofie Verbrugge, Jan Van Ooteghem, Bruno Quinart, Marc Casteleyn, Didier Colle, Mario Pickavet, and Piet Demeester).
18.1 Introduction -- 18.2 Technical and Physical Aspects of Mobile WiMAX -- 18.3 Technical Model and Planning Tool -- 18.4 Business Model -- 18.5 Economic Results for a Mobile WiMAX Rollout in Belgium -- 18.6 Conclusion -- Acknowledgements -- References -- Index.
Record Nr. UNINA-9910830834103321
Chichester, England ; , : John Wiley, , c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Modeling and dimensioning of mobile networks : from GSM to LTE / / Maciej Stasiak ... [et al.]
Modeling and dimensioning of mobile networks : from GSM to LTE / / Maciej Stasiak ... [et al.]
Autore Stasiak Maciej
Edizione [1st edition]
Pubbl/distr/stampa Chichester, West Sussex, UK : , : Wiley, , 2011
Descrizione fisica 1 online resource (341 p.)
Disciplina 004.6
621.38456
Altri autori (Persone) StasiakMaciej
G < WisniewskiArkadiusz
ZwierzykowskiPiotr
Soggetto topico Wireless communication systems
Mobile communication systems
Wireless metropolitan area networks
Computer networks - Scalability
Cell phone systems
ISBN 0-470-97599-7
1-282-88929-X
9786612889295
0-470-97603-9
0-470-97604-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto List of Figures -- List of Tables -- Preface -- Part I Standards for Mobile Networks -- 1 Global System for Mobile Communications -- 1.1 Introduction -- 1.2 System architecture -- 1.3 Time structure of the GSM system -- 1.4 Logical channels -- 1.5 High Speed Circuit Switched Data (HSCSD) -- 1.6 GPRS packet transmission -- 1.7 EDGE packet transmission -- 1.8 Traffic management mechanisms in cellular networks -- 2 Universal Mobile Telecommunications System -- 2.1 Introduction -- 2.2 Architecture of the system -- 2.3 Wideband access with WCDMA coding and multiplexing / essentials -- 2.4 Channels in the WCDMA radio interface -- 2.5 Modulation -- 2.6 Signal reception techniques -- 2.7 Radio resource management in the UMTS system -- 2.8 High-speed packet data transmission -- 2.9 Services -- 3 Long-Term Evolution -- 3.1 Introduction -- 3.2 System architecture -- 3.3 Transmission techniques in the LTE system -- 3.4 Channels in the radio interface of the LTE system -- 3.5 Radio resource management in LTE -- Part II Teletraffic Engineering for Mobile Networks -- 4 Basic Definitions and Terminology -- 4.1 Introduction -- 4.2 Call stream -- 4.3 Service stream -- 4.4 Markov processes -- 4.5 The concept of traffic -- 4.6 Quality of service in telecommunication systems -- 5 Basic Elements of Traffic Engineering used in Mobile Networks -- 5.1 Introduction -- 5.2 Erlang model -- 5.3 Engset model -- 5.4 Comments -- 6 Modeling of Systems with Single-Rate Overflow Traffic -- 6.1 Introduction -- 6.2 Basic information on overflow systems -- 6.3 Models of alternative groups -- 6.4 Equivalent groups -- 6.5 Modeling of overflow traffic in systems with finite number of traffic sources -- 6.6 Comments -- 7 Models of Links Carrying Multi-Service Traffic -- 7.1 Introduction -- 7.2 Multi-dimensional Erlang distribution -- 7.3 Full-availability group with multi-rate traffic -- 7.4 State-dependent systems -- 7.5 Systems with finite and infinite number of traffic sources -- 7.6 Limited-availability group.
7.7 Full-availability group with reservation -- 7.8 Full-availability group with threshold mechanism -- 7.9 Full-availability group with compression mechanism -- 7.10 Full-availability group with priorities -- 8 Modeling of Systems with Multi-Rate Overflow Traffic -- 8.1 Introduction -- 8.2 Single-service model of the group with overflow traffic -- 8.3 Dimensioning of alternative groups with multi-rate traffic -- 8.4 Multi-service model of the group with overflow traffic -- 8.5 Comments -- 9 Equivalent Bandwidth -- 9.1 ON/OFF Source -- 9.2 Markov Modulated Poisson Process -- 9.3 Interrupted Bernoulli Process -- 9.4 Comments -- 9.5 Self-similar traffic -- 9.6 Exemplary methods for determining equivalent bandwidth -- 9.7 Bandwidth discretization -- 10 Models of the Nodes in the Packet Network -- 10.1 Introduction -- 10.2 Little's law -- 10.3 Model of the M/M/1 system -- 10.4 Model of the M/M/1/N-1 system -- 10.5 Model of the M/M/m system -- 10.6 Model of the M/M/m/N system -- 10.7 Model of the M/G/1 system -- 10.8 M/D/1 system -- 10.9 Queueing systems with one service station and non-preemptive priorities -- 10.10 Model M/G/R PS -- Part III Application of Analytical Models for Mobile Networks -- 11 Modeling and Dimensioning of the Radio Interface -- 11.1 Modeling of resource allocations in the radio interface of mobile cellular networks -- 11.2 Cellular system with hard capacity carrying single-service traffic -- 11.3 Cellular system with soft capacity carrying single-service traffic -- 11.4 Cellular system with hard and soft capacity carrying a mixture of multiservice traffic streams -- 11.5 HSPA traffic in the radio interface of the UMTS network -- 11.6 Comments -- 12 Modeling and Dimensioning of the Iub interface -- 12.1 Introduction -- 12.2 Exemplary architecture of the Iub interface -- 12.3 Modeling of the Iub interface -- 12.4 Comments -- 13 Application of Multi-Rate Models for Modeling UMTS Networks -- 13.1 Introduction -- 13.2 Models of group of cells carrying multi-rate traffic.
13.3 Models of traffic overflow -- 13.4 Handover mechanisms -- 13.5 Comments -- Conclusion -- Appendix A -- Index.
Record Nr. UNINA-9910140907403321
Stasiak Maciej  
Chichester, West Sussex, UK : , : Wiley, , 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Modeling and dimensioning of mobile networks : from GSM to LTE / / Maciej Stasiak ... [et al.]
Modeling and dimensioning of mobile networks : from GSM to LTE / / Maciej Stasiak ... [et al.]
Autore Stasiak Maciej
Edizione [1st edition]
Pubbl/distr/stampa Chichester, West Sussex, UK : , : Wiley, , 2011
Descrizione fisica 1 online resource (341 p.)
Disciplina 004.6
621.38456
Altri autori (Persone) StasiakMaciej
GłąbowskiMariusz
WisniewskiArkadiusz
ZwierzykowskiPiotr
Soggetto topico Wireless communication systems
Mobile communication systems
Wireless metropolitan area networks
Computer networks - Scalability
Cell phone systems
ISBN 0-470-97599-7
1-282-88929-X
9786612889295
0-470-97603-9
0-470-97604-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto List of Figures -- List of Tables -- Preface -- Part I Standards for Mobile Networks -- 1 Global System for Mobile Communications -- 1.1 Introduction -- 1.2 System architecture -- 1.3 Time structure of the GSM system -- 1.4 Logical channels -- 1.5 High Speed Circuit Switched Data (HSCSD) -- 1.6 GPRS packet transmission -- 1.7 EDGE packet transmission -- 1.8 Traffic management mechanisms in cellular networks -- 2 Universal Mobile Telecommunications System -- 2.1 Introduction -- 2.2 Architecture of the system -- 2.3 Wideband access with WCDMA coding and multiplexing / essentials -- 2.4 Channels in the WCDMA radio interface -- 2.5 Modulation -- 2.6 Signal reception techniques -- 2.7 Radio resource management in the UMTS system -- 2.8 High-speed packet data transmission -- 2.9 Services -- 3 Long-Term Evolution -- 3.1 Introduction -- 3.2 System architecture -- 3.3 Transmission techniques in the LTE system -- 3.4 Channels in the radio interface of the LTE system -- 3.5 Radio resource management in LTE -- Part II Teletraffic Engineering for Mobile Networks -- 4 Basic Definitions and Terminology -- 4.1 Introduction -- 4.2 Call stream -- 4.3 Service stream -- 4.4 Markov processes -- 4.5 The concept of traffic -- 4.6 Quality of service in telecommunication systems -- 5 Basic Elements of Traffic Engineering used in Mobile Networks -- 5.1 Introduction -- 5.2 Erlang model -- 5.3 Engset model -- 5.4 Comments -- 6 Modeling of Systems with Single-Rate Overflow Traffic -- 6.1 Introduction -- 6.2 Basic information on overflow systems -- 6.3 Models of alternative groups -- 6.4 Equivalent groups -- 6.5 Modeling of overflow traffic in systems with finite number of traffic sources -- 6.6 Comments -- 7 Models of Links Carrying Multi-Service Traffic -- 7.1 Introduction -- 7.2 Multi-dimensional Erlang distribution -- 7.3 Full-availability group with multi-rate traffic -- 7.4 State-dependent systems -- 7.5 Systems with finite and infinite number of traffic sources -- 7.6 Limited-availability group.
7.7 Full-availability group with reservation -- 7.8 Full-availability group with threshold mechanism -- 7.9 Full-availability group with compression mechanism -- 7.10 Full-availability group with priorities -- 8 Modeling of Systems with Multi-Rate Overflow Traffic -- 8.1 Introduction -- 8.2 Single-service model of the group with overflow traffic -- 8.3 Dimensioning of alternative groups with multi-rate traffic -- 8.4 Multi-service model of the group with overflow traffic -- 8.5 Comments -- 9 Equivalent Bandwidth -- 9.1 ON/OFF Source -- 9.2 Markov Modulated Poisson Process -- 9.3 Interrupted Bernoulli Process -- 9.4 Comments -- 9.5 Self-similar traffic -- 9.6 Exemplary methods for determining equivalent bandwidth -- 9.7 Bandwidth discretization -- 10 Models of the Nodes in the Packet Network -- 10.1 Introduction -- 10.2 Little's law -- 10.3 Model of the M/M/1 system -- 10.4 Model of the M/M/1/N-1 system -- 10.5 Model of the M/M/m system -- 10.6 Model of the M/M/m/N system -- 10.7 Model of the M/G/1 system -- 10.8 M/D/1 system -- 10.9 Queueing systems with one service station and non-preemptive priorities -- 10.10 Model M/G/R PS -- Part III Application of Analytical Models for Mobile Networks -- 11 Modeling and Dimensioning of the Radio Interface -- 11.1 Modeling of resource allocations in the radio interface of mobile cellular networks -- 11.2 Cellular system with hard capacity carrying single-service traffic -- 11.3 Cellular system with soft capacity carrying single-service traffic -- 11.4 Cellular system with hard and soft capacity carrying a mixture of multiservice traffic streams -- 11.5 HSPA traffic in the radio interface of the UMTS network -- 11.6 Comments -- 12 Modeling and Dimensioning of the Iub interface -- 12.1 Introduction -- 12.2 Exemplary architecture of the Iub interface -- 12.3 Modeling of the Iub interface -- 12.4 Comments -- 13 Application of Multi-Rate Models for Modeling UMTS Networks -- 13.1 Introduction -- 13.2 Models of group of cells carrying multi-rate traffic.
13.3 Models of traffic overflow -- 13.4 Handover mechanisms -- 13.5 Comments -- Conclusion -- Appendix A -- Index.
Record Nr. UNINA-9910642660203321
Stasiak Maciej  
Chichester, West Sussex, UK : , : Wiley, , 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Modeling and dimensioning of mobile networks : from GSM to LTE / / Maciej Stasiak ... [et al.]
Modeling and dimensioning of mobile networks : from GSM to LTE / / Maciej Stasiak ... [et al.]
Autore Stasiak Maciej
Edizione [1st edition]
Pubbl/distr/stampa Chichester, West Sussex, UK : , : Wiley, , 2011
Descrizione fisica 1 online resource (341 p.)
Disciplina 004.6
621.38456
Altri autori (Persone) StasiakMaciej
GłąbowskiMariusz
WisniewskiArkadiusz
ZwierzykowskiPiotr
Soggetto topico Wireless communication systems
Mobile communication systems
Wireless metropolitan area networks
Computer networks - Scalability
Cell phone systems
ISBN 0-470-97599-7
1-282-88929-X
9786612889295
0-470-97603-9
0-470-97604-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto List of Figures -- List of Tables -- Preface -- Part I Standards for Mobile Networks -- 1 Global System for Mobile Communications -- 1.1 Introduction -- 1.2 System architecture -- 1.3 Time structure of the GSM system -- 1.4 Logical channels -- 1.5 High Speed Circuit Switched Data (HSCSD) -- 1.6 GPRS packet transmission -- 1.7 EDGE packet transmission -- 1.8 Traffic management mechanisms in cellular networks -- 2 Universal Mobile Telecommunications System -- 2.1 Introduction -- 2.2 Architecture of the system -- 2.3 Wideband access with WCDMA coding and multiplexing / essentials -- 2.4 Channels in the WCDMA radio interface -- 2.5 Modulation -- 2.6 Signal reception techniques -- 2.7 Radio resource management in the UMTS system -- 2.8 High-speed packet data transmission -- 2.9 Services -- 3 Long-Term Evolution -- 3.1 Introduction -- 3.2 System architecture -- 3.3 Transmission techniques in the LTE system -- 3.4 Channels in the radio interface of the LTE system -- 3.5 Radio resource management in LTE -- Part II Teletraffic Engineering for Mobile Networks -- 4 Basic Definitions and Terminology -- 4.1 Introduction -- 4.2 Call stream -- 4.3 Service stream -- 4.4 Markov processes -- 4.5 The concept of traffic -- 4.6 Quality of service in telecommunication systems -- 5 Basic Elements of Traffic Engineering used in Mobile Networks -- 5.1 Introduction -- 5.2 Erlang model -- 5.3 Engset model -- 5.4 Comments -- 6 Modeling of Systems with Single-Rate Overflow Traffic -- 6.1 Introduction -- 6.2 Basic information on overflow systems -- 6.3 Models of alternative groups -- 6.4 Equivalent groups -- 6.5 Modeling of overflow traffic in systems with finite number of traffic sources -- 6.6 Comments -- 7 Models of Links Carrying Multi-Service Traffic -- 7.1 Introduction -- 7.2 Multi-dimensional Erlang distribution -- 7.3 Full-availability group with multi-rate traffic -- 7.4 State-dependent systems -- 7.5 Systems with finite and infinite number of traffic sources -- 7.6 Limited-availability group.
7.7 Full-availability group with reservation -- 7.8 Full-availability group with threshold mechanism -- 7.9 Full-availability group with compression mechanism -- 7.10 Full-availability group with priorities -- 8 Modeling of Systems with Multi-Rate Overflow Traffic -- 8.1 Introduction -- 8.2 Single-service model of the group with overflow traffic -- 8.3 Dimensioning of alternative groups with multi-rate traffic -- 8.4 Multi-service model of the group with overflow traffic -- 8.5 Comments -- 9 Equivalent Bandwidth -- 9.1 ON/OFF Source -- 9.2 Markov Modulated Poisson Process -- 9.3 Interrupted Bernoulli Process -- 9.4 Comments -- 9.5 Self-similar traffic -- 9.6 Exemplary methods for determining equivalent bandwidth -- 9.7 Bandwidth discretization -- 10 Models of the Nodes in the Packet Network -- 10.1 Introduction -- 10.2 Little's law -- 10.3 Model of the M/M/1 system -- 10.4 Model of the M/M/1/N-1 system -- 10.5 Model of the M/M/m system -- 10.6 Model of the M/M/m/N system -- 10.7 Model of the M/G/1 system -- 10.8 M/D/1 system -- 10.9 Queueing systems with one service station and non-preemptive priorities -- 10.10 Model M/G/R PS -- Part III Application of Analytical Models for Mobile Networks -- 11 Modeling and Dimensioning of the Radio Interface -- 11.1 Modeling of resource allocations in the radio interface of mobile cellular networks -- 11.2 Cellular system with hard capacity carrying single-service traffic -- 11.3 Cellular system with soft capacity carrying single-service traffic -- 11.4 Cellular system with hard and soft capacity carrying a mixture of multiservice traffic streams -- 11.5 HSPA traffic in the radio interface of the UMTS network -- 11.6 Comments -- 12 Modeling and Dimensioning of the Iub interface -- 12.1 Introduction -- 12.2 Exemplary architecture of the Iub interface -- 12.3 Modeling of the Iub interface -- 12.4 Comments -- 13 Application of Multi-Rate Models for Modeling UMTS Networks -- 13.1 Introduction -- 13.2 Models of group of cells carrying multi-rate traffic.
13.3 Models of traffic overflow -- 13.4 Handover mechanisms -- 13.5 Comments -- Conclusion -- Appendix A -- Index.
Altri titoli varianti Modelling and dimensioning of mobile networks
Record Nr. UNINA-9910830637903321
Stasiak Maciej  
Chichester, West Sussex, UK : , : Wiley, , 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
WiMAX technology and network evolution / / edited by Kamran Etemad, Ming-Yee Lai
WiMAX technology and network evolution / / edited by Kamran Etemad, Ming-Yee Lai
Autore Etemad Kamran
Pubbl/distr/stampa [Piscataway, New Jersey] : , : IEEE Press, , c2010
Descrizione fisica 1 online resource (535 p.)
Disciplina 004.67
621.384
Altri autori (Persone) LaiMing <1952->
Collana The comsoc guides to communications technologies
Soggetto topico Wireless metropolitan area networks
IEEE 802.16 (Standard)
ISBN 1-283-03545-6
9786613035455
0-470-63301-8
0-470-63302-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- Contributors -- Acronyms -- 1 WiMAX Standardization Overview (Kamran Etemad andMing-Yee Lai) -- 1.1 Introduction -- 1.2 IEEE 802.16 Working Group Structure and Standards -- 1.3 WiMAX Forum Overview -- 1.4 WiMAX Technology High-Level Road Map -- 1.5 Summary -- 1.6 References -- 2 Overview of Mobile WiMAX Air Interface in Release 1.0 (Kamran Etemad, Hassan Yaghoobi, and Masoud Olfat) -- 2.1 Introduction -- 2.2 Overview of Mobile WiMAX PHY Layer (Release 1.0) -- 2.3 Overview of Mobile WiMAX MAC Layer (Release 1.0) -- 2.4 WiMAX Forum System and Certification Profiles in Release 1.0 -- 2.5 Summary -- 2.6 References -- 3 WiMAX Air Interface Enhancements in Release 1.5 (Kamran Etemad and Hassan Yaghoobi) -- 3.1 Introduction -- 3.2 Support for Frequency Division Duplexing (FDD HFDD) -- 3.3 Optional MIMO Enhancements -- 3.4 MAC Enhancements -- 3.5 System Profile and Certification Profiles in Release 1.5 -- 3.6 Summary -- 3.7 References -- 4 MIMO Technologies in WiMAX (Qinghua Li, Jianzhong (Charlie) Zhang, Peiying Zhu, Wonil Roh, and Xintian Eddie Lin) -- 4.1 Introduction -- 4.2 Single User MIMO -- 4.3 Multiuser MIMO -- 4.4 Distributed MIMO and Relay in IEEE 802.16j -- 4.5 Conclusions -- 4.6 References -- 5 Overview of IEEE 802.16m Radio Access Technology (Sassan Ahmadi) -- 5.1 Introduction to IEEE 802.16m -- 5.2 IEEE 802.16m System Requirements and Evaluation Methodology -- 5.3 IEEE 802.16m Reference Model and Protocol Structure -- 5.4 IEEE 802.16m Mobile Station State Diagram -- 5.5 Overview of IEEE 802.16m Physical Layer -- 5.6 Overview of the IEEE 802.16m MAC Layer -- 5.7 PHY and MAC Aspects of Multicarrier Operations -- 5.8 PHY and MAC Aspects of Multicast and Broadcast Services -- 5.9 Summary -- 5.10 References -- 6 Overview of WiMAX Network Architecture and Evolution (Kamran Etemad, Jicheol Lee, and Yong Chang) -- 6.1 Introduction -- 6.2 WiMAX Basic Network Reference Model -- 6.3 WiMAX Network Roadmap: Release 1.0, 1.5, 1.6, and 2.0 -- 6.4 Overview of Major Features in Release 1.0.
6.5 Overview of Major Features in Release 1.5 -- 6.6 Major Features in Network Release 1.6 -- 6.7 Comparison of Mobile WiMAX and 3GPP/SAE Network Architecture -- 6.8 Summary -- 6.9 References -- 7 Over-the-Air (OTA) Provisioning and Activation (Avishay Shraga) -- 7.1 Introduction -- 7.2 OTA High-Level Overview -- 7.3 WiMAX Network Architecture for OTA -- 7.4 OTA Protocol -- 7.5 OMADM -- 7.6 OTA Usage Model Examples -- 7.7 Summary -- 7.8 References -- 8 Mobility in WiMAX Networks (Shahab Sayeedi and Joseph R. Schumacher) -- 8.1 Introduction -- 8.2 Network Topology -- 8.3 Handover Modes -- 8.4 Scanning -- 8.5 Basic Handover Mechanics -- 8.6 WiMAX Network Support for Handovers (ASN Anchored Mobility) -- 8.7 Security Considerations -- 8.8 Seamless Handover -- 8.9 Handover Optimizations -- 8.10 Interaction with Other Features -- 8.11 Summary -- 8.12 References -- 9 WiMAX End-to-End Security Framework (Semyon B. Mizikovsky) -- 9.1 General Overview -- 9.2 WiMAX Security Requirements -- 9.3 End-to-End Security Architecture -- 9.4 Security Zones -- 9.5 Summary -- 9.6 References -- 10 Quality of Service (QoS) in WiMAX Networks (Mehdi Alasti and Behnam Neekzad) -- 10.1 Introduction -- 10.2 An Overview of QoS in Packet-Switched Networks -- 10.3 WiMAX QoS Architecture Overview -- 10.4 WiMAX QoS and Protocol Stack -- 10.5 WiMAX QoS Framework -- 10.6 WiMAX Policy Control and Charging (PCC) Framework -- 10.7 Improving WiMAX QoS Framework -- 10.8 Summary -- 10.9 References -- 11 Mobile WiMAX Integration with 3GPP and 3GPP2 Networks (Pouya Taaghol, Peretz Feder, and Ramana Isukapalli) -- 11.1 Introduction -- 11.2 WiMAX-3GPP Interworking -- 11.3 WiMAX-3GPP2 Interworking -- 11.4 WiMAX-IMS Interworking -- 11.5 Summary -- 11.6 References -- 12 Multicast and Broadcast Services in WiMAX Networks (Kamran Etemad and Limei Wang) -- 12.1 Introduction -- 12.2 Basic Terms, Requirements, and Use Cases -- 12.3 MAC and PHY Support for MBS -- 12.4 MCBCS Network Architecture -- 12.5 MCBCS Application-Layer Approach.
12.6 Summary -- 12.7 References -- 13 Location-Based Services in WiMAX Networks (Wayne Ballantyne, Muthaiah Venkatachalam, and Kamran Etemad) -- 13.1 Introduction -- 13.2 LBS Usage Models and Design Requirements -- 13.3 Review of Location Methods for Wireless Devices -- 13.4 WiMAX Network Reference Architecture for LBS -- 13.5 Summary -- 13.6 References -- 14 WiMAX Accounting (Avi Lior) -- 14.1 Introduction -- 14.2 Accounting Architecture -- 14.3 Accounting Concepts -- 14.4 Accounting Operations -- 14.5 Accounting at the Home Agent -- 14.6 Processing of Accounting Records in the Visited NSP -- 14.7 Processing of Accounting Records in the Home NSP -- 14.8 Error Handling by the AAA -- 14.9 Summary -- 14.10 References -- 15 WiMAX Roaming (John Dubois and Chirag Patel) -- 15.1 Introduction -- 15.2 WiMAX Roaming Business Drivers and Stakeholders -- 15.3 Related Standards and Forums Activities -- 15.4 WiMAX Roaming Model -- 15.5 WiMAX Roaming Agreement Overview -- 15.6 WiMAX Roaming Guideline Overview -- 15.7 WiMAX Roaming Interface Overview -- 15.8 Summary -- 15.9 References -- 16 WiMAX Network Management Framework (Joey Chou) -- 16.1 Introduction -- 16.2 WiMAX Forum Network Management -- 16.3 IEEE 802.16 Network Management -- 16.4 Self-Organizing Networks -- 16.5 Summary -- 16.6 References -- 17 Ethernet Services In WiMAX Networks (Maximilian Riegel) -- 17.1 Introduction -- 17.2 Ethernet Services -- 17.3 Basic Ethernet Services Standards -- 17.4 Ethernet-based Access Aggregation in DSL Networks -- 17.5 Mobile WiMAX Network Architecture -- 17.6 Interworking with DSL Networks -- 17.7 Summary -- 17.8 References -- 18 WiMAX System Performance (Bong-Ho Kim, Jungham Yun, and Yerang Hur) -- 18.1 Introduction -- 18.2 Design of the End-to-End Application Performance Simulation -- 18.3 Radio Performance -- 18.4 Subscriber and Application Profile -- 18.5 Network Performance -- 18.6 End-to-End Application Performance -- 18.7 Summary -- 18.8 References -- 19 Femtocells and Multihop Relays in Mobile WiMAX Deployments (Jerry Sydir, Shilpa Talwar, Rakesh Taori, and Shu-Ping Yȟ).
19.1 Introduction -- 19.2 Multitier Cellular Architecture -- 19.3 Femtocells -- 19.4 Relay -- 19.5 Summary -- 19.6 References -- 20 WiMAX Spectrum Requirements and Regulatory Landscape (Rez Arefi andJayne Stancavage) -- 20.1 Introduction -- 20.2 WiMAX Spectrum Requirements -- 20.3 Regional and International Regulations and Regulatory Bodies -- 20.4 WiMAX Spectrum Bands -- 20.5 Global Regulatory Landscape -- 20.6 Spectrum Sharing -- 20.7 Summary -- 20.8 References -- Index.
Record Nr. UNINA-9910133457003321
Etemad Kamran  
[Piscataway, New Jersey] : , : IEEE Press, , c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui