top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Automotive internetworking [[electronic resource] /] / Timo Kosch ... [et al.]
Automotive internetworking [[electronic resource] /] / Timo Kosch ... [et al.]
Edizione [1st ed.]
Pubbl/distr/stampa Chichester, West Sussex, U.K. ; ; Hoboken, N.J., : Wiley, 2012
Descrizione fisica xix, 377 p
Disciplina 388.3/12
Altri autori (Persone) KoschTimo
Collana Intelligent transportation systems
Soggetto topico Vehicular ad hoc networks (Computer networks)
Intelligent transportation systems
ISBN 9786613620392
1-119-94473-2
1-119-94472-4
1-280-59056-4
1-119-94510-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- AUTOMOTIVE INTERNETWORKING -- Contents -- Preface -- List of Abbreviations -- 1 Automotive Internetworking: The Evolution Towards Connected and Cooperative Vehicles -- 1.1 Evolution of In-Vehicle Electronics -- 1.2 Motivation for Connected Vehicles -- 1.3 Terminology -- 1.4 Stakeholders -- 1.5 Outline of this Book -- References -- 2 Application Classifications and Requirements -- 2.1 Classification of Applications and their Implications -- 2.1.1 Driving-Related Applications -- 2.1.2 Vehicle-Related Applications -- 2.1.3 Passenger-Related Applications -- 2.2 Requirements and Overall System Properties -- 2.3 Overview on Suitable Communication Technologies -- 2.3.1 Communication Technologies -- 2.3.2 Suitability for AutoNet Applications -- 2.4 Summary -- References -- 3 System Architecture -- 3.1 Domain View of AutoNets -- 3.2 ISO/OSI Reference Model View -- 3.3 Profiling -- 3.4 Standardised Architectures -- 3.4.1 Architecture of the C2C Communication Consortium (C2C-CC) -- 3.4.2 ISO TC204 CALM Architecture -- 3.4.3 ETSI TC ITS Architecture: EN 302 655 -- 3.4.4 IEEE WAVE Architecture Featuring IEEE802.11p and IEEE1609.x Standards -- 3.5 Subsystem Architectures -- 3.5.1 Vehicle Architecture -- 3.5.2 Roadside Architecture -- 3.5.3 Infrastructure Architecture -- 3.5.4 Mobile Device Architecture -- 3.6 Summary -- References -- 4 Applications: Functionality and Protocols -- 4.1 Foresighted Safety Case Study: Environmental Notifications -- 4.1.1 Data Collection and Individual Situation Analysis -- 4.1.2 Cooperative Situation Analysis -- 4.1.3 Distributed Knowledge Management -- 4.1.4 Individual Relevance and Interface to the Driver -- 4.1.5 Data Security and Privacy -- 4.1.6 Reliable Estimation of the Current Driving Condition -- 4.1.7 Communication and Information Dissemination -- 4.1.8 Standardisation Issues.
4.2 Active Safety Case Study: Cooperative Collision Avoidance and Intersection Assistance -- 4.2.1 Data Collection -- 4.2.2 Situation Analysis and Application Logic -- 4.2.3 Knowledge Management -- 4.2.4 Communication -- 4.2.5 Security and Privacy -- 4.2.6 Driver Interaction -- 4.3 Green Driving Case Study: Traffic Lights Assistance -- 4.3.1 Green Light Optimal Speed Advisory -- 4.3.2 Example: TRAVOLUTION -- 4.4 Business and Convenience Case Study: Insurance and Financial Services -- 4.4.1 Accident Management Services -- 4.4.2 Examples for Insurance and Financial Services (IFS) -- References -- 5 Application Support -- 5.1 Application Support in the AutoNet Generic Reference Protocol Stack -- 5.2 Communication Aspects in the Application Support -- 5.2.1 CAM: Cooperative Awareness Messages -- 5.2.2 DENM: Decentralised Environmental Notification Messages -- 5.3 AutoNet Facilities -- 5.3.1 Application Plane -- 5.3.2 Information Plane -- 5.3.3 Communication Plane -- 5.4 Implementation Issues for the Application Support Layer -- 5.5 Summary -- References -- 6 Transport Layer -- 6.1 Transport Layer Integration in the AutoNet Generic Reference Protocol Stack -- 6.1.1 AutoNet Transport -- 6.1.2 TCP, UDP -- 6.2 TCP in AutoNets -- 6.2.1 Congestion Control in TCP -- 6.2.2 Impact of AutoNets -- 6.2.3 Enhancements of TCP and Technical Requirements for AutoNet Scenarios -- 6.2.4 The MOCCA Transport Protocol -- 6.2.5 Evaluation Results -- 6.3 Summary -- References -- 7 Networking -- 7.1 Networking Principles in the AutoNet Generic Reference Protocol Stack -- 7.1.1 Network Layer Functionality in AutoNets -- 7.1.2 Network Protocol Data Units -- 7.2 AutoNet Ad-Hoc Networking -- 7.2.1 AutoNet Ad-Hoc Network Characteristics -- 7.2.2 AutoNet Ad-Hoc Network Addressing and Routing -- 7.2.3 Beaconing -- 7.2.4 Network Utility Maximisation in AutoNets.
7.3 AutoNet Cellular Networking -- 7.3.1 Communication Architecture for AutoNet Cellular Networking -- 7.3.2 Deployment Strategies -- 7.3.3 Interactions and Cross-Layer Optimisations -- 7.4 IPv6 and Mobility Extensions -- 7.4.1 IPv6 -- 7.4.2 Mobility Extensions -- 7.4.3 Deployment Issues -- References -- 8 Physical Communication Technologies -- 8.1 Wireless Networks in the AutoNet Generic Reference Protocol Stack -- 8.2 Automotive WLAN and DSRC -- 8.2.1 Spectrum Policies -- 8.2.2 IEEE 802.11p -- 8.2.3 ETSI G5A -- 8.3 Utility-Centric Medium Access in IEEE 802.11p -- 8.3.1 Data Differentiation -- 8.3.2 Inter-Vehicle Contention -- 8.3.3 Cross-Layer Issues -- 8.3.4 Evaluation of Utility-Centric Medium Access -- 8.4 Technology Comparison -- 8.5 Conclusion -- References -- 9 Security and Privacy -- 9.1 Stakes, Assets, Threats and Attacks -- 9.1.1 Stakeholders and Assets -- 9.1.2 Threats and Attacks -- 9.2 Challenges and Requirements -- 9.3 AutoNet Security Architecture and Management -- 9.4 Security Services -- 9.4.1 Cryptographic Mechanisms -- 9.4.2 Digital Signatures -- 9.5 Certification -- 9.5.1 Trust -- 9.5.2 Trusted Third Platforms: Certificate Authorities -- 9.5.3 Certificate Generation and Distribution -- 9.5.4 Certificate Revocation -- 9.6 Securing Vehicles -- 9.7 Secure Communication -- 9.7.1 Secure Messaging -- 9.7.2 Secure Routing and Forwarding -- 9.7.3 Secure Group Communication -- 9.7.4 Plausibility Checks -- 9.8 Privacy -- 9.8.1 Secret Information -- 9.9 Conclusion -- References -- 10 System Management -- 10.1 System Management in the AutoNet Generic Reference Protocol Stack -- 10.2 Functional Management Building Blocks -- 10.3 Selected Management Issues of an AutoNet Station -- 10.3.1 Cost/Benefit Management -- 10.3.2 Congestion Control -- 10.3.3 Mobility Management -- 10.3.4 TCP Management.
10.4 Implementation Issues of the Management Layer -- 10.5 Summary -- References -- 11 Research Methodologies -- 11.1 Early Activities to Investigate AutoNets -- 11.1.1 Activities at the University of Duisburg -- 11.1.2 Activities at the Ohio State University -- 11.2 Methodologies -- 11.2.1 Model Domains for AutoNets -- 11.2.2 Dependency Examples -- 11.3 Simulation Methodology -- 11.3.1 Communication Network Simulation -- 11.3.2 Traffic Simulation -- 11.3.3 Implementation Issues -- 11.4 Field Operational Testing Methodology -- 11.4.1 Applications and Requirements -- 11.4.2 System Architecture -- 11.4.3 Trials -- 11.4.4 Analysis -- 11.5 Summary -- References -- 12 Markets -- 12.1 Current Market Developments -- 12.1.1 Technological Push -- 12.1.2 Economic Pull -- 12.1.3 Stakeholder Analysis -- 12.2 Challenges -- 12.2.1 Harmonisation and Standardisation -- 12.2.2 Life Cycle -- 12.2.3 Costs and Revenues in an Emerging Business Ecosystem -- 12.2.4 Customer Acceptance -- 12.3 Driving the Emergence of a Coherent Business Ecosystem -- 12.3.1 Strategies for the Development of a Modular Business Ecosystem -- 12.3.2 Early Examples of Telematic Business Ecosystems -- 12.4 Summary -- References -- 13 Impact and Future Projections -- A Appendix -- A.1 Standardisation Bodies for AutoNets -- A.1.1 ETSI -- A.1.2 CEN -- A.1.3 ISO -- A.1.4 IETF -- A.1.5 IEEE -- A.1.6 Car2Car Communication Consortium -- A.2 Research Projects on AutoNets -- A.2.1 Early Activities -- A.2.2 The eSafety Initiative -- A.2.3 COMeSafety -- A.2.4 COOPERS -- A.2.5 CVIS -- A.2.6 SAFESPOT -- A.2.7 SeVeCom -- A.2.8 GeoNet -- A.2.9 FRAME, E-FRAME -- A.2.10 VII and IntelliDrive -- A.2.11 Travolution -- A.2.12 Aktiv -- A.2.13 PRE-DRIVE C2X -- A.2.14 simTD -- References -- Index.
Record Nr. UNINA-9910828280603321
Chichester, West Sussex, U.K. ; ; Hoboken, N.J., : Wiley, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bio-inspired routing protocols for vehicular ad-hoc networks / / Salim Bitam, Abdelhamid Mellouk
Bio-inspired routing protocols for vehicular ad-hoc networks / / Salim Bitam, Abdelhamid Mellouk
Autore Bitam Salim
Pubbl/distr/stampa London, England : , : Wiley, , [2014]
Descrizione fisica 1 online resource (127 pages)
Disciplina 388.3124
Collana Focus series
Soggetto topico Vehicular ad hoc networks (Computer networks)
Routing protocols (Computer network protocols)
ISBN 9781119004967 (electronic book)
1-119-00813-1
1-119-00496-9
1-119-00812-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover page; Half-Title page ; Title page; Copyright page; Contents; Preface; Introduction; Acronyms and Notations; 1: Vehicular Ad Hoc Networks; 1.1. VANET definition, characteristics and applications; 1.1.1. Definition of vehicular ad hoc network; 1.1.2. Characteristics of vehicular ad hoc networks; 1.1.2.1. Vehicle velocity; 1.1.2.2. VANET density; 1.1.2.3. Node heterogeneity; 1.1.2.4. Mobility model; 1.1.3. Applications of vehicular ad hoc networks; 1.1.3.1. Road safety applications; 1.1.3.2. Vehicular authority services; 1.1.3.3. Enhanced driving
1.1.3.4. Business and entertainment services1.2. VANET architectures; 1.2.1. Vehicular WLAN/cellular architecture; 1.2.2. Pure ad hoc architecture; 1.2.3. Hybrid architecture; 1.3. Mobility models; 1.3.1. Random-based mobility models; 1.3.1.1. Random waypoint mobility model; 1.3.1.2. Random walk mobility model; 1.3.1.3. Limitations of random-based mobility models; 1.3.2. Geographic map-based mobility models; 1.3.2.1. Manhattan grid mobility model; 1.3.2.2. City section mobility model; 1.3.2.3. Freeway mobility model; 1.3.2.4. Limitations of geographic map-based mobility models
1.3.3. Group-based mobility1.3.3.1. Reference point group mobility model; 1.3.3.2. Virtual track mobility model; 1.3.3.3. Limitations of group-based mobility model; 1.3.4. Prediction-based mobility models; 1.3.4.1. Gauss-Markov based mobility model; 1.3.4.2. Markov-History based mobility model; 1.3.4.3. Discussion of prediction-based mobility models; 1.3.5. Software-tools-based mobility models; 1.3.5.1. SUMO framework; 1.3.5.2. VanetMobiSim framework; 1.3.5.3. MOVE framework; 1.3.5.4. Discussion of software-tools-based mobility models; 1.4. VANET challenges and issues; 1.4.1. VANET routing
1.4.2. Vehicular network scalability1.4.3. Computational complexity in VANET networking; 1.4.4. Routing robustness and self-organization in vehicular networks; 1.4.5. Vehicular network security; 1.5. Bibliography; 2: Routing for Vehicular Ad Hoc Networks; 2.1. Basic concepts; 2.1.1. Single-hop versus multi-hop beaconing in VANETs; 2.1.1.1. Single-hop beaconing; 2.1.1.2. Multi-hop beaconing; 2.1.2. Routing classification of VANETs; 2.1.2.1. Topology-based routing; 2.1.2.1.1. Proactive routing; 2.1.2.1.2. Reactive routing; 2.1.2.1.3. Hybrid routing; 2.1.2.2. Geography-based routing
2.1.2.3. Cluster-based routing2.2. Quality-of-service of VANET routing; 2.2.1. Quality-of-service definition; 2.2.2. Quality-of-service criteria; 2.2.2.1. Average end-to-end delay (measured in milliseconds); 2.2.2.2. Average jitter (measured in milliseconds); 2.2.2.3. Average available bandwidth (measured in KB/s); 2.2.2.4. Packet delivery ratio; 2.2.2.5. Normalized overhead load; 2.3. VANET routing standards; 2.3.1. Dedicated short range communication; 2.3.2. Standards for wireless access in vehicular environments (WAVE); 2.3.3. VANET standards related to routing layers
2.3.3.1. Controller area network (ISO 11898)
Record Nr. UNINA-9910132163003321
Bitam Salim  
London, England : , : Wiley, , [2014]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bio-inspired routing protocols for vehicular ad-hoc networks / / Salim Bitam, Abdelhamid Mellouk
Bio-inspired routing protocols for vehicular ad-hoc networks / / Salim Bitam, Abdelhamid Mellouk
Autore Bitam Salim
Pubbl/distr/stampa London, England : , : Wiley, , [2014]
Descrizione fisica 1 online resource (127 pages)
Disciplina 388.3124
Collana Focus series
Soggetto topico Vehicular ad hoc networks (Computer networks)
Routing protocols (Computer network protocols)
ISBN 9781119004967 (electronic book)
1-119-00813-1
1-119-00496-9
1-119-00812-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover page; Half-Title page ; Title page; Copyright page; Contents; Preface; Introduction; Acronyms and Notations; 1: Vehicular Ad Hoc Networks; 1.1. VANET definition, characteristics and applications; 1.1.1. Definition of vehicular ad hoc network; 1.1.2. Characteristics of vehicular ad hoc networks; 1.1.2.1. Vehicle velocity; 1.1.2.2. VANET density; 1.1.2.3. Node heterogeneity; 1.1.2.4. Mobility model; 1.1.3. Applications of vehicular ad hoc networks; 1.1.3.1. Road safety applications; 1.1.3.2. Vehicular authority services; 1.1.3.3. Enhanced driving
1.1.3.4. Business and entertainment services1.2. VANET architectures; 1.2.1. Vehicular WLAN/cellular architecture; 1.2.2. Pure ad hoc architecture; 1.2.3. Hybrid architecture; 1.3. Mobility models; 1.3.1. Random-based mobility models; 1.3.1.1. Random waypoint mobility model; 1.3.1.2. Random walk mobility model; 1.3.1.3. Limitations of random-based mobility models; 1.3.2. Geographic map-based mobility models; 1.3.2.1. Manhattan grid mobility model; 1.3.2.2. City section mobility model; 1.3.2.3. Freeway mobility model; 1.3.2.4. Limitations of geographic map-based mobility models
1.3.3. Group-based mobility1.3.3.1. Reference point group mobility model; 1.3.3.2. Virtual track mobility model; 1.3.3.3. Limitations of group-based mobility model; 1.3.4. Prediction-based mobility models; 1.3.4.1. Gauss-Markov based mobility model; 1.3.4.2. Markov-History based mobility model; 1.3.4.3. Discussion of prediction-based mobility models; 1.3.5. Software-tools-based mobility models; 1.3.5.1. SUMO framework; 1.3.5.2. VanetMobiSim framework; 1.3.5.3. MOVE framework; 1.3.5.4. Discussion of software-tools-based mobility models; 1.4. VANET challenges and issues; 1.4.1. VANET routing
1.4.2. Vehicular network scalability1.4.3. Computational complexity in VANET networking; 1.4.4. Routing robustness and self-organization in vehicular networks; 1.4.5. Vehicular network security; 1.5. Bibliography; 2: Routing for Vehicular Ad Hoc Networks; 2.1. Basic concepts; 2.1.1. Single-hop versus multi-hop beaconing in VANETs; 2.1.1.1. Single-hop beaconing; 2.1.1.2. Multi-hop beaconing; 2.1.2. Routing classification of VANETs; 2.1.2.1. Topology-based routing; 2.1.2.1.1. Proactive routing; 2.1.2.1.2. Reactive routing; 2.1.2.1.3. Hybrid routing; 2.1.2.2. Geography-based routing
2.1.2.3. Cluster-based routing2.2. Quality-of-service of VANET routing; 2.2.1. Quality-of-service definition; 2.2.2. Quality-of-service criteria; 2.2.2.1. Average end-to-end delay (measured in milliseconds); 2.2.2.2. Average jitter (measured in milliseconds); 2.2.2.3. Average available bandwidth (measured in KB/s); 2.2.2.4. Packet delivery ratio; 2.2.2.5. Normalized overhead load; 2.3. VANET routing standards; 2.3.1. Dedicated short range communication; 2.3.2. Standards for wireless access in vehicular environments (WAVE); 2.3.3. VANET standards related to routing layers
2.3.3.1. Controller area network (ISO 11898)
Record Nr. UNINA-9910815998803321
Bitam Salim  
London, England : , : Wiley, , [2014]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Capacity analysis of vehicular communication networks / / Ning Lu, Xuemin (Sherman) Shen
Capacity analysis of vehicular communication networks / / Ning Lu, Xuemin (Sherman) Shen
Autore Lu Ning
Edizione [1st ed. 2014.]
Pubbl/distr/stampa New York : , : Springer, , 2014
Descrizione fisica 1 online resource (ix, 82 pages) : illustrations (some color)
Disciplina 004
Collana SpringerBriefs in Electrical and Computer Engineering
Soggetto topico Vehicular ad hoc networks (Computer networks)
Mobile computing
ISBN 1-4614-8397-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Capacity Scaling Laws of Wireless Networks -- Unicast Capacity of Vehicular Networks with Socialized Mobility -- Downlink Capacity of Vehicular Networks with Access Infrastructure -- Conclusions and Future Directions.
Record Nr. UNINA-9910299490403321
Lu Ning  
New York : , : Springer, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Cellular V2X for connected automated driving / / edited by Mikael Fallgren [and three others]
Cellular V2X for connected automated driving / / edited by Mikael Fallgren [and three others]
Pubbl/distr/stampa Hoboken, NJ : , : Wiley, , 2021
Descrizione fisica 1 online resource (339 pages)
Disciplina 388.312
Soggetto topico Vehicular ad hoc networks (Computer networks)
ISBN 1-119-69263-6
1-119-69267-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910555099903321
Hoboken, NJ : , : Wiley, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Cellular V2X for connected automated driving / / edited by Mikael Fallgren [and three others]
Cellular V2X for connected automated driving / / edited by Mikael Fallgren [and three others]
Pubbl/distr/stampa Hoboken, NJ : , : Wiley, , 2021
Descrizione fisica 1 online resource (339 pages)
Disciplina 388.312
Soggetto topico Vehicular ad hoc networks (Computer networks)
ISBN 1-119-69263-6
1-119-69267-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910676646103321
Hoboken, NJ : , : Wiley, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Cellular Vehicle-To-Everything (C-V2X) / / Shanzhi Chen [and six others]
Cellular Vehicle-To-Everything (C-V2X) / / Shanzhi Chen [and six others]
Autore Chen Shanzhi
Pubbl/distr/stampa Singapore : , : Springer : , : Posts & Telecom Press, , [2023]
Descrizione fisica 1 online resource (410 pages)
Disciplina 621.38456
Collana Wireless Networks Series
Soggetto topico Mobile communication systems
Vehicular ad hoc networks (Computer networks)
ISBN 981-19-5130-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword -- Preface -- Acknowledgments -- Contents -- About the Authors -- Abbreviations -- Chapter 1: Overview -- 1.1 Background of V2X -- 1.1.1 The Application and Evolution of Information and Communication Technologies (ICT) in the Automotive Industry -- 1.1.1.1 Broadcast -- 1.1.1.2 Information Services -- 1.1.1.3 Assisted Driving -- 1.1.1.4 Automated Driving -- 1.1.2 The Application and Evolution of ICT in the Transportation Industry -- 1.1.3 Cooperative Vehicle Infrastructure System and Automated Driving Supported by V2X -- 1.1.4 V2X and C-V2X -- 1.2 Global Development Trend: Policies and Standardization -- 1.2.1 The International Policies -- 1.2.2 International Standardization Organization -- 1.2.2.1 3GPP -- 1.2.2.2 IEEE -- 1.2.2.3 ITU -- 1.2.2.4 ISO -- 1.2.2.5 ETSI -- 1.2.2.6 SAE -- 1.3 China´s Development Status Quo: Policies and Standardization -- 1.3.1 Policies and Planning -- 1.3.2 Formulating Standards -- 1.3.2.1 Chinese Standardization Organizations -- 1.3.2.2 The Latest Progress of Chinese C-V2X Standardization -- 1.4 About This Book -- References -- Chapter 2: The Requirements of V2X Applications -- 2.1 The Requirements of Basic V2X Applications -- 2.1.1 Road Safety Applications -- 2.1.1.1 Electronic Emergency Brake Light (EEBL) -- 2.1.1.2 Forward Collision Warning (FCW) -- 2.1.1.3 Blind Spot Warning/Lane Change Warning (BSW/ LCW) -- 2.1.1.4 Do Not Pass Warning (DNPW) -- 2.1.1.5 Intersection Movement Assist (IMA) -- 2.1.1.6 Control Loss Warning (CLW) -- 2.1.1.7 Left Turn Assist (LTA) -- 2.1.1.8 Summary -- 2.1.2 Traffic Efficiency Applications -- 2.1.2.1 Green Light Optimal Speed Advisory (GLOSA) -- 2.1.2.2 Emergency Vehicle Warning (EVW) -- 2.1.3 Infotainment Applications -- 2.2 The Requirements of Enhanced V2X Applications -- 2.3 Global Standardization for the V2X Applications -- 2.3.1 SAE -- 2.3.1.1 SAE J2735.
2.3.1.2 SAE J2945/1 -- 2.3.2 ETSI -- 2.3.3 3GPP -- 2.3.4 5GAA -- 2.3.5 China SAE (C-SAE) -- 2.3.6 IMT-2020 (5G) Promotion Group C-V2X Working Group -- 2.4 Summary -- References -- Chapter 3: V2X Network Architecture and Standards System -- 3.1 V2X Network Architecture -- 3.1.1 V2X Network Architecture from the Perspective of V2X Communications and Applications -- 3.1.2 V2X Network Architecture from the Perspective of CVIS -- 3.1.3 V2X Network Architecture from the Perspective of ITS -- 3.2 Technical Challenges of V2X -- 3.3 V2X Technology and Standards System -- 3.4 IEEE 802.11p -- 3.4.1 IEEE 802.11p Technology -- 3.4.1.1 Improvements of PHY -- 3.4.1.2 Improvements of MAC -- 3.4.2 Progress and Evolution of IEEE 802.11p Standards -- 3.5 C-V2X -- 3.5.1 Motivations, Opportunities, and Challenges of C-V2X -- 3.5.2 LTE-V2X Technology -- 3.5.2.1 R14 LTE-V2X Key Technical Features -- 3.5.2.2 R15 Enhanced LTE-V2X Key Technical Features -- 3.5.3 NR-V2X Technology -- 3.5.4 Progress and Evolution of C-V2X Standardization -- 3.6 Technical Comparisons of IEEE 802.11p and C-V2X -- 3.7 Comparisons of the Results of Simulation and Field Test of IEEE 802.11p and LTE-V2X -- 3.7.1 Simulation Results of NGMN V2X Task Force -- 3.7.2 Test Results of Open Road -- 3.8 Spectrum of IEEE 802.11p and C-V2X -- 3.9 Summary -- References -- Chapter 4: LTE-V2X Technology -- 4.1 Research Background and Technical Ideas -- 4.2 Technical Requirements -- 4.2.1 LTE-V2X Service Requirements -- 4.2.2 Technical Challenges of LTE-V2X -- 4.2.2.1 Network Architecture -- 4.2.2.2 Physical Channel Structure -- 4.2.2.3 Centralized Resource Allocation Method -- 4.2.2.4 Decentralized Resource Allocation Method -- 4.2.2.5 Synchronization Mechanism -- 4.2.2.6 Congestion Control Mechanism -- 4.2.2.7 V2X Communication Mechanism Based on Uu interface.
4.3 LTE-V2X Communication Mode and Network Architecture -- 4.3.1 LTE-V2X Communication Mode -- 4.3.2 LTE-V2X Network Architecture -- 4.4 Radio Interface Protocol Stack -- 4.5 Key Technologies of the Physical Layer -- 4.5.1 Waveform, Time/Frequency Resource and Transmission Channel -- 4.5.1.1 Transmission Waveform -- 4.5.1.2 Time/Frequency Resource -- 4.5.1.3 Transmission Channel Process -- 4.5.2 Physical Channel Signal -- 4.5.2.1 Automatic Gain Control (AGC) -- 4.5.2.2 Demodulation Reference Signal (DMRS) -- 4.5.2.3 Physical Channel Mapping -- 4.5.3 Resource Pool -- 4.5.3.1 Definition and Configuration of Resource Pool -- 4.5.3.2 Frequency Domain Resource Pool -- 4.5.3.3 Time Domain Resource Pool -- 4.6 Resource Allocation Method -- 4.6.1 Introduction -- 4.6.2 Decentralized Resource Allocation Method (Mode 4) -- 4.6.2.1 Resource Allocation Method Supported by Mode 4 -- 4.6.2.2 Sensing-Based Semi-persistent Resource Selection -- 4.6.2.3 Support of 20/50 ms Periodicity -- 4.6.2.4 Geographic Area Based Resource Allocation Method -- 4.6.2.5 Power Saving for Handheld UE -- 4.6.3 Centralized Resource Allocation Method (Mode 3) -- 4.7 Synchronization Mechanism -- 4.8 Quality of Service and Congestion Control -- 4.8.1 Quality of Service (QoS) -- 4.8.2 Congestion Control -- 4.9 LTE-V2X Enhancement on Uu -- 4.9.1 V2X Service Quality Indication -- 4.9.2 Uplink Semi-persistent Scheduling Enhancement -- 4.9.3 Downlink Broadcast Period Optimization -- 4.10 LTE-V2X Sidelink Enhancement -- 4.10.1 High-Order Modulation 64QAM -- 4.10.2 Carrier Aggregation -- 4.10.3 Transmission Delay Reduction -- 4.10.4 Mode 3 and Mode 4 Resource Pool Sharing -- 4.11 Summary -- References -- Chapter 5: NR-V2X Technology -- 5.1 NR-V2X Standardization Background -- 5.2 NR-V2X Deployment Scenarios -- 5.3 NR-V2X Generic Framework -- 5.3.1 NR-V2X Network Architecture.
5.3.2 NR-V2X PC5 Protocol Stack and Channel Mapping -- 5.4 Unicast, Groupcast and Broadcast Communications in NR-V2X PC5 -- 5.4.1 Broadcast Communication in NR-V2X PC5 -- 5.4.2 Groupcast Communication in NR-V2X PC5 -- 5.4.3 Unicast Communication in NR-V2X PC5 -- 5.5 NR-V2X QoS Management -- 5.6 Physical Layer Technologies in NR-V2X Sidelink -- 5.6.1 Definitions on Waveform, Numerology, Bandwidth Part and Time-Frequency Resource in NR Sidelink -- 5.6.1.1 Waveform -- 5.6.1.2 Numerology -- 5.6.1.3 BWP (Bandwidth Part) -- 5.6.1.4 Time-Frequency Resource -- 5.6.2 Physical Layer Structure -- 5.6.2.1 Slot Structure -- 5.6.2.2 Physical Channels and Signals in NR-V2X -- 5.6.2.3 Multiplexing of Physical Channels Within a Slot -- 5.6.2.4 S-SSB Structure -- 5.6.2.5 Demodulation Reference Signal (DMRS) -- 5.6.2.6 CSI-RS -- 5.6.2.7 Phase-Tracking Reference Signal -- 5.6.3 Control Signaling Structure in NR Sidelink -- 5.6.4 Resource Pool Configuration of NR Sidelink -- 5.7 HARQ Feedback Mechanism in NR-V2X Sidelink -- 5.7.1 HARQ Feedback Mechanism in NR Sidelink Unicast Communication Mode -- 5.7.2 HARQ Feedback Mechanism in NR-V2X Groupcast Communication Mode -- 5.7.2.1 NACK-Based HARQ Feedback -- 5.7.2.2 ACK/NACK-Based HARQ ACK/NACK-Based Feedback -- 5.7.3 PSFCH Resource Determination Mechanism -- 5.7.3.1 PSFCH Candidate Resource Set Determination -- 5.7.3.2 PSFCH Transmission Resource Determination -- 5.7.4 PSFCH Resources Collision Avoidance -- 5.8 Resource Allocation Mechanism in NR-V2X Sidelink -- 5.8.1 Mode 1 Resource Allocation in NR-V2X Sidelink -- 5.8.2 Mode 2 Resource Allocation in NR-V2X Sidelink -- 5.8.2.1 Procedures of Mode 2 Resource Allocation -- Trigger Condition(s) for Resource (Re-)selection -- Step 1: Determining Initial Candidate Resource Set -- Step 2: Resource Exclusion Operation -- Step 3: Determining the Available Resource Set.
Step 4: Selected Transmission Resource(s) Among the Determined Available Resource Set -- 5.8.2.2 Resource Re-evaluation and Pre-emption Operation -- Re-Evaluation Mechanism -- Resource Pre-emption Operation -- 5.8.2.3 Resource Indication and Reservation in SCI -- 5.9 Synchronization Mechanism in NR-V2X Sidelink -- 5.9.1 Synchronization Procedure in NR-V2X Sidelink -- 5.9.2 Resource Configuration of S-SSB -- 5.10 Power Control Mechanism in NR-V2X Sidelink -- 5.10.1 Downlink Pathloss Based Open-Loop Power Control -- 5.10.2 Sidelink Pathloss Based Open Loop Power Control -- 5.11 CSI Measurement and Feedback in NR-V2X Sidelink -- 5.12 Congestion Control in NR-V2X Sidelink -- 5.13 Cross-RAT Scheduling Mechanism -- 5.13.1 LTE Uu Control NR-V2X Sidelink -- 5.13.2 NR Uu Control LTE-V2X Sidelink -- 5.14 In-Device Coexistence Between NR-V2X and LTE-V2X -- 5.15 Summary -- References -- Chapter 6: Key Technologies Related to C-V2X Applications -- 6.1 C-V2X and Mobile Edge Computing -- 6.1.1 Overview of Mobile Edge Computing -- 6.1.1.1 MEC System Level -- 6.1.1.2 MEC Host Level -- 6.1.2 Application Scenarios of C-V2X and Mobile Edge Computing Integration -- 6.1.3 C-V2X and Mobile Edge Computing Integration Architecture -- 6.1.3.1 Radio Network Information Service (RNIS) -- 6.1.3.2 Location Service -- 6.1.3.3 Bandwidth Manager (BM) Service -- 6.1.3.4 Application Mobility Service (AMS) -- 6.2 C-V2X and 5G Network Slicing -- 6.2.1 Overview of 5G Network Slicing -- 6.2.2 5G Network Slice Supporting C-V2X Applications -- 6.3 C-V2X and High Definition Map (HDM) -- 6.3.1 Data in HD Maps -- 6.3.2 Production of HD Maps -- 6.3.2.1 Map Data Capture -- 6.3.2.2 Map Data Processing and Recognition -- 6.3.2.3 Verification and Release -- 6.3.3 HDM Maintenance and Update -- 6.4 C-V2X and High Accuracy Positioning -- 6.4.1 High Accuracy Positioning Requirements for C-V2X.
6.4.2 System Architecture for RTK-Based GNSS High Accuracy Positioning.
Record Nr. UNINA-9910637705603321
Chen Shanzhi  
Singapore : , : Springer : , : Posts & Telecom Press, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Cellular Vehicle-To-Everything (C-V2X) / / Shanzhi Chen [and six others]
Cellular Vehicle-To-Everything (C-V2X) / / Shanzhi Chen [and six others]
Autore Chen Shanzhi
Pubbl/distr/stampa Singapore : , : Springer : , : Posts & Telecom Press, , [2023]
Descrizione fisica 1 online resource (410 pages)
Disciplina 621.38456
Collana Wireless Networks Series
Soggetto topico Mobile communication systems
Vehicular ad hoc networks (Computer networks)
ISBN 981-19-5130-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword -- Preface -- Acknowledgments -- Contents -- About the Authors -- Abbreviations -- Chapter 1: Overview -- 1.1 Background of V2X -- 1.1.1 The Application and Evolution of Information and Communication Technologies (ICT) in the Automotive Industry -- 1.1.1.1 Broadcast -- 1.1.1.2 Information Services -- 1.1.1.3 Assisted Driving -- 1.1.1.4 Automated Driving -- 1.1.2 The Application and Evolution of ICT in the Transportation Industry -- 1.1.3 Cooperative Vehicle Infrastructure System and Automated Driving Supported by V2X -- 1.1.4 V2X and C-V2X -- 1.2 Global Development Trend: Policies and Standardization -- 1.2.1 The International Policies -- 1.2.2 International Standardization Organization -- 1.2.2.1 3GPP -- 1.2.2.2 IEEE -- 1.2.2.3 ITU -- 1.2.2.4 ISO -- 1.2.2.5 ETSI -- 1.2.2.6 SAE -- 1.3 China´s Development Status Quo: Policies and Standardization -- 1.3.1 Policies and Planning -- 1.3.2 Formulating Standards -- 1.3.2.1 Chinese Standardization Organizations -- 1.3.2.2 The Latest Progress of Chinese C-V2X Standardization -- 1.4 About This Book -- References -- Chapter 2: The Requirements of V2X Applications -- 2.1 The Requirements of Basic V2X Applications -- 2.1.1 Road Safety Applications -- 2.1.1.1 Electronic Emergency Brake Light (EEBL) -- 2.1.1.2 Forward Collision Warning (FCW) -- 2.1.1.3 Blind Spot Warning/Lane Change Warning (BSW/ LCW) -- 2.1.1.4 Do Not Pass Warning (DNPW) -- 2.1.1.5 Intersection Movement Assist (IMA) -- 2.1.1.6 Control Loss Warning (CLW) -- 2.1.1.7 Left Turn Assist (LTA) -- 2.1.1.8 Summary -- 2.1.2 Traffic Efficiency Applications -- 2.1.2.1 Green Light Optimal Speed Advisory (GLOSA) -- 2.1.2.2 Emergency Vehicle Warning (EVW) -- 2.1.3 Infotainment Applications -- 2.2 The Requirements of Enhanced V2X Applications -- 2.3 Global Standardization for the V2X Applications -- 2.3.1 SAE -- 2.3.1.1 SAE J2735.
2.3.1.2 SAE J2945/1 -- 2.3.2 ETSI -- 2.3.3 3GPP -- 2.3.4 5GAA -- 2.3.5 China SAE (C-SAE) -- 2.3.6 IMT-2020 (5G) Promotion Group C-V2X Working Group -- 2.4 Summary -- References -- Chapter 3: V2X Network Architecture and Standards System -- 3.1 V2X Network Architecture -- 3.1.1 V2X Network Architecture from the Perspective of V2X Communications and Applications -- 3.1.2 V2X Network Architecture from the Perspective of CVIS -- 3.1.3 V2X Network Architecture from the Perspective of ITS -- 3.2 Technical Challenges of V2X -- 3.3 V2X Technology and Standards System -- 3.4 IEEE 802.11p -- 3.4.1 IEEE 802.11p Technology -- 3.4.1.1 Improvements of PHY -- 3.4.1.2 Improvements of MAC -- 3.4.2 Progress and Evolution of IEEE 802.11p Standards -- 3.5 C-V2X -- 3.5.1 Motivations, Opportunities, and Challenges of C-V2X -- 3.5.2 LTE-V2X Technology -- 3.5.2.1 R14 LTE-V2X Key Technical Features -- 3.5.2.2 R15 Enhanced LTE-V2X Key Technical Features -- 3.5.3 NR-V2X Technology -- 3.5.4 Progress and Evolution of C-V2X Standardization -- 3.6 Technical Comparisons of IEEE 802.11p and C-V2X -- 3.7 Comparisons of the Results of Simulation and Field Test of IEEE 802.11p and LTE-V2X -- 3.7.1 Simulation Results of NGMN V2X Task Force -- 3.7.2 Test Results of Open Road -- 3.8 Spectrum of IEEE 802.11p and C-V2X -- 3.9 Summary -- References -- Chapter 4: LTE-V2X Technology -- 4.1 Research Background and Technical Ideas -- 4.2 Technical Requirements -- 4.2.1 LTE-V2X Service Requirements -- 4.2.2 Technical Challenges of LTE-V2X -- 4.2.2.1 Network Architecture -- 4.2.2.2 Physical Channel Structure -- 4.2.2.3 Centralized Resource Allocation Method -- 4.2.2.4 Decentralized Resource Allocation Method -- 4.2.2.5 Synchronization Mechanism -- 4.2.2.6 Congestion Control Mechanism -- 4.2.2.7 V2X Communication Mechanism Based on Uu interface.
4.3 LTE-V2X Communication Mode and Network Architecture -- 4.3.1 LTE-V2X Communication Mode -- 4.3.2 LTE-V2X Network Architecture -- 4.4 Radio Interface Protocol Stack -- 4.5 Key Technologies of the Physical Layer -- 4.5.1 Waveform, Time/Frequency Resource and Transmission Channel -- 4.5.1.1 Transmission Waveform -- 4.5.1.2 Time/Frequency Resource -- 4.5.1.3 Transmission Channel Process -- 4.5.2 Physical Channel Signal -- 4.5.2.1 Automatic Gain Control (AGC) -- 4.5.2.2 Demodulation Reference Signal (DMRS) -- 4.5.2.3 Physical Channel Mapping -- 4.5.3 Resource Pool -- 4.5.3.1 Definition and Configuration of Resource Pool -- 4.5.3.2 Frequency Domain Resource Pool -- 4.5.3.3 Time Domain Resource Pool -- 4.6 Resource Allocation Method -- 4.6.1 Introduction -- 4.6.2 Decentralized Resource Allocation Method (Mode 4) -- 4.6.2.1 Resource Allocation Method Supported by Mode 4 -- 4.6.2.2 Sensing-Based Semi-persistent Resource Selection -- 4.6.2.3 Support of 20/50 ms Periodicity -- 4.6.2.4 Geographic Area Based Resource Allocation Method -- 4.6.2.5 Power Saving for Handheld UE -- 4.6.3 Centralized Resource Allocation Method (Mode 3) -- 4.7 Synchronization Mechanism -- 4.8 Quality of Service and Congestion Control -- 4.8.1 Quality of Service (QoS) -- 4.8.2 Congestion Control -- 4.9 LTE-V2X Enhancement on Uu -- 4.9.1 V2X Service Quality Indication -- 4.9.2 Uplink Semi-persistent Scheduling Enhancement -- 4.9.3 Downlink Broadcast Period Optimization -- 4.10 LTE-V2X Sidelink Enhancement -- 4.10.1 High-Order Modulation 64QAM -- 4.10.2 Carrier Aggregation -- 4.10.3 Transmission Delay Reduction -- 4.10.4 Mode 3 and Mode 4 Resource Pool Sharing -- 4.11 Summary -- References -- Chapter 5: NR-V2X Technology -- 5.1 NR-V2X Standardization Background -- 5.2 NR-V2X Deployment Scenarios -- 5.3 NR-V2X Generic Framework -- 5.3.1 NR-V2X Network Architecture.
5.3.2 NR-V2X PC5 Protocol Stack and Channel Mapping -- 5.4 Unicast, Groupcast and Broadcast Communications in NR-V2X PC5 -- 5.4.1 Broadcast Communication in NR-V2X PC5 -- 5.4.2 Groupcast Communication in NR-V2X PC5 -- 5.4.3 Unicast Communication in NR-V2X PC5 -- 5.5 NR-V2X QoS Management -- 5.6 Physical Layer Technologies in NR-V2X Sidelink -- 5.6.1 Definitions on Waveform, Numerology, Bandwidth Part and Time-Frequency Resource in NR Sidelink -- 5.6.1.1 Waveform -- 5.6.1.2 Numerology -- 5.6.1.3 BWP (Bandwidth Part) -- 5.6.1.4 Time-Frequency Resource -- 5.6.2 Physical Layer Structure -- 5.6.2.1 Slot Structure -- 5.6.2.2 Physical Channels and Signals in NR-V2X -- 5.6.2.3 Multiplexing of Physical Channels Within a Slot -- 5.6.2.4 S-SSB Structure -- 5.6.2.5 Demodulation Reference Signal (DMRS) -- 5.6.2.6 CSI-RS -- 5.6.2.7 Phase-Tracking Reference Signal -- 5.6.3 Control Signaling Structure in NR Sidelink -- 5.6.4 Resource Pool Configuration of NR Sidelink -- 5.7 HARQ Feedback Mechanism in NR-V2X Sidelink -- 5.7.1 HARQ Feedback Mechanism in NR Sidelink Unicast Communication Mode -- 5.7.2 HARQ Feedback Mechanism in NR-V2X Groupcast Communication Mode -- 5.7.2.1 NACK-Based HARQ Feedback -- 5.7.2.2 ACK/NACK-Based HARQ ACK/NACK-Based Feedback -- 5.7.3 PSFCH Resource Determination Mechanism -- 5.7.3.1 PSFCH Candidate Resource Set Determination -- 5.7.3.2 PSFCH Transmission Resource Determination -- 5.7.4 PSFCH Resources Collision Avoidance -- 5.8 Resource Allocation Mechanism in NR-V2X Sidelink -- 5.8.1 Mode 1 Resource Allocation in NR-V2X Sidelink -- 5.8.2 Mode 2 Resource Allocation in NR-V2X Sidelink -- 5.8.2.1 Procedures of Mode 2 Resource Allocation -- Trigger Condition(s) for Resource (Re-)selection -- Step 1: Determining Initial Candidate Resource Set -- Step 2: Resource Exclusion Operation -- Step 3: Determining the Available Resource Set.
Step 4: Selected Transmission Resource(s) Among the Determined Available Resource Set -- 5.8.2.2 Resource Re-evaluation and Pre-emption Operation -- Re-Evaluation Mechanism -- Resource Pre-emption Operation -- 5.8.2.3 Resource Indication and Reservation in SCI -- 5.9 Synchronization Mechanism in NR-V2X Sidelink -- 5.9.1 Synchronization Procedure in NR-V2X Sidelink -- 5.9.2 Resource Configuration of S-SSB -- 5.10 Power Control Mechanism in NR-V2X Sidelink -- 5.10.1 Downlink Pathloss Based Open-Loop Power Control -- 5.10.2 Sidelink Pathloss Based Open Loop Power Control -- 5.11 CSI Measurement and Feedback in NR-V2X Sidelink -- 5.12 Congestion Control in NR-V2X Sidelink -- 5.13 Cross-RAT Scheduling Mechanism -- 5.13.1 LTE Uu Control NR-V2X Sidelink -- 5.13.2 NR Uu Control LTE-V2X Sidelink -- 5.14 In-Device Coexistence Between NR-V2X and LTE-V2X -- 5.15 Summary -- References -- Chapter 6: Key Technologies Related to C-V2X Applications -- 6.1 C-V2X and Mobile Edge Computing -- 6.1.1 Overview of Mobile Edge Computing -- 6.1.1.1 MEC System Level -- 6.1.1.2 MEC Host Level -- 6.1.2 Application Scenarios of C-V2X and Mobile Edge Computing Integration -- 6.1.3 C-V2X and Mobile Edge Computing Integration Architecture -- 6.1.3.1 Radio Network Information Service (RNIS) -- 6.1.3.2 Location Service -- 6.1.3.3 Bandwidth Manager (BM) Service -- 6.1.3.4 Application Mobility Service (AMS) -- 6.2 C-V2X and 5G Network Slicing -- 6.2.1 Overview of 5G Network Slicing -- 6.2.2 5G Network Slice Supporting C-V2X Applications -- 6.3 C-V2X and High Definition Map (HDM) -- 6.3.1 Data in HD Maps -- 6.3.2 Production of HD Maps -- 6.3.2.1 Map Data Capture -- 6.3.2.2 Map Data Processing and Recognition -- 6.3.2.3 Verification and Release -- 6.3.3 HDM Maintenance and Update -- 6.4 C-V2X and High Accuracy Positioning -- 6.4.1 High Accuracy Positioning Requirements for C-V2X.
6.4.2 System Architecture for RTK-Based GNSS High Accuracy Positioning.
Record Nr. UNISA-996547963603316
Chen Shanzhi  
Singapore : , : Springer : , : Posts & Telecom Press, , [2023]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Cloud and IoT-based vehicular ad hoc networks / / edited by Gurinder Singh [and three others]
Cloud and IoT-based vehicular ad hoc networks / / edited by Gurinder Singh [and three others]
Pubbl/distr/stampa Hoboken, NJ : , : John Wiley & Sons, Inc., , [2021]
Descrizione fisica 1 online resource (437 pages)
Disciplina 388.312
Soggetto topico Vehicular ad hoc networks (Computer networks)
Cloud computing
Internet of things
Soggetto genere / forma Electronic books.
ISBN 1-119-76182-4
1-119-76184-0
1-119-76181-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Half-Title Page -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgment -- 1 IoT in 5th Generation Wireless Communication -- 1.1 Introduction -- 1.2 Internet of Things With Wireless Communication -- 1.2.1 Modules Used for the Communication Protocol -- 1.2.1.1 Wi-Fi Modules for the Connectivity in Less Range -- 1.2.1.2 Wi-Fi Modules for Connectivity in Long Range -- 1.2.2 The Relation Between the Different Internet of Things Protocol -- 1.2.2.1 Effect of Distinction Among Node and Transmission Power -- 1.3 Internet of Things in 5G Mobile Computing -- 1.3.1 Practical Aspects of Integrating the Internet of Things With 5G Technologies -- 1.3.2 The Working of the 5G for the People and Its Generalization -- 1.3.3 5G Deployment Snapshot -- 1.3.4 Architecture of Internet of Things With 5G -- 1.4 Internet of Things and 5G Integration With Artificial Intelligence -- 1.4.1 Opportunity in the Future -- 1.4.2 Challenges Arising -- 1.4.2.1 The Management of IoT Devices Might Become Additional Efficient -- 1.4.2.2 5G Protocol Flaws Might Cause Security Flaws -- 1.4.2.3 5G Could Amend the Styles of Attacks Folks With IoT Devices -- 1.5 A Genetic Algorithm for 5G Technologies With Internet of Things -- 1.5.1 System Model -- 1.5.2 The Planned Algorithm -- 1.6 Conclusion & -- Future Work -- References -- 2 Internet of Things-Based Service Discovery for the 5G-VANET Milieu -- 2.1 VANET -- 2.2 5G -- 2.2.1 Why is 5G Used in VANET? -- 2.3 Service Discovery -- 2.4 Service Discovery in 5G-VANET Milieu -- 2.4.1 Service Discovery Methods -- 2.4.2 A Framework of Service Discovery in the 5G-VANET Milieu -- 2.5 Service Discovery Architecture for 5G-VANET Milieu -- 2.5.1 Vehicle User Side Discovery -- 2.5.2 Service Provider Side Discovery -- 2.5.3 Service Instance -- 2.5.4 Service Registry.
2.6 Performance Evaluation Metrics for Service Discovery Mechanism in the 5G-VANET Milieu -- 2.7 The Advantage of Service Discovery in the 5G-VANET Milieu -- 2.8 The Disadvantage of Service Discovery in the 5G-VANET Milieu -- 2.9 Future Enhancement and Research Directions -- 2.10 Conclusions -- References -- 3 IoT-Based Intelligent Transportation System for Safety -- 3.1 Introduction -- 3.2 Elements of ITS -- 3.3 Role of ITS in Safety -- 3.4 Sensor Technologies -- 3.4.1 Implanted Vehicle Sensor Applications -- 3.5 Classification of Vehicle Communication Systems -- 3.5.1 V2V Communication Access Technologies -- 3.6 IoT in Vehicles -- 3.7 Embedded Controllers -- 3.8 ITS Challenges and Opportunities -- References -- 4 Cloud and IoT-Based Vehicular Ad Hoc Networks (VANET) -- 4.1 Introduction to VANET -- 4.2 Vehicle-Vehicle Communication (V2V) -- 4.3 Vehicle-Infrastructure Communication (V2I) -- 4.4 Vehicle-Broadband Cloud Communication (V2B) -- 4.5 Characteristics of VANET -- 4.6 Prime Applications -- 4.7 State-of-the-Art Technologies -- 4.7.1 DSRC/WAVE -- 4.7.2 4G-LTE -- 4.8 VANET Challenges -- 4.9 Video Streaming Broadcasting -- 4.9.1 Video Streaming Mechanisms -- 4.9.2 Video Streaming Classes Over VANET -- References -- 5 Interleavers-Centric Conflict Management Solution for 5G Vehicular and Cellular-IoT Communications -- 5.1 Introduction -- 5.2 Background -- 5.2.1 Vehicular Communication -- 5.2.2 IoT Communication -- 5.3 Device Identity Conflict Issue -- 5.4 Related Work -- 5.5 Interleavers-Centric Conflict Management (ICM) -- 5.5.1 The Essence of Conflict Resolution -- 5.5.2 The Motivation -- 5.5.3 ICM: An Approach for Conflict Resolution -- 5.5.3.1 Advantages of ICM -- 5.5.3.2 Recommended Interleavers for ICM -- 5.6 Signaling Procedures for Enabling ICM -- 5.6.1 Signaling Between CIoT UE and Cellular or CIoT RAN.
5.6.2 Signaling Trilogy for CIoT Communications -- 5.6.3 Signaling for V2I Communications -- 5.6.4 Signaling for gNB-Initiated Software Upgrade -- 5.7 Conclusion -- References -- 6 Modeling of VANET for Future Generation Transportation System Through Edge/Fog/Cloud Computing Powered by 6G -- 6.1 Introduction -- 6.2 Related Works -- 6.3 Proposed System Overview -- 6.3.1 Driver Monitoring System -- 6.3.2 Edge/Fog/Cloud Computing -- 6.3.3 Software Defined Networking (SDN) Along With VANET -- 6.3.4 Integration of VANET With 5G Networks -- 6.3.5 IoT with 6G Networks -- 6.4 Modeling of Proposed System -- 6.5 Results and Discussion -- 6.6 Conclusion -- References -- 7 Integrating IoT and Cloud Computing for Wireless Sensor Network Applications -- 7.1 Introduction -- 7.1.1 IoT Architecture -- 7.1.2 Cloud Front End and Back End Architecture -- 7.1.3 Wireless Sensor Network -- 7.1.4 IoT Cloud and WSN Architecture -- 7.1.5 Research Motive -- 7.2 Challenges and Opportunities -- 7.2.1 Challenges IoT Cloud Faces -- 7.2.2 Opportunities IoT Cloud Offers -- 7.3 Case Study -- 7.3.1 Case 1 Improved Pollution Monitoring System for Automobiles Using Cloud-Based Wireless Sensor Networks -- 7.3.2 Case 2 Hybrid Electric Vehicle -- 7.4 Conclusion -- References -- 8 Comparative Study on Security and Privacy Issues in VANETs -- 8.1 Introduction -- 8.2 Characteristics of VANETs -- 8.2.1 VANETs Features -- 8.2.2 Challenges in VANET -- 8.2.3 Mitigating Features -- 8.3 Literature Survey -- 8.4 Authentication Requirements in VANETs Communications -- 8.4.1 Security Model for VANETs' Communication -- 8.4.2 VANET Security Services -- 8.4.3 Security Recommendation -- 8.4.4 Comparative Analysis -- 8.5 Conclusion -- References -- 9 Software Defined Network Horizons and Embracing its Security Challenges: From Theory to Practice -- 9.1 Introduction -- 9.2 Background and Literature Survey.
9.3 Objective and Scope of the Chapter -- 9.4 SDN Architecture Overviews -- 9.5 Open Flow -- 9.6 SDN Security Architecture -- 9.7 Techniques to Mitigate SDN Security Threats -- 9.7.1 Performance Metrics -- 9.7.2 Performance Tests -- 9.7.3 Data Hiding-Based Geo Location Authentication Protocol -- 9.7.4 Identity Access Management (IAM) Extended Policies -- 9.7.5 Extended Identity-Based Cryptography -- 9.8 Future Research Directions -- 9.9 Conclusions -- References -- 10 Bio-Inspired Routing in VANET -- 10.1 Introduction -- 10.2 Geography-Based Routing -- 10.3 Topology-Based Routing -- 10.3.1 Drawbacks -- 10.3.2 Literature Review -- 10.4 Biological Computing -- 10.5 Elephant Herding Optimization Algorithm -- 10.6 Research Methodology -- 10.6.1 Clan Operator -- 10.6.2 Separating Operator -- 10.6.3 Simulation Results -- 10.7 Conclusion -- References -- 11 Distributed Key Generation for Secure Communications Between Different Actors in Service Oriented Highly Dense VANET -- 11.1 Introduction -- 11.2 Hierarchical Clustering -- 11.3 Layer-Wise Key Generation -- 11.4 Implementation -- 11.5 Randomness Test -- 11.6 Brute Force Attack Analysis -- 11.7 Conclusion -- References -- 12 Challenges, Benefits and Issues: Future Emerging VANETs and Cloud Approaches -- 12.1 Introduction -- 12.2 VANET Background -- 12.3 VANET Communication Standards -- 12.4 VANET Applications -- 12.4.1 Safety Applications -- 12.4.2 Non-Safety Applications -- 12.5 VANET Sensing Technologies -- 12.5.1 Sensing Technology -- 12.5.2 Positioning Technologies -- 12.5.3 Vision Technologies -- 12.5.4 Vehicular Networks -- 12.6 Trust in Ad Hoc Networks -- 12.6.1 Cryptographic Approaches -- 12.6.2 Recommendation-Based Approaches -- 12.6.3 Fuzzy Logic-Based Approaches -- 12.6.4 Game Theory-Based Approaches -- 12.6.5 Infrastructure-Based Approaches -- 12.6.6 Road- and Consensus-Based Advances.
12.6.7 Blockchain-Based Approaches -- 12.6.8 Machine Learning Base Trust Management in Vehicular Networks -- 12.6.9 Trust in Cellular-Based (5G) VANET -- 12.6.10 Software-Defined VANET (SDVANET) -- 12.6.11 Trust in Vehicular Social Networks (VSN) -- 12.6.12 Future Challenges in VANET Trust Technique -- 12.7 Software-Defined Network (SDN) in VANET -- 12.7.1 Literature Work on SDVN -- 12.7.2 Advantages -- 12.7.3 Challenge -- 12.8 Clustering Approaches: Issues -- 12.9 Up-and-Coming Technologies for Potential VANET -- 12.9.1 Edge Cloud Computing -- 12.9.1.1 Fog Computing -- 12.9.1.2 Mobile Edge Computing (MEC) -- 12.9.1.3 Cloudlets -- 12.10 Challenges, Open Issues and Future Work of VANETs -- 12.10.1 Challenges of VANET -- 12.10.2 Open Issues in VANET Development -- 12.10.3 Future Research Work -- 12.11 Conclusion -- References -- 13 Role of Machine Learning for Ad Hoc Networks -- 13.1 Introduction -- 13.2 Literature Survey -- 13.3 Machine Learning Computing -- 13.3.1 Reinforcement Learning -- 13.3.2 Q-Learning/Transfer Learning -- 13.3.3 Fuzzy Logic -- 13.3.4 Logistic Regression -- 13.4 Methodology -- 13.4.1 Rate Estimation Algorithm -- 13.4.2 Route Selection Algorithm -- 13.4.3 Algorithm for Congestion Free Route (Congestion Algorithm) -- 13.5 Simulation Results -- 13.6 Conclusions -- References -- 14 Smart Automotive System With CV2X-Based Ad Hoc Communication -- 14.1 Introduction -- 14.2 Realization of Smart Vehicle -- 14.3 Analysis of NXP Smart Vehicle Architecture -- 14.4 Smart Vehicle Proof of Concept (POC) -- 14.4.1 ECE, SMIT Adaptation of 3GPP 5G Standard for 5G-Enabled Smart Vehicle -- 14.4.2 Emulation of Smart Vehicle at ECE, SMIT LAB -- 14.4.2.1 Emulation of V2I (Vehicle to Infrastructure) 5G URLLC Communication Between i) One Intelligent Roadside Unit (RSU), ii) One Smart Vehicle (SV).
14.4.2.2 Emulation of V2V (Vehicle to Vehicle) 5G URLLC Communication Between Two Smart Vehicles i) One Smart Vehicle (SV1), ii) Another Smart Vehicle (SV2).
Record Nr. UNINA-9910554882203321
Hoboken, NJ : , : John Wiley & Sons, Inc., , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Cloud and IoT-based vehicular ad hoc networks / / edited by Gurinder Singh [and three others]
Cloud and IoT-based vehicular ad hoc networks / / edited by Gurinder Singh [and three others]
Pubbl/distr/stampa Hoboken, NJ : , : John Wiley & Sons, Inc., , [2021]
Descrizione fisica 1 online resource (437 pages)
Disciplina 388.312
Soggetto topico Vehicular ad hoc networks (Computer networks)
Cloud computing
Internet of things
ISBN 1-119-76182-4
1-119-76184-0
1-119-76181-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Half-Title Page -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgment -- 1 IoT in 5th Generation Wireless Communication -- 1.1 Introduction -- 1.2 Internet of Things With Wireless Communication -- 1.2.1 Modules Used for the Communication Protocol -- 1.2.1.1 Wi-Fi Modules for the Connectivity in Less Range -- 1.2.1.2 Wi-Fi Modules for Connectivity in Long Range -- 1.2.2 The Relation Between the Different Internet of Things Protocol -- 1.2.2.1 Effect of Distinction Among Node and Transmission Power -- 1.3 Internet of Things in 5G Mobile Computing -- 1.3.1 Practical Aspects of Integrating the Internet of Things With 5G Technologies -- 1.3.2 The Working of the 5G for the People and Its Generalization -- 1.3.3 5G Deployment Snapshot -- 1.3.4 Architecture of Internet of Things With 5G -- 1.4 Internet of Things and 5G Integration With Artificial Intelligence -- 1.4.1 Opportunity in the Future -- 1.4.2 Challenges Arising -- 1.4.2.1 The Management of IoT Devices Might Become Additional Efficient -- 1.4.2.2 5G Protocol Flaws Might Cause Security Flaws -- 1.4.2.3 5G Could Amend the Styles of Attacks Folks With IoT Devices -- 1.5 A Genetic Algorithm for 5G Technologies With Internet of Things -- 1.5.1 System Model -- 1.5.2 The Planned Algorithm -- 1.6 Conclusion & -- Future Work -- References -- 2 Internet of Things-Based Service Discovery for the 5G-VANET Milieu -- 2.1 VANET -- 2.2 5G -- 2.2.1 Why is 5G Used in VANET? -- 2.3 Service Discovery -- 2.4 Service Discovery in 5G-VANET Milieu -- 2.4.1 Service Discovery Methods -- 2.4.2 A Framework of Service Discovery in the 5G-VANET Milieu -- 2.5 Service Discovery Architecture for 5G-VANET Milieu -- 2.5.1 Vehicle User Side Discovery -- 2.5.2 Service Provider Side Discovery -- 2.5.3 Service Instance -- 2.5.4 Service Registry.
2.6 Performance Evaluation Metrics for Service Discovery Mechanism in the 5G-VANET Milieu -- 2.7 The Advantage of Service Discovery in the 5G-VANET Milieu -- 2.8 The Disadvantage of Service Discovery in the 5G-VANET Milieu -- 2.9 Future Enhancement and Research Directions -- 2.10 Conclusions -- References -- 3 IoT-Based Intelligent Transportation System for Safety -- 3.1 Introduction -- 3.2 Elements of ITS -- 3.3 Role of ITS in Safety -- 3.4 Sensor Technologies -- 3.4.1 Implanted Vehicle Sensor Applications -- 3.5 Classification of Vehicle Communication Systems -- 3.5.1 V2V Communication Access Technologies -- 3.6 IoT in Vehicles -- 3.7 Embedded Controllers -- 3.8 ITS Challenges and Opportunities -- References -- 4 Cloud and IoT-Based Vehicular Ad Hoc Networks (VANET) -- 4.1 Introduction to VANET -- 4.2 Vehicle-Vehicle Communication (V2V) -- 4.3 Vehicle-Infrastructure Communication (V2I) -- 4.4 Vehicle-Broadband Cloud Communication (V2B) -- 4.5 Characteristics of VANET -- 4.6 Prime Applications -- 4.7 State-of-the-Art Technologies -- 4.7.1 DSRC/WAVE -- 4.7.2 4G-LTE -- 4.8 VANET Challenges -- 4.9 Video Streaming Broadcasting -- 4.9.1 Video Streaming Mechanisms -- 4.9.2 Video Streaming Classes Over VANET -- References -- 5 Interleavers-Centric Conflict Management Solution for 5G Vehicular and Cellular-IoT Communications -- 5.1 Introduction -- 5.2 Background -- 5.2.1 Vehicular Communication -- 5.2.2 IoT Communication -- 5.3 Device Identity Conflict Issue -- 5.4 Related Work -- 5.5 Interleavers-Centric Conflict Management (ICM) -- 5.5.1 The Essence of Conflict Resolution -- 5.5.2 The Motivation -- 5.5.3 ICM: An Approach for Conflict Resolution -- 5.5.3.1 Advantages of ICM -- 5.5.3.2 Recommended Interleavers for ICM -- 5.6 Signaling Procedures for Enabling ICM -- 5.6.1 Signaling Between CIoT UE and Cellular or CIoT RAN.
5.6.2 Signaling Trilogy for CIoT Communications -- 5.6.3 Signaling for V2I Communications -- 5.6.4 Signaling for gNB-Initiated Software Upgrade -- 5.7 Conclusion -- References -- 6 Modeling of VANET for Future Generation Transportation System Through Edge/Fog/Cloud Computing Powered by 6G -- 6.1 Introduction -- 6.2 Related Works -- 6.3 Proposed System Overview -- 6.3.1 Driver Monitoring System -- 6.3.2 Edge/Fog/Cloud Computing -- 6.3.3 Software Defined Networking (SDN) Along With VANET -- 6.3.4 Integration of VANET With 5G Networks -- 6.3.5 IoT with 6G Networks -- 6.4 Modeling of Proposed System -- 6.5 Results and Discussion -- 6.6 Conclusion -- References -- 7 Integrating IoT and Cloud Computing for Wireless Sensor Network Applications -- 7.1 Introduction -- 7.1.1 IoT Architecture -- 7.1.2 Cloud Front End and Back End Architecture -- 7.1.3 Wireless Sensor Network -- 7.1.4 IoT Cloud and WSN Architecture -- 7.1.5 Research Motive -- 7.2 Challenges and Opportunities -- 7.2.1 Challenges IoT Cloud Faces -- 7.2.2 Opportunities IoT Cloud Offers -- 7.3 Case Study -- 7.3.1 Case 1 Improved Pollution Monitoring System for Automobiles Using Cloud-Based Wireless Sensor Networks -- 7.3.2 Case 2 Hybrid Electric Vehicle -- 7.4 Conclusion -- References -- 8 Comparative Study on Security and Privacy Issues in VANETs -- 8.1 Introduction -- 8.2 Characteristics of VANETs -- 8.2.1 VANETs Features -- 8.2.2 Challenges in VANET -- 8.2.3 Mitigating Features -- 8.3 Literature Survey -- 8.4 Authentication Requirements in VANETs Communications -- 8.4.1 Security Model for VANETs' Communication -- 8.4.2 VANET Security Services -- 8.4.3 Security Recommendation -- 8.4.4 Comparative Analysis -- 8.5 Conclusion -- References -- 9 Software Defined Network Horizons and Embracing its Security Challenges: From Theory to Practice -- 9.1 Introduction -- 9.2 Background and Literature Survey.
9.3 Objective and Scope of the Chapter -- 9.4 SDN Architecture Overviews -- 9.5 Open Flow -- 9.6 SDN Security Architecture -- 9.7 Techniques to Mitigate SDN Security Threats -- 9.7.1 Performance Metrics -- 9.7.2 Performance Tests -- 9.7.3 Data Hiding-Based Geo Location Authentication Protocol -- 9.7.4 Identity Access Management (IAM) Extended Policies -- 9.7.5 Extended Identity-Based Cryptography -- 9.8 Future Research Directions -- 9.9 Conclusions -- References -- 10 Bio-Inspired Routing in VANET -- 10.1 Introduction -- 10.2 Geography-Based Routing -- 10.3 Topology-Based Routing -- 10.3.1 Drawbacks -- 10.3.2 Literature Review -- 10.4 Biological Computing -- 10.5 Elephant Herding Optimization Algorithm -- 10.6 Research Methodology -- 10.6.1 Clan Operator -- 10.6.2 Separating Operator -- 10.6.3 Simulation Results -- 10.7 Conclusion -- References -- 11 Distributed Key Generation for Secure Communications Between Different Actors in Service Oriented Highly Dense VANET -- 11.1 Introduction -- 11.2 Hierarchical Clustering -- 11.3 Layer-Wise Key Generation -- 11.4 Implementation -- 11.5 Randomness Test -- 11.6 Brute Force Attack Analysis -- 11.7 Conclusion -- References -- 12 Challenges, Benefits and Issues: Future Emerging VANETs and Cloud Approaches -- 12.1 Introduction -- 12.2 VANET Background -- 12.3 VANET Communication Standards -- 12.4 VANET Applications -- 12.4.1 Safety Applications -- 12.4.2 Non-Safety Applications -- 12.5 VANET Sensing Technologies -- 12.5.1 Sensing Technology -- 12.5.2 Positioning Technologies -- 12.5.3 Vision Technologies -- 12.5.4 Vehicular Networks -- 12.6 Trust in Ad Hoc Networks -- 12.6.1 Cryptographic Approaches -- 12.6.2 Recommendation-Based Approaches -- 12.6.3 Fuzzy Logic-Based Approaches -- 12.6.4 Game Theory-Based Approaches -- 12.6.5 Infrastructure-Based Approaches -- 12.6.6 Road- and Consensus-Based Advances.
12.6.7 Blockchain-Based Approaches -- 12.6.8 Machine Learning Base Trust Management in Vehicular Networks -- 12.6.9 Trust in Cellular-Based (5G) VANET -- 12.6.10 Software-Defined VANET (SDVANET) -- 12.6.11 Trust in Vehicular Social Networks (VSN) -- 12.6.12 Future Challenges in VANET Trust Technique -- 12.7 Software-Defined Network (SDN) in VANET -- 12.7.1 Literature Work on SDVN -- 12.7.2 Advantages -- 12.7.3 Challenge -- 12.8 Clustering Approaches: Issues -- 12.9 Up-and-Coming Technologies for Potential VANET -- 12.9.1 Edge Cloud Computing -- 12.9.1.1 Fog Computing -- 12.9.1.2 Mobile Edge Computing (MEC) -- 12.9.1.3 Cloudlets -- 12.10 Challenges, Open Issues and Future Work of VANETs -- 12.10.1 Challenges of VANET -- 12.10.2 Open Issues in VANET Development -- 12.10.3 Future Research Work -- 12.11 Conclusion -- References -- 13 Role of Machine Learning for Ad Hoc Networks -- 13.1 Introduction -- 13.2 Literature Survey -- 13.3 Machine Learning Computing -- 13.3.1 Reinforcement Learning -- 13.3.2 Q-Learning/Transfer Learning -- 13.3.3 Fuzzy Logic -- 13.3.4 Logistic Regression -- 13.4 Methodology -- 13.4.1 Rate Estimation Algorithm -- 13.4.2 Route Selection Algorithm -- 13.4.3 Algorithm for Congestion Free Route (Congestion Algorithm) -- 13.5 Simulation Results -- 13.6 Conclusions -- References -- 14 Smart Automotive System With CV2X-Based Ad Hoc Communication -- 14.1 Introduction -- 14.2 Realization of Smart Vehicle -- 14.3 Analysis of NXP Smart Vehicle Architecture -- 14.4 Smart Vehicle Proof of Concept (POC) -- 14.4.1 ECE, SMIT Adaptation of 3GPP 5G Standard for 5G-Enabled Smart Vehicle -- 14.4.2 Emulation of Smart Vehicle at ECE, SMIT LAB -- 14.4.2.1 Emulation of V2I (Vehicle to Infrastructure) 5G URLLC Communication Between i) One Intelligent Roadside Unit (RSU), ii) One Smart Vehicle (SV).
14.4.2.2 Emulation of V2V (Vehicle to Vehicle) 5G URLLC Communication Between Two Smart Vehicles i) One Smart Vehicle (SV1), ii) Another Smart Vehicle (SV2).
Record Nr. UNINA-9910830457903321
Hoboken, NJ : , : John Wiley & Sons, Inc., , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui