top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Basic concepts on 3D cell culture / / Cornelia Kasper, Dominik Egger, Antonina Lavrentieva, editors
Basic concepts on 3D cell culture / / Cornelia Kasper, Dominik Egger, Antonina Lavrentieva, editors
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (XV, 252 p. 88 illus., 83 illus. in color.)
Disciplina 571.638
Collana Learning Materials in Biosciences
Soggetto topico Cell culture
Cultiu cel·lular
Visualització tridimensional
Soggetto genere / forma Llibres electrònics
ISBN 3-030-66749-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Introduction to 3D cell culture -- Chapter 2. Lab equipment for 3D cell culture -- Chapter 3. A view from the cellular perspective -- Chapter 4. Biological, natural and synthetic 3D matrices -- Chapter 5. Hydrogels for 3D cell culture -- Chapter 6. Vascularization in 3D cell culture -- Chapter 7. Application of scaffold-free 3D models -- Chapter 8. 10. Microfluidic Systems and Organ (Human) on a Chip -- Chapter 9. 3D-Bioprinting -- Chapter 10. Non-destructive and label-free monitoring of 3D cell constructs.
Record Nr. UNINA-9910484853603321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biomedical visualisation . Volume 11 / / Paul Rea, editor
Biomedical visualisation . Volume 11 / / Paul Rea, editor
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (350 pages)
Disciplina 610.28
Collana Advances in experimental medicine and biology
Soggetto topico Biomedical engineering
Biotechnology
Computer vision
Enginyeria biomèdica
Imatges mèdiques
Visualització tridimensional
Biotecnologia
Soggetto genere / forma Llibres electrònics
ISBN 9783030877798
9783030877781
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgements -- About the Book -- Contents -- Editor and Contributors -- 1: Creating Interactive Three-Dimensional Applications to Visualise Novel Stent Grafts That Aid in the Treatment of Aortic Ane... -- 1.1 Introduction -- 1.2 Background -- 1.2.1 Aortic Aneurysm Background -- 1.2.1.1 Thoracic Aortic Aneurysms -- 1.2.1.2 Abdominal Aortic Aneurysms -- 1.2.2 Surgical Interventions for AAAs and TAAs -- 1.2.2.1 Open Surgical Repair and Endovascular Aneurysm Repair of AAAs -- 1.2.2.2 Open Surgical Repair and Endovascular Aneurysm Repair of TAAs -- 1.2.3 Potential of Medical Visualisations for Surgical Techniques -- 1.2.3.1 Imaging Modalities in a Healthcare Setting -- 1.2.3.2 Public Engagement for Medical Visualisation -- 1.3 Methods -- 1.3.1 Conceptual Development (Storyboard/Outline) -- 1.3.2 Digital 3D Content Production -- 1.3.2.1 Segmentation of the Aorta, Kidneys and Associated Vessels -- 1.3.2.2 Bifrost Visual Programming -- 1.3.2.2.1 Voxel Volume Remeshing Using Bifrost Graph Editor -- 1.3.2.3 Retopology and Sculpting -- 1.3.2.4 Modelling of the Heart -- 1.3.2.5 Modelling of Relay Endograft -- 1.3.2.6 Modelling of Fenestrated Anaconda Endograft -- 1.3.2.6.1 Wires and Stitching of Stent Graft -- 1.3.2.6.2 Stitches and Fine Details of Graft -- 1.3.2.6.3 Additional Stent Body Models -- 1.3.2.6.4 Deployment Devices -- 1.3.2.7 Texturing in Substance Painter -- 1.3.2.8 Informational Animations -- 1.3.2.8.1 Animations for the Fenestrated Anaconda Stent Graft -- 1.3.2.8.2 Animations for the Proximal Relay Stent Graft -- 1.3.2.8.3 Red Blood Cell Flow Animations -- 1.3.2.8.4 Post Processing -- 1.3.2.9 Application Development -- 1.3.2.9.1 Home Screen -- 1.3.2.9.2 Features Section -- 1.3.2.9.3 Clinical Performance and Deployment Sections -- 1.4 Results.
1.4.1 Outcomes from Evaluating the Finished Application with Clinical Professionals -- 1.5 Discussion -- 1.5.1 Discussion of Development Process -- 1.5.2 Discussion of Application Feedback -- 1.5.3 Benefits and Drawbacks of the Application/3D Visualisation Technique -- 1.5.4 Limitations -- 1.5.5 Further Development -- 1.6 Conclusion -- References -- 2: Using Confocal Microscopy to Generate an Accurate Vascular Model for Use in Patient Education Animation -- 2.1 Introduction -- 2.2 Blood Pressure -- 2.3 Blood Pressure Regulation -- 2.4 Pathophysiology of Hypertension -- 2.5 Peripheral Resistance Artery Structure and Vascular Remodelling in Hypertension -- 2.6 Treatment of Hypertension -- 2.7 Medication Adherence -- 2.8 Patient Education Can Improve Medication Adherence -- 2.9 Generating Digital 3D Models Using Confocal Microscopy -- 2.10 Building a Complete Vessel 3D Model from a Partial Confocal Microscopy Dataset -- 2.11 Modelling the Tunica Intima -- 2.12 Tunica Media -- 2.13 Tunica Externa -- 2.14 Simple Effects in Animation -- 2.15 Vascular Wall Remodelling Using Blend Shapes -- 2.16 Maya´s MASH Toolkit -- 2.17 Materials (Shaders) -- 2.18 Lighting -- 2.19 Rendering -- 2.20 Results -- 2.21 Discussion and Evaluation -- References -- 3: Methods and Applications of 3D Patient-Specific Virtual Reconstructions in Surgery -- 3.1 Introduction -- 3.2 Methods of 3D Virtual Reconstructions -- 3.2.1 Segmentation -- 3.2.1.1 Manual Segmentation -- 3.2.1.2 Algorithmic Approaches to Segmentation -- 3.2.2 Rendering Methods for 3D Virtual Models -- 3.2.2.1 Volumetric Rendering -- 3.2.2.2 Surface Rendering Techniques -- 3.2.3 Post-Processing of Surface Polygon Mesh -- 3.2.3.1 Decimation -- 3.2.3.2 Smoothing -- 3.2.4 Advanced 3D Modelling Techniques -- 3.2.4.1 Complex 3D Modelling and Digital Sculpture -- 3.2.4.2 Retopology -- 3.2.4.3 UV Unwrapping.
3.2.4.4 Texture Maps and Physically Based Rendering -- 3.3 Applications of 3D Models in Surgical Practice -- 3.3.1 3D Models in Surgical Planning -- 3.3.1.1 Anatomical Understanding -- 3.3.1.2 Patient-Specific Simulation -- 3.3.1.3 Resection Planning -- 3.3.1.4 Reconstruction -- 3.3.2 Intraoperative Navigation -- 3.3.3 3D Models in Surgical Patient Education -- 3.4 Conclusion -- References -- 4: Proof of Concept for the Use of Immersive Virtual Reality in Upper Limb Rehabilitation of Multiple Sclerosis Patients -- 4.1 Rationale -- 4.2 Multiple Sclerosis and Conventional Physiotherapy -- 4.3 Virtual Reality-Based Rehabilitation -- 4.3.1 Interaction -- 4.3.2 Visualisation -- 4.3.3 HMDs in MS Rehabilitation -- 4.4 Treatment Adherence and Motivation -- 4.4.1 Feedback -- 4.5 Aims and Objectives -- 4.6 Methods -- 4.6.1 Workflow (Fig. 4.1) -- 4.6.1.1 Materials -- 4.6.2 Design and Development Process -- 4.7 Developmental Outcomes -- 4.7.1 Menu Scene -- 4.7.2 Piano Scene -- 4.7.3 Maze Scene -- 4.7.4 Evaluation -- 4.7.4.1 Participants -- 4.7.4.2 Experimental Set-Up and Procedure -- 4.7.4.3 Ethics -- 4.7.4.4 Data Analysis -- 4.8 Results -- 4.9 Discussion -- 4.9.1 Future Works -- 4.10 Conclusion -- References -- 5: Virtual Wards: A Rapid Adaptation to Clinical Attachments in MBChB During the COVID-19 Pandemic -- 5.1 Introduction -- 5.2 Theoretical Underpinnings -- 5.2.1 Dual-Process Theory -- 5.2.2 Script Theory -- 5.2.3 Cognitive Load Theory -- 5.2.4 Situated Cognition -- 5.3 Technological Considerations -- 5.3.1 Flexibility of Content -- 5.3.2 Inclusion of Automatically Marked Questions -- 5.3.3 Control over Non-linear Lesson Flow -- 5.3.4 Large Amount of Information in a Single Click -- 5.3.5 Embedding H5G Interactive Content -- 5.3.6 Tips for Virtual Ward Developers -- 5.4 Description of the Virtual Wards -- 5.4.1 The Content Covered by the Virtual Wards.
5.4.2 The Format of the Modules -- 5.4.3 The Interactive Cases -- 5.4.3.1 Setting the Scene -- 5.4.3.2 Interactive History-Taking -- 5.4.3.3 Observations and Examination -- 5.4.3.4 Investigations: Selection and Interpretation -- 5.4.3.5 Refining the Differential -- 5.4.3.6 Management -- 5.5 Evaluation and Future -- 5.5.1 Asynchronous Engagement with Virtual Wards -- 5.5.2 Issues Working with Multiple New Technologies -- 5.5.3 Clinician Time Involved to Create Content -- 5.5.4 Simultaneous Virtual Wards -- 5.5.5 Quality Control of Benevolent Contributor Content -- 5.5.6 A Reflection on the Faculty Experience -- 5.5.7 The Students´ Perspective -- 5.5.7.1 The Virtual Ward Format -- 5.5.7.2 Feedback on Content -- 5.5.7.3 Amount of Content -- 5.5.7.4 Technical Difficulties -- 5.5.7.5 Loss of Clinical Contact -- 5.5.8 Lessons Learnt -- 5.6 Tips for Setting Up Virtual Wards -- 5.7 The Future of Virtual Wards -- References -- 6: Artificial Intelligence: Innovation to Assist in the Identification of Sono-anatomy for Ultrasound-Guided Regional Anaesthe... -- 6.1 Introduction -- 6.2 Part 1: Challenges in Ultrasound Image Interpretation and Ultrasound-Guided Regional Anaesthesia -- 6.2.1 What Is Ultrasound-Guided Regional Anaesthesia? -- 6.2.2 Why Is Regional Anaesthesia Difficult? -- 6.2.2.1 Selection of the Right Block -- 6.2.2.2 Acquiring and Interpreting an Optimised Ultrasound Image -- 6.2.2.2.1 Operator Dependence -- 6.2.2.2.2 Anatomical Variation -- 6.2.2.2.3 Learning Materials Depict Ideal Versions of Sono-anatomy -- 6.2.2.2.4 Comorbidity -- 6.2.2.2.5 Inattentional Blindness -- 6.2.2.2.6 Satisfaction of Search -- 6.2.2.2.7 Fatigability -- 6.2.2.3 Planning a Safe Needle Path and Visualising the Needle Tip -- 6.2.2.4 Ensuring Accurate Deposition of Local Anaesthetic Around the Target Structure.
6.2.2.5 Post-Procedure Monitoring Both to Ensure Effect and to Monitor for any Complications -- 6.2.3 Education in Ultrasound-Guided Regional Anaesthesia -- 6.3 Part 2: An Introduction to Artificial Intelligence for Clinicians -- 6.3.1 What Is Artificial Intelligence? -- 6.3.2 Machine Learning Categories -- 6.3.3 The Computational Problem -- 6.3.4 Rule-Based vs Model-Based Techniques -- 6.3.4.1 Rule-Based Techniques -- 6.3.4.2 Model-Based Techniques -- 6.3.5 Convolutional Neural Networks -- 6.3.6 The U-Net Architecture -- 6.3.7 How Models Train -- 6.3.8 Model Evaluation -- 6.4 Part 3: The Current State of AI in Ultrasound Image Interpretation for Ultrasound-Guided Regional Anaesthesia -- 6.4.1 How Can Technology Be Used to Augment UGRA? -- 6.4.2 Summary of Different Approaches -- 6.4.3 Segmentation -- 6.4.3.1 Deep Learning Approaches -- 6.4.3.2 Non-deep Learning Approaches -- 6.4.4 Tracking Methods -- 6.4.4.1 How Does Tracking Fit in with Segmentation? -- 6.4.4.2 Approaches -- 6.4.5 Summary and Future Directions -- 6.5 Part 4: A Case Study: ScanNav Anatomy Peripheral Nerve Block -- 6.6 Part 5: The Future: Artificial Intelligence and Ultrasound-Guided Regional Anaesthesia -- 6.6.1 Supporting Practice -- 6.6.2 Changing How We Learn -- 6.6.3 The Extra Dimension -- 6.6.4 The Future of Clinical Practice -- References -- 7: A Systematic Review of Randomised Control Trials Evaluating the Efficacy and Safety of Open and Endoscopic Carpal Tunnel Re... -- 7.1 Introduction -- 7.1.1 Carpal Tunnel Syndrome -- 7.1.2 The Surgical Interventions -- 7.1.3 Aims and Objectives -- 7.2 Methods -- 7.2.1 Study Identification -- 7.2.2 Study Screening and Selection -- 7.2.3 Assessment of Patient Outcomes -- 7.2.4 Risk of Bias Assessment -- 7.2.5 Data Analysis -- 7.3 Results -- 7.3.1 Study Identification, Screening and Inclusion -- 7.3.2 Study Characteristics.
7.3.3 Patient Outcomes.
Record Nr. UNINA-9910544873003321
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biomedical Visualisation [[electronic resource] ] : Volume 12 ‒ The Importance of Context in Image-Making / / edited by Leonard Shapiro, Paul M. Rea
Biomedical Visualisation [[electronic resource] ] : Volume 12 ‒ The Importance of Context in Image-Making / / edited by Leonard Shapiro, Paul M. Rea
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Descrizione fisica 1 online resource (195 pages)
Disciplina 170
Collana Advances in Experimental Medicine and Biology
Soggetto topico Anatomy
Medical education
Medicine - Research
Biology - Research
Education - Data processing
Information visualization
Medical Education
Biomedical Research
Computers and Education
Data and Information Visualization
Enginyeria biomèdica
Biotecnologia
Visualització tridimensional
Imatges mèdiques
Soggetto genere / forma Llibres electrònics
ISBN 3-031-10889-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part I. Exciting Data and Representation -- Chapter 1. A Multimodal Social Semiotics Perspective on Teaching and Learning Using Biomedical Visualisations -- Chapter 2. Reasons for Knocking at an Empty House: Visualisation, Representation and Dissemination of Health-Related Public Engagement Media -- Chapter 3. The Evolution of Scientific Visualisations: A Case Study Approach to Big Data for Varied Audiences -- Part II. Biomedical Education: Theory and Practice -- Chapter 4. The Affordances of Visual Modes in Pedagogy on the Physics of Motion in Physiotherapy Education -- Part III. Making 3D -- Chapter 5. Mitochondria to Bitter Melon: Understanding the 3D Ultrastructure of the Cell via 2D Thin Section Reconstruction and the History of Mitochondrial Visualization -- Chapter 6. Using Molecular Visualisation Techniques to Explain the Molecular Biology of SARS-CoV-2 Spike Protein Mutations to a General Audience -- Chapter 7. Student-Perceived Value on the Use of Clay Modelling in Undergraduate Clinical Anatomy -- Part IV. Ethical Considerations -- Chapter 8. Advances in Digital Technology in Teaching Human Anatomy: Ethical Predicaments.
Record Nr. UNINA-9910595026303321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biomedical visualisation . Volume 10 / / Paul M. Rea, editor
Biomedical visualisation . Volume 10 / / Paul M. Rea, editor
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (229 pages)
Disciplina 610.28
Collana Advances in Experimental Medicine and Biology
Soggetto topico Biomedical engineering
Three-dimensional imaging in medicine
Visualització tridimensional
Enginyeria biomèdica
Soggetto genere / forma Llibres electrònics
ISBN 3-030-76951-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgements -- About the Book -- Contents -- Editors and Contributors -- Chapter 1: Evaluating the Efficacy and Optimisation of the Peer-Led Flipped Model Using TEL Resources Within Neuroanatomy -- 1.1 Introduction -- 1.1.1 Climate of Anatomy Education -- 1.1.2 Technology-Enhanced Learning (TEL) in Anatomy Education -- 1.1.3 Flipped Classroom (FC) -- 1.1.4 Lack of Evidence in Favour of Combining TEL and the FC -- 1.1.5 Near-Peer Teaching (NPT) -- 1.2 Methods -- 1.2.1 Study Setting and Population -- 1.2.2 Resource Development -- 1.2.3 Teaching Sessions -- 1.2.4 Assessment of Knowledge Gain -- 1.2.5 Analysis of Data -- 1.3 Results -- 1.3.1 Student Engagement -- 1.3.2 Educational Impact -- 1.3.3 Student Perceptions -- 1.4 Discussion -- 1.4.1 Student Experience of the Flipped Classroom -- 1.4.2 Effect of TEL Resources Within The FC -- 1.4.3 Effect of a Peer-Led Flipped Model -- 1.4.4 Limitations -- 1.4.5 Conclusion and Recommendations -- References -- Chapter 2: Observation of Patients´ 3D Printed Anatomical Features and 3D Visualisation Technologies Improve Spatial Awareness... -- 2.1 3D Visualisation in Medical Education: A Foreword -- 2.1.1 Haptics in Observation. Drawing in Observation -- 2.1.2 The HVOD Method -- 2.1.3 Spatial Awareness and Spatial Ability in Anatomy -- 2.1.4 Two HVOD Exercises for Improved Spatial Awareness -- 2.2 Cognition and Visuospatial Attention -- 2.2.1 Cognition and Visuospatial Learning -- 2.2.2 Sequencing of Visuospatial Comprehension in Neuroscience -- 2.3 Application Within Surgical Setting -- 2.3.1 Haptic Perception in Surgical Training -- 2.3.2 Visualisation Technology in Surgery: Interpreting `What the Machine Saw´ -- 2.3.3 Pre-Operative Planning Assistance -- 2.4 Summary and Future Directions -- References.
Chapter 3: Pandemics, Protests, and Pronouns: The Changing Landscape of Biomedical Visualisation and Education -- 3.1 Definitions and Introduction -- 3.2 Pandemics: The Biomedical Education Implications of COVID-19 -- 3.3 Move to Online Delivery and Accessibility Concerns -- 3.4 Impact of COVID-19 on Anatomy Training -- 3.5 Protests: Black Lives Matter and Decolonisation of the Curriculum -- 3.6 BLM in Higher Education -- 3.7 Biomedical Visualisation: A Source of Perpetuating Colonial Curricula? -- 3.8 Broader Consideration of Inequality in Imagery -- 3.9 Pronouns: A Look at the Heteronormative Assumptions When Transgender Individuals Exist -- 3.10 Why It All Matters? The Power of Imagery -- 3.11 Conclusion -- 3.12 Practice Points -- References -- Chapter 4: What Not to Do with PPE: A Digital Application to Raise Awareness of Proper PPE Protocol -- 4.1 Introduction -- 4.1.1 Aims and Objectives -- 4.2 Education on the Use of PPE -- 4.2.1 PPE Education: Training and Guidance -- 4.2.1.1 Training on Proper PPE Use: Literature -- 4.2.1.2 Guidance on Proper PPE Use: Literature -- 4.2.2 What Not to Do with PPE -- 4.2.3 Summary of Findings -- 4.3 Methods and Materials -- 4.3.1 Materials -- 4.3.2 Methods -- 4.3.3 Digital Design -- 4.3.4 3D Model Development -- 4.3.4.1 Identification of PPE Violations -- 4.3.4.2 Modelling -- 4.3.4.3 Animation -- 4.3.5 App Development -- 4.3.5.1 User Interface Set-Up -- 4.3.5.2 Interactive Components -- 4.3.5.3 Build to Android -- 4.4 Results: Application Development Outcome -- 4.4.1 Main Menu -- 4.4.2 Instructions -- 4.4.3 Scenario Selection -- 4.4.4 Scenario 1: Phone Contamination -- 4.4.5 Scenario 1: Phone Contamination with Visible Transmission -- 4.4.6 Scenario 2: Mask Contamination -- 4.4.7 Scenario 2: Mask Contamination with Visible Transmission -- 4.5 Discussion -- 4.5.1 Reflection on the Design Process.
4.5.2 Limitations -- 4.5.2.1 Animations -- 4.5.2.2 Models -- 4.5.2.3 Future Directions of Work -- 4.6 Conclusion -- References -- Chapter 5: The Embryonic re-Development of an Anatomy Museum -- 5.1 History and Context -- 5.2 Visualising Embryos -- 5.3 Visualising Discourse around Menstruation -- 5.4 The Gendered Body and the Lack of Diverse Representation in Gynaecological Images -- 5.5 The Role of the Illustrator -- References -- Chapter 6: Visualising the Link Between Carpal Bones and Their Etymologies -- 6.1 Theoretical Background -- 6.1.1 Introduction -- 6.1.2 Why Carpal Bones? -- 6.1.3 The Study of Etymology and Its Use in Medicine -- 6.1.3.1 The Study of Etymology -- 6.1.3.2 Relevance of Etymology in the Medical Field -- 6.1.4 The Link Between Knowledge of Etymology and Successful Learning of Anatomy in Medical Students -- 6.1.4.1 How Do We Learn? Three Learning Outcomes -- 6.1.4.2 How Etymological Understanding Aids Anatomical Learning in Medical Students -- 6.1.5 Use of Digital Technology in Learning -- 6.1.5.1 Current Teaching Methods -- 6.1.5.2 How Visualisation Techniques Aid in Student Learning -- 6.1.5.3 Benefits of E-learning and Digital Technology Use in Learning -- 6.1.6 Conclusion -- 6.2 Aims and Hypothesis -- 6.2.1 Research Questions -- 6.3 Materials and Methods -- 6.3.1 Materials -- 6.3.2 Methods -- 6.3.2.1 Design and Development -- Concept -- 3D Bone Model Production -- Application Development -- 6.4 Evaluation -- 6.4.1 Research Evaluation Methods -- 6.4.1.1 Materials and Methods -- 6.4.1.2 Experimental Protocol -- Carpal Bone Pre-test and Post-test -- Mobile Application Use -- Usability Questionnaire -- 6.4.1.3 Ethics Approval -- 6.5 Results -- 6.5.1 Participants -- 6.5.2 Carpal Bone Pre-test and Post-test Results -- 6.5.3 Application Use -- 6.5.4 Participant Questionnaire Results -- 6.5.4.1 Screening Questions -- Usefulness.
Ease of Use -- Ease of Learning -- Satisfaction -- 6.5.4.2 Qualitative Comments -- 6.6 Discussion -- 6.6.1 Summary of Findings -- 6.6.2 Limitations -- 6.6.3 Post-evaluation Modifications -- 6.6.4 Future Development -- 6.7 Conclusion -- References -- Chapter 7: Augmented Reality Application of Schizocosa ocreata: A Tool for Reducing Fear of Arachnids Through Public Outreach -- 7.1 Introduction -- 7.1.1 Background Review -- 7.1.2 Rationale -- 7.1.3 Objectives -- 7.2 Methods -- 7.2.1 Application Purpose and Goal -- 7.2.2 Materials (Table 7.1) -- 7.2.3 Design and Development -- 7.2.3.1 Unity Basic Set-up -- 7.2.3.2 3D Modelling -- 7.2.3.3 Texturing -- 7.2.3.4 Rigging and Animation -- 7.2.3.5 Augmented Reality Development -- 7.2.3.6 Implementation of Textual Information -- 7.3 Results -- 7.4 Discussions -- 7.4.1 Limitations -- 7.4.2 Future Development -- 7.5 Conclusion -- References -- Chapter 8: The Surgical Art Face: Developing a Bespoke Multimodal Face Model for Reconstructive Surgical Education -- 8.1 Introduction -- 8.1.1 Reconstructive Surgery -- 8.1.2 Reconstructive Ladder -- 8.2 Facial Reconstructive Surgery -- 8.2.1 What Knowledge and Skills Do Facial Surgeons Need? -- 8.2.2 What Is the Ideal Simulation Tool to Train Surgeons to Perform Facial Surgery? -- 8.3 Development of the Surgical Art Face -- 8.4 Facial Surgery Simulation Using the Surgical Art Face in Multi-disciplinary Settings -- 8.5 Conclusion -- References -- Chapter 9: Modernizing Medical Museums Through the 3D Digitization of Pathological Specimens -- 9.1 Background -- 9.2 Digitization and Processing -- 9.2.1 Specimen Selection and Digitization Methods -- 9.2.2 External Surface Capture -- 9.2.2.1 NextEngine Scanner -- 9.2.2.2 Go!Scan 50 3D Scanner -- 9.2.3 Internal Surface Capture -- 9.2.3.1 North Star Imaging Micro-CT Scanner -- 9.2.3.2 Mimics Workflow -- 9.2.3.3 3D Slicer Workflow.
9.2.4 Further Model Preparation -- 9.3 Dissemination and Applications -- 9.3.1 Dissemination -- 9.3.1.1 MorphoSource -- 9.3.1.2 Sketchfab -- 9.3.1.3 Additional Dissemination -- 9.3.2 3D Printing -- 9.3.3 Education Applications -- 9.3.4 Research Applications -- 9.4 Summary -- References -- Chapter 10: An Introduction to Biomedical Computational Fluid Dynamics -- 10.1 Introduction -- 10.2 Computational Fluid Dynamics (CFD) -- 10.2.1 What Is CFD? -- 10.2.2 Governing Equations -- 10.2.2.1 Conservation of Mass (Continuity Equation) -- 10.2.2.2 Conservation of Momentum -- 10.2.3 Properties of Fluids and Fluid Flows -- 10.2.4 Constructing a CFD Simulation -- 10.2.4.1 Pre-processing -- 10.2.4.2 Numerical Solution and Solvers -- 10.2.4.3 Post-processing -- 10.2.4.4 Verification and Validation -- 10.2.4.5 Benefits and Limitations of CFD -- 10.3 CFD in Biomedical Research -- 10.3.1 Cardiovascular Flows -- 10.3.2 Respiratory Flow -- 10.3.3 Additional Areas of CFD Application -- 10.3.4 Medical Device Testing and Development -- 10.4 Summary and Future Directions -- References.
Record Nr. UNINA-9910497085803321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Management of Orbito-zygomaticomaxillary Fractures [[electronic resource] /] / by Hisham Marwan, Yoh Sawatari, Michael Peleg
Management of Orbito-zygomaticomaxillary Fractures [[electronic resource] /] / by Hisham Marwan, Yoh Sawatari, Michael Peleg
Autore Marwan Hisham
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (VIII, 112 p. 102 illus., 93 illus. in color.)
Disciplina 617.52059
Soggetto topico Oral surgery
Maxillofacial surgery
Fractures
Cirurgia maxil·lofacial
Cirurgia oral
Visualització tridimensional
Informàtica mèdica
Oral and Maxillofacial Surgery
Soggetto genere / forma Llibres electrònics
ISBN 3-030-42645-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction and surgical Anatomy of Orbito-Zygomaticomaxillary Fractures -- Preoperative Assessment of Orbito-Zygomaticomaxillary Fractures -- Preoperative surgical planning of Orbito-Zygomaticomaxillary Fractures -- Surgical Access to Orbito-Zygomaticomaxillary Fractures -- Fixation Techniques for Orbito-Zygomaticomaxillary Fractures -- Soft tissue management for Orbito-Zygomaticomaxillary Fractures -- Intraoperative Assessment of Orbito-Zygomaticomaxillary Fractures -- Postoperative Assessment of Orbito-Zygomaticomaxillary Fractures -- Complications of Orbito-Zygomaticomaxillary Fractures -- New advances in the planning and management of Orbito-Zygomaticomaxillary Fractures -- Delayed management of the orbito-zygomaticomaxillary fracture -- Management of post traumatic orbito-zygomaticomaxillary deformities. .
Record Nr. UNINA-9910411941703321
Marwan Hisham  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mathematical Methods for Objects Reconstruction [[electronic resource] ] : From 3D Vision to 3D Printing / / edited by Emiliano Cristiani, Maurizio Falcone †, Silvia Tozza
Mathematical Methods for Objects Reconstruction [[electronic resource] ] : From 3D Vision to 3D Printing / / edited by Emiliano Cristiani, Maurizio Falcone †, Silvia Tozza
Autore Cristiani Emiliano
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (185 pages)
Disciplina 621.988
Altri autori (Persone) Falcone +Maurizio
TozzaSilvia
Collana Springer INdAM Series
Soggetto topico Differential equations
Mathematics
Mathematics—Data processing
Differential Equations
Applications of Mathematics
Computational Mathematics and Numerical Analysis
Matemàtica
Impressió 3D
Visualització tridimensional
Soggetto genere / forma Llibres electrònics
ISBN 981-9907-76-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1 Emiliano Cristiani, Maurizio Falcone, and Silvia Tozza, An Overview of Some Mathematical Techniques and Problems Linking 3D Vision to 3D Printing -- 2 Georg Radow, Giuseppe Rodriguez, Ashkan Mansouri Yarahmadi, and Michael Breuß, Photometric Stereo with Non-Lambertian Preprocessing and Hayakawa Lighting Estimation for Highly Detailed Shape Reconstruction -- 3 Toby Collins and Adrien Bartoli, Shape-from-Template with Camera Focal Length Estimation -- 4 J. Andreas Bærentzen, Ida Bukh Villesen, Ebba Dellwik, Reconstruction of a Botanical Tree from a 3D Point Cloud -- 5 Jesse Beisegel, Johannes Buhl, Rameez Israr, Johannes Schmidt, Markus Bambach, and Armin Fügenschuh, Mixed-Integer Programming Models for Two Metal Additive Manufacturing Methods -- 6 Ashkan Mansouri Yarahmadi, Michael Breuss, Carsten Hartmann, Toni Schneidereit, Unsupervised Optimization of Laser Beam Trajectories for Powder Bed Fusion Printing and Extension to Multiphase Nucleation Models.
Record Nr. UNINA-9910736026803321
Cristiani Emiliano  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui