top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Installation, care, and maintenance of wood shake and shingle siding [[electronic resource] /] / Jack Dwyer ... [and others]
Installation, care, and maintenance of wood shake and shingle siding [[electronic resource] /] / Jack Dwyer ... [and others]
Pubbl/distr/stampa Madison, WI : , : U.S. Dept. of Agriculture, Forest Service, Forest Products Laboratory, , [2011]
Descrizione fisica 1 online resource (13 pages : illustrations (some color)
Altri autori (Persone) DwyerJack
Collana General technical report FPL
Soggetto topico Shingles
Wood
Siding (Building materials)
Siding (Building materials) - Design and construction
Siding (Building materials) - Maintenance and repair
Ultraviolet radiation
Paint
Stains and staining
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910701383303321
Madison, WI : , : U.S. Dept. of Agriculture, Forest Service, Forest Products Laboratory, , [2011]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Optical coating in space / / prepared by: Alan N. Bunner
Optical coating in space / / prepared by: Alan N. Bunner
Autore Bunner Alan N.
Pubbl/distr/stampa [Danbury, Conn.] : , : Perkin-Elmer Corp. Optical Group
Descrizione fisica 1 online resource (x, 173 pages) : illustrations
Collana NASA-CR ; 175441
Soggetto topico Optical materials
Protective coatings
Space stations
Spaceborne telescopes
Structural design criteria
Ultraviolet radiation
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910702604203321
Bunner Alan N.  
[Danbury, Conn.] : , : Perkin-Elmer Corp. Optical Group
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Oxidation of polyethylene [[electronic resource] ] : a comparison of plasma and ultraviolet ozone processing techniques / / by Nicole Zander, Daphne Pappas, and Ben Stein
Oxidation of polyethylene [[electronic resource] ] : a comparison of plasma and ultraviolet ozone processing techniques / / by Nicole Zander, Daphne Pappas, and Ben Stein
Autore Zander Nicole
Pubbl/distr/stampa Aberdeen Proving Ground, MD : , : Army Research Laboratory, , [2009]
Descrizione fisica iv, 16 pages : digital, PDF file
Altri autori (Persone) PappasDaphne
SteinBen
Collana ARL-TR
Soggetto topico Polyethylene
X-ray photoelectron spectroscopy
Ultraviolet radiation
Oxidation
Surface energy
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Oxidation of polyethylene
Record Nr. UNINA-9910698753103321
Zander Nicole  
Aberdeen Proving Ground, MD : , : Army Research Laboratory, , [2009]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Ozone depletion [[electronic resource]]
Ozone depletion [[electronic resource]]
Pubbl/distr/stampa [Washington, D.C.?] : , : U.S. Environmental Protection Agency, Air and Radiation, , [1999]
Soggetto topico Atmospheric ozone
Ozone layer depletion
Ultraviolet radiation
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910693666303321
[Washington, D.C.?] : , : U.S. Environmental Protection Agency, Air and Radiation, , [1999]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Photochemical Reactors : Theory, Methods, and Applications of Ultraviolet Radiation / / Ernest R. Blatchley III
Photochemical Reactors : Theory, Methods, and Applications of Ultraviolet Radiation / / Ernest R. Blatchley III
Autore Blatchley Ernest R., III
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2022
Descrizione fisica 1 online resource (604 pages)
Soggetto topico Ultraviolet radiation
Photochemistry
ISBN 1-119-87160-3
1-119-87135-2
1-119-87134-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgements -- About the Companion Website -- Chapter 1 Background and History -- 1.1 Introduction -- 1.2 Early Applications, Discoveries -- 1.3 Development of Modern Principles of Photochemistry -- 1.4 Laws of Photochemistry: People and Personalities -- 1.4.1 Grotthuss-Draper Law: First Law of Photochemistry -- 1.4.2 Stark-Einstein Law: Second Law of Photochemistry -- 1.4.3 Bunsen-Roscoe Law: The Law of Reciprocity -- 1.5 Natural Photochemical Processes -- 1.6 Atmospheric Chemistry -- 1.7 Early Discoveries and Applications -- 1.7.1 Photography -- 1.7.2 Disinfection Science -- 1.7.3 Engineering Applications of UV Radiation in Drinking Water Disinfection -- 1.7.4 Engineering Applications of UV Radiation in Disinfection of Municipal Wastewater -- 1.8 Contemporary Applications -- 1.8.1 Disinfection of Water -- 1.8.2 Direct Photolysis in Water Treatment -- 1.8.3 Disinfection of Air (UVGI) and Surfaces -- 1.9 Market Size and Growth -- 1.10 Objectives for Book -- 1.11 Approaches Used in Book -- Notes -- References -- Chapter 2 Photochemical Reactions -- 2.1 Introduction -- 2.2 Laws of Photochemistry -- 2.3 Energy in Photochemical Processes -- 2.4 Kinetics -- 2.4.1 Kinetics of Thermal Chemical Reactions -- 2.4.2 Kinetics of Photochemical Reactions: Monochromatic Radiation Source, Electromagnetic Energy Basis -- 2.4.2.1 Limiting Case 1: Opaque Solution -- 2.4.2.2 Limiting Case 2: Transparent Solution -- 2.4.2.3 Kinetics of Photochemical Reactions: Photon Basis -- 2.4.2.4 Limiting Case 1: Opaque Solution -- 2.4.2.5 Limiting Case 2: Transparent Solution -- 2.5 Summary of Expressions to Describe Photochemical Kinetics: Monochromatic Radiation Sources -- 2.5.1 Kinetics of Photochemical Reactions: Polychromatic Radiation Source, Photon Basis -- 2.6 Summary -- Notes -- References.
Chapter 3 Photochemical Reactor Theory -- 3.1 Introduction -- 3.2 Basic Principles of Material (Molar or Mass) Balance -- 3.3 Basic Chemical Reactor Models -- 3.3.1 Batch Reactor Model -- 3.3.2 Ideal Continuous-Flow Stirred Tank Reactor Model (CFSTR) -- 3.3.3 Ideal Plug-Flow Reactor Model (PFR) -- 3.3.4 CFSTR Cascade Model -- 3.3.5 Effects of Mixing on Performance in Chemical Reactors - Material Balance Approach -- 3.3.6 Time as a Master Variable - Residence Time Distribution Function -- 3.3.7 Effects of Mixing on Performance in Chemical Reactors - Segregated-Flow Model -- 3.4 Models for Photochemical Reactors -- 3.4.1 Dose as the Independent (Master) Variable -- 3.4.2 Batch Reactor -- 3.4.3 Fluence Rate Fields in Photoreactors -- 3.4.4 Effects of Mixing on Performance of UV Photoreactors -- 3.4.5 Prediction of Performance in Photochemical Reactors - Segregated-Flow Model -- 3.5 Executable Model -- 3.6 Summary -- Notes -- References -- Appendix 3.A Derivation of Relationship to Describe Transient (Start-up) Behavior in an Ideal CFSTR -- Appendix 3.B Derivation of Normalized Residence Time Distribution Functions for CFSTR Cascade Systems -- 3.B.1 Single CFSTR -- 3.B.2 Cascade of Two Identical CFSTRs -- 3.B.3 Cascade of Three Identical CFSTRs -- 3.B.4 Generalization of Results to a Cascade of n CFSTRs in Series -- Appendix 3.C Proof of Segregated-flow Model Based on Probability Theory -- Chapter 4 Ultraviolet Radiation Sources -- 4.1 Introduction -- 4.2 Incandescence -- 4.3 Solar Radiation -- 4.4 Artificial Sources of UV Radiation -- 4.4.1 Gas Discharge Lamps: Mercury Lamps -- 4.4.2 Light-Emitting Diodes (LEDs) -- 4.4.3 Excimer Lamps -- 4.4.4 Lasers -- 4.4.5 Upconversion -- 4.5 Summary -- Notes -- References -- Chapter 5 Actinometry and Radiometry -- 5.1 Introduction -- 5.2 Chemical Actinometry -- 5.2.1 Beam Nonuniformity.
5.2.2 Reflection and Refraction -- 5.2.3 Absorption -- 5.2.4 Divergence -- 5.2.5 Absorption by Photoproducts -- 5.2.6 Extent of Absorption by Chemical Actinometer -- 5.2.7 Polychromatic Behavior -- 5.2.8 Alternative Bench-Scale Reactors for Use With Chemical Actinometers -- 5.2.8.1 Rate of Photon Application per Unit Volume of Solution: Ei A -- 5.2.8.2 Effective Path Length: l -- 5.2.9 Chemical Actinometers Used With UV Photoreactors -- 5.2.9.1 Uranyl Oxalate -- 5.2.9.2 Potassium Ferrioxalate -- 5.2.9.3 Iodide/Iodate -- 5.2.9.4 2-Nitrobezaldehyde -- 5.2.9.5 Nucleoside Actinometers -- 5.3 Radiometry -- 5.3.1 Absolute Cryogenic Radiometer (ACR) -- 5.3.2 Thermopile -- 5.3.3 Photomultiplier Tube (PMT) -- 5.3.4 Si Photodiode -- 5.3.5 Spectroradiometer -- 5.3.6 Micro Fluorescent Silica Detector (MFSD) -- 5.4 Summary -- Notes -- References -- Chapter 6 Numerical Models for Simulation of Photochemical Reactor Behavior -- 6.1 Introduction -- 6.2 Fluence Rate (E') Field Models -- 6.2.1 Photon Emission Sub-Models -- 6.2.2 Sub-Models to Account for Optical Behavior -- 6.2.2.1 Reflection and Refraction -- 6.2.2.2 Divergence/Dissipation -- 6.2.2.3 Combination of Absorption (Beer-Lambert Law) and Reflection -- 6.2.3 Fluence Rate Field Models -- 6.2.3.1 Point-Source Summation/Line-Source Integration (PSS/LSI) -- 6.2.3.2 Multiple Segment Source Summation (MSSS) -- 6.2.3.3 Radiative Transfer Equation (RTE) -- 6.2.3.4 Surface Power Apportionment for Cylindrical Excimer Lamps (SPACE) -- 6.2.3.5 Ray Tracing -- 6.3 Computational Fluid Dynamics (CFD) -- 6.3.1 Governing Equations: Fluid Mechanics -- 6.3.1.1 Gravity -- 6.3.1.2 Differential Pressure -- 6.3.1.3 Shear Stress -- 6.3.2 Index (Tensor) Notation -- 6.3.3 Governing Equations: Transport of Reactants -- 6.3.4 Simulations for Systems Operating in the Turbulent Regime.
6.3.5 Accuracy of Turbulence Models for Flow Field Simulations -- 6.3.5.1 Open-Channel UV Photoreactor -- Vertical Lamp Orientation -- 6.3.5.2 Closed, Single-Lamp, Annular Reactors -- 6.3.5.3 Closed-Vessel, Cross-Flow, Four-Lamp Reactor -- 6.3.5.4 Reactors with Internal Baffles -- 6.3.6 Process Simulations by CFD-E' Field Modeling -- 6.3.7 Selection of Sub-Models -- 6.3.7.1 Reaction Kinetics Sub-Model -- 6.3.7.2 Fluence Rate Field Sub-Model -- 6.3.7.3 CFD Sub-Model -- 6.3.7.4 General Factors to Consider in Sub-Model Selection -- 6.4 Summary -- Notes -- References -- Appendix 6.A PSS Model Implementation in Spreadsheet Format -- Simulation of Fluence Rate Field in Cylindrical Lamp Reactor -- Simulation of Fluence Rate Field in Flat-Screen Reactor -- Interpretation of Simulation Results -- Chapter 7 Validation of Photochemical Reactors -- 7.1 Introduction -- 7.2 Biodosimetry -- 7.3 Mathematical Descriptions of UV Photoreactor Validation by Biodosimetry -- 7.3.1 Gaussian Dose Distribution, First-Order Kinetics -- 7.3.2 Simulated Dose Distributions, First-Order Kinetics -- 7.3.3 Biodosimetry Experiment -- 7.3.4 Challenge Organisms Commonly Used in Biodosimetry -- 7.3.5 Effects of Variability in Challenge Organism Dose-Response Behavior on Biodosimetry -- 7.3.6 Use of Chemical Actinometers for Reactor Validation -- 7.3.7 Lagrangian Actinometry -- 7.3.8 Convolution Hypothesis - Theoretical Background -- 7.3.9 Convolution Hypothesis - Experimental Verification -- 7.3.10 Application of LA -- 7.3.11 Microsphere Dose-Response Behavior -- 7.3.12 Reactor Testing -- 7.3.13 Integration of MFSD and CFD-E' Simulations -- 7.4 UV Photoreactor Validation Protocols -- 7.4.1 Ultraviolet Disinfection Guidance Manual for the Long-Term 2 Enhanced Surface Water Treatment Rule (UVDGM) -- 7.4.2 Österreichisches Normungsinstitut (ÖNORM).
7.4.3 Deutsche Vereinigung des Gas- und Wasserfaches (DVGW) -- 7.4.4 National Water Research Institute (NWRI) -- 7.4.5 NSF/ANSI -- 7.5 Summary -- Appendix 7.A Description of the Error Function and Its Complement -- Notes -- References -- Chapter 8 Methods for Quantification of Microbial Responses to UVC Irradiation -- 8.1 Introduction -- 8.2 Mechanisms of Microbial Inactivation Resulting from UVC Irradiation -- 8.3 Reproductive Cycles of Common Microbial Groups -- 8.3.1 Bacterial Reproduction -- 8.3.2 Replication of Viruses -- 8.3.3 Life Cycle of Protozoa -- 8.3.4 Reproduction of Algae -- 8.4 Lessons Learned from use of Inappropriate Methods -- 8.4.1 Protozoan Parasites -- 8.4.2 Fish Parasites -- 8.4.3 Algae -- 8.4.4 Viruses -- 8.5 Quantification of Viable Microorganisms with UV Disinfection Systems -- 8.5.1 Bacteria -- 8.5.1.1 MPN-DCM -- 8.5.1.2 Membrane Filtration -- 8.5.1.3 Compartment Bag Test -- 8.5.2 Viruses -- 8.5.2.1 Plaque Formation -- 8.5.2.2 Cytopathic Effect (CPE) -- 8.5.3 Protozoa -- 8.5.3.1 Animal Infection -- 8.5.3.2 Cell Culture -- 8.5.4 Algae -- 8.6 Molecular Biology -- 8.6.1 Polymerase Chain Reaction and Related Methods -- 8.6.1.1 Integrated Cell Culture/PCR -- 8.6.1.2 Long Amplicon q-PCR -- 8.6.1.3 Molecular Viability Testing -- 8.6.1.4 Intercalating Dyes/PCR -- 8.7 Summary -- Notes -- References -- Chapter 9 UV Disinfection of Drinking Water and Municipal Wastewater -- 9.1 Introduction -- 9.2 Primary vs. Secondary Disinfection -- 9.3 Motivations for Use of UV-Based Disinfection -- 9.4 Traditional View of Drinking Water and Municipal Wastewater as Separate Domains -- 9.4.1 Differences Between Water and Wastewater Disinfection -- 9.5 Disinfection Kinetics -- 9.5.1 Mathematical Models of UV Disinfection Kinetics -- 9.5.1.1 Single-Event Model -- 9.5.1.2 Series-Event Model -- 9.5.1.3 Multi-Target Model -- 9.5.1.4 Two-Population Models.
9.6 Microbial Repair Processes.
Record Nr. UNINA-9910643666803321
Blatchley Ernest R., III  
Newark : , : John Wiley & Sons, Incorporated, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Photochemical reactors : theory, methods, and ultraviolet radiation applications / / Ernest R Blatchley
Photochemical reactors : theory, methods, and ultraviolet radiation applications / / Ernest R Blatchley
Autore Blatchley Ernest R.
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2022]
Descrizione fisica 1 online resource (604 pages)
Disciplina 577.2770998
Soggetto topico Ultraviolet radiation
Photochemistry
ISBN 1-119-87160-3
1-119-87135-2
1-119-87134-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgements -- About the Companion Website -- Chapter 1 Background and History -- 1.1 Introduction -- 1.2 Early Applications, Discoveries -- 1.3 Development of Modern Principles of Photochemistry -- 1.4 Laws of Photochemistry: People and Personalities -- 1.4.1 Grotthuss-Draper Law: First Law of Photochemistry -- 1.4.2 Stark-Einstein Law: Second Law of Photochemistry -- 1.4.3 Bunsen-Roscoe Law: The Law of Reciprocity -- 1.5 Natural Photochemical Processes -- 1.6 Atmospheric Chemistry -- 1.7 Early Discoveries and Applications -- 1.7.1 Photography -- 1.7.2 Disinfection Science -- 1.7.3 Engineering Applications of UV Radiation in Drinking Water Disinfection -- 1.7.4 Engineering Applications of UV Radiation in Disinfection of Municipal Wastewater -- 1.8 Contemporary Applications -- 1.8.1 Disinfection of Water -- 1.8.2 Direct Photolysis in Water Treatment -- 1.8.3 Disinfection of Air (UVGI) and Surfaces -- 1.9 Market Size and Growth -- 1.10 Objectives for Book -- 1.11 Approaches Used in Book -- Notes -- References -- Chapter 2 Photochemical Reactions -- 2.1 Introduction -- 2.2 Laws of Photochemistry -- 2.3 Energy in Photochemical Processes -- 2.4 Kinetics -- 2.4.1 Kinetics of Thermal Chemical Reactions -- 2.4.2 Kinetics of Photochemical Reactions: Monochromatic Radiation Source, Electromagnetic Energy Basis -- 2.4.2.1 Limiting Case 1: Opaque Solution -- 2.4.2.2 Limiting Case 2: Transparent Solution -- 2.4.2.3 Kinetics of Photochemical Reactions: Photon Basis -- 2.4.2.4 Limiting Case 1: Opaque Solution -- 2.4.2.5 Limiting Case 2: Transparent Solution -- 2.5 Summary of Expressions to Describe Photochemical Kinetics: Monochromatic Radiation Sources -- 2.5.1 Kinetics of Photochemical Reactions: Polychromatic Radiation Source, Photon Basis -- 2.6 Summary -- Notes -- References.
Chapter 3 Photochemical Reactor Theory -- 3.1 Introduction -- 3.2 Basic Principles of Material (Molar or Mass) Balance -- 3.3 Basic Chemical Reactor Models -- 3.3.1 Batch Reactor Model -- 3.3.2 Ideal Continuous-Flow Stirred Tank Reactor Model (CFSTR) -- 3.3.3 Ideal Plug-Flow Reactor Model (PFR) -- 3.3.4 CFSTR Cascade Model -- 3.3.5 Effects of Mixing on Performance in Chemical Reactors - Material Balance Approach -- 3.3.6 Time as a Master Variable - Residence Time Distribution Function -- 3.3.7 Effects of Mixing on Performance in Chemical Reactors - Segregated-Flow Model -- 3.4 Models for Photochemical Reactors -- 3.4.1 Dose as the Independent (Master) Variable -- 3.4.2 Batch Reactor -- 3.4.3 Fluence Rate Fields in Photoreactors -- 3.4.4 Effects of Mixing on Performance of UV Photoreactors -- 3.4.5 Prediction of Performance in Photochemical Reactors - Segregated-Flow Model -- 3.5 Executable Model -- 3.6 Summary -- Notes -- References -- Appendix 3.A Derivation of Relationship to Describe Transient (Start-up) Behavior in an Ideal CFSTR -- Appendix 3.B Derivation of Normalized Residence Time Distribution Functions for CFSTR Cascade Systems -- 3.B.1 Single CFSTR -- 3.B.2 Cascade of Two Identical CFSTRs -- 3.B.3 Cascade of Three Identical CFSTRs -- 3.B.4 Generalization of Results to a Cascade of n CFSTRs in Series -- Appendix 3.C Proof of Segregated-flow Model Based on Probability Theory -- Chapter 4 Ultraviolet Radiation Sources -- 4.1 Introduction -- 4.2 Incandescence -- 4.3 Solar Radiation -- 4.4 Artificial Sources of UV Radiation -- 4.4.1 Gas Discharge Lamps: Mercury Lamps -- 4.4.2 Light-Emitting Diodes (LEDs) -- 4.4.3 Excimer Lamps -- 4.4.4 Lasers -- 4.4.5 Upconversion -- 4.5 Summary -- Notes -- References -- Chapter 5 Actinometry and Radiometry -- 5.1 Introduction -- 5.2 Chemical Actinometry -- 5.2.1 Beam Nonuniformity.
5.2.2 Reflection and Refraction -- 5.2.3 Absorption -- 5.2.4 Divergence -- 5.2.5 Absorption by Photoproducts -- 5.2.6 Extent of Absorption by Chemical Actinometer -- 5.2.7 Polychromatic Behavior -- 5.2.8 Alternative Bench-Scale Reactors for Use With Chemical Actinometers -- 5.2.8.1 Rate of Photon Application per Unit Volume of Solution: Ei A -- 5.2.8.2 Effective Path Length: l -- 5.2.9 Chemical Actinometers Used With UV Photoreactors -- 5.2.9.1 Uranyl Oxalate -- 5.2.9.2 Potassium Ferrioxalate -- 5.2.9.3 Iodide/Iodate -- 5.2.9.4 2-Nitrobezaldehyde -- 5.2.9.5 Nucleoside Actinometers -- 5.3 Radiometry -- 5.3.1 Absolute Cryogenic Radiometer (ACR) -- 5.3.2 Thermopile -- 5.3.3 Photomultiplier Tube (PMT) -- 5.3.4 Si Photodiode -- 5.3.5 Spectroradiometer -- 5.3.6 Micro Fluorescent Silica Detector (MFSD) -- 5.4 Summary -- Notes -- References -- Chapter 6 Numerical Models for Simulation of Photochemical Reactor Behavior -- 6.1 Introduction -- 6.2 Fluence Rate (E') Field Models -- 6.2.1 Photon Emission Sub-Models -- 6.2.2 Sub-Models to Account for Optical Behavior -- 6.2.2.1 Reflection and Refraction -- 6.2.2.2 Divergence/Dissipation -- 6.2.2.3 Combination of Absorption (Beer-Lambert Law) and Reflection -- 6.2.3 Fluence Rate Field Models -- 6.2.3.1 Point-Source Summation/Line-Source Integration (PSS/LSI) -- 6.2.3.2 Multiple Segment Source Summation (MSSS) -- 6.2.3.3 Radiative Transfer Equation (RTE) -- 6.2.3.4 Surface Power Apportionment for Cylindrical Excimer Lamps (SPACE) -- 6.2.3.5 Ray Tracing -- 6.3 Computational Fluid Dynamics (CFD) -- 6.3.1 Governing Equations: Fluid Mechanics -- 6.3.1.1 Gravity -- 6.3.1.2 Differential Pressure -- 6.3.1.3 Shear Stress -- 6.3.2 Index (Tensor) Notation -- 6.3.3 Governing Equations: Transport of Reactants -- 6.3.4 Simulations for Systems Operating in the Turbulent Regime.
6.3.5 Accuracy of Turbulence Models for Flow Field Simulations -- 6.3.5.1 Open-Channel UV Photoreactor -- Vertical Lamp Orientation -- 6.3.5.2 Closed, Single-Lamp, Annular Reactors -- 6.3.5.3 Closed-Vessel, Cross-Flow, Four-Lamp Reactor -- 6.3.5.4 Reactors with Internal Baffles -- 6.3.6 Process Simulations by CFD-E' Field Modeling -- 6.3.7 Selection of Sub-Models -- 6.3.7.1 Reaction Kinetics Sub-Model -- 6.3.7.2 Fluence Rate Field Sub-Model -- 6.3.7.3 CFD Sub-Model -- 6.3.7.4 General Factors to Consider in Sub-Model Selection -- 6.4 Summary -- Notes -- References -- Appendix 6.A PSS Model Implementation in Spreadsheet Format -- Simulation of Fluence Rate Field in Cylindrical Lamp Reactor -- Simulation of Fluence Rate Field in Flat-Screen Reactor -- Interpretation of Simulation Results -- Chapter 7 Validation of Photochemical Reactors -- 7.1 Introduction -- 7.2 Biodosimetry -- 7.3 Mathematical Descriptions of UV Photoreactor Validation by Biodosimetry -- 7.3.1 Gaussian Dose Distribution, First-Order Kinetics -- 7.3.2 Simulated Dose Distributions, First-Order Kinetics -- 7.3.3 Biodosimetry Experiment -- 7.3.4 Challenge Organisms Commonly Used in Biodosimetry -- 7.3.5 Effects of Variability in Challenge Organism Dose-Response Behavior on Biodosimetry -- 7.3.6 Use of Chemical Actinometers for Reactor Validation -- 7.3.7 Lagrangian Actinometry -- 7.3.8 Convolution Hypothesis - Theoretical Background -- 7.3.9 Convolution Hypothesis - Experimental Verification -- 7.3.10 Application of LA -- 7.3.11 Microsphere Dose-Response Behavior -- 7.3.12 Reactor Testing -- 7.3.13 Integration of MFSD and CFD-E' Simulations -- 7.4 UV Photoreactor Validation Protocols -- 7.4.1 Ultraviolet Disinfection Guidance Manual for the Long-Term 2 Enhanced Surface Water Treatment Rule (UVDGM) -- 7.4.2 Österreichisches Normungsinstitut (ÖNORM).
7.4.3 Deutsche Vereinigung des Gas- und Wasserfaches (DVGW) -- 7.4.4 National Water Research Institute (NWRI) -- 7.4.5 NSF/ANSI -- 7.5 Summary -- Appendix 7.A Description of the Error Function and Its Complement -- Notes -- References -- Chapter 8 Methods for Quantification of Microbial Responses to UVC Irradiation -- 8.1 Introduction -- 8.2 Mechanisms of Microbial Inactivation Resulting from UVC Irradiation -- 8.3 Reproductive Cycles of Common Microbial Groups -- 8.3.1 Bacterial Reproduction -- 8.3.2 Replication of Viruses -- 8.3.3 Life Cycle of Protozoa -- 8.3.4 Reproduction of Algae -- 8.4 Lessons Learned from use of Inappropriate Methods -- 8.4.1 Protozoan Parasites -- 8.4.2 Fish Parasites -- 8.4.3 Algae -- 8.4.4 Viruses -- 8.5 Quantification of Viable Microorganisms with UV Disinfection Systems -- 8.5.1 Bacteria -- 8.5.1.1 MPN-DCM -- 8.5.1.2 Membrane Filtration -- 8.5.1.3 Compartment Bag Test -- 8.5.2 Viruses -- 8.5.2.1 Plaque Formation -- 8.5.2.2 Cytopathic Effect (CPE) -- 8.5.3 Protozoa -- 8.5.3.1 Animal Infection -- 8.5.3.2 Cell Culture -- 8.5.4 Algae -- 8.6 Molecular Biology -- 8.6.1 Polymerase Chain Reaction and Related Methods -- 8.6.1.1 Integrated Cell Culture/PCR -- 8.6.1.2 Long Amplicon q-PCR -- 8.6.1.3 Molecular Viability Testing -- 8.6.1.4 Intercalating Dyes/PCR -- 8.7 Summary -- Notes -- References -- Chapter 9 UV Disinfection of Drinking Water and Municipal Wastewater -- 9.1 Introduction -- 9.2 Primary vs. Secondary Disinfection -- 9.3 Motivations for Use of UV-Based Disinfection -- 9.4 Traditional View of Drinking Water and Municipal Wastewater as Separate Domains -- 9.4.1 Differences Between Water and Wastewater Disinfection -- 9.5 Disinfection Kinetics -- 9.5.1 Mathematical Models of UV Disinfection Kinetics -- 9.5.1.1 Single-Event Model -- 9.5.1.2 Series-Event Model -- 9.5.1.3 Multi-Target Model -- 9.5.1.4 Two-Population Models.
9.6 Microbial Repair Processes.
Record Nr. UNINA-9910678097603321
Blatchley Ernest R.  
Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Radiation induced degradation of the white thermal control paints Z-93 and Z-93P / / D.L. Edwards [and six others]
Radiation induced degradation of the white thermal control paints Z-93 and Z-93P / / D.L. Edwards [and six others]
Autore Edwards D. L.
Pubbl/distr/stampa MSFC, Alabama : , : National Aeronautics and Space Administration, Marshall Space Flight Center, , October 1996
Descrizione fisica 1 online resource (vii, 18 pages) : illustrations
Collana NASA technical memorandum
Soggetto topico Paints
Potassium silicates
Radiation dosage
Radiation effects
Ultraviolet radiation
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910707138003321
Edwards D. L.  
MSFC, Alabama : , : National Aeronautics and Space Administration, Marshall Space Flight Center, , October 1996
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Space environmental effects on additively manufactured materials / / M.M. Finckenor
Space environmental effects on additively manufactured materials / / M.M. Finckenor
Autore Finckenor Miria M.
Pubbl/distr/stampa Huntsville, Alabama : , : National Aeronautics and Space Administration, Marshall Space Flight Center, , October 2018
Descrizione fisica 1 online resource (vi, 17 pages) : color illustrations
Collana NASA/TP
Soggetto topico Environment effects
Simulation
Aerospace environments
Ultraviolet radiation
Space debris
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910711581603321
Finckenor Miria M.  
Huntsville, Alabama : , : National Aeronautics and Space Administration, Marshall Space Flight Center, , October 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Stratospheric update [[electronic resource] ] : an update on ozone protection progress
Stratospheric update [[electronic resource] ] : an update on ozone protection progress
Pubbl/distr/stampa [Washington, D.C.] : , : U.S. Environmental Protection Agency, Airand Radiation, , [1999]
Soggetto topico Ozone layer depletion
Ultraviolet radiation
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Stratospheric update
Record Nr. UNINA-9910691749203321
[Washington, D.C.] : , : U.S. Environmental Protection Agency, Airand Radiation, , [1999]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Ultraviolet laser technology and applications / / David J. Elliott
Ultraviolet laser technology and applications / / David J. Elliott
Autore Elliott David J.
Pubbl/distr/stampa San Diego : , : Academic Press, , [1995]
Descrizione fisica 1 online resource (528 p.)
Disciplina 621.366
Soggetto topico Lasers
Ultraviolet radiation
ISBN 1-4832-9651-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover image; Title page; Table of Contents; Copyright; Preface; Acknowledgments; Chapter 1: Ultraviolet Light; Publisher Summary; 1.1 Introduction; 1.2 The Ultraviolet Spectrum; 1.3 Historical Development of the Laser; 1.4 How a Laser Works; 1.5 UV Sources; 1.6 UV Lasers; 1.7 Inert Gas UV Lasers; 1.8 Metal Vapor Lasers; 1.9 Nitrogen Lasers; 1.10 Helium-Neon Lasers; 1.11 The Alexandrite Laser; Glossary of Terms; Chapter 2: Ablation; Publisher Summary; 2.1 The Ablation Phenomenon; 2.2 Background and History of Ablation; 2.3 Early Discoveries and Uses of Ablation; 2.4 Ablation Mechanisms
2.5 Practical Characteristics of UV ReactionsGlossary of Terms; Chapter 3: The Excimer Laser; Publisher Summary; 3.1 Introduction; 3.2 History; 3.3 Theory of Operation; 3.4 The Gain Profile; 3.5 Excimer Laser Subsystems; 3.6 Laser Operation; 3.7 Laser Installation; 3.8 Laser Maintenance; 3.9 Gas Safety Guidelines; 3.10 UV Safety; Glossary of Terms; Chapter 4: UV Materials Research; Publisher Summary; 4.1 Introduction; 4.2 Laser Mass Spectral Analysis; 4.3 157-nm Fluorine Laser Processing; 4.4 Production of X-Rays with 248 nm Energy; 4.5 Excimer Laser-Induced Fluorescence; 4.6 Tunable UV Laser
4.7 Laser Chemical Vapor Deposition4.8 Surface Analysis by Laser Ionization; 4.9 Photopolymer Research; 4.10 Laser Treatment of Organosilicons; 4.11 UV Laser Cleaning; 4.12 Cross-Sectioning Delicate Structures; Glossary of Terms; Chapter 5: UV Optics and Coatings; Publisher Summary; 5.1 Introduction; 5.2 UV Optical Requirements; 5.3 UV Optical Materials; 5.4 Radiation Damage; 5.5 Coating Manufacture; 5.6 UV Coatings and Reflection; 5.7 Extreme UV Coatings; 5.8 Single Layer Antireflection Coatings; 5.9 Multilayer Antireflection Coatings; 5.10 Dielectric Reflector Coatings
5.11 Metal Reflector Coatings5.12 UV Coating Types by Application; 5.13 Coating Damage and Defects; 5.14 Coating versus Polarization; 5.15 Optical Fiber Beam Delivery; Glossary of Terms; Chapter 6: UV Laser Cleaning; Publisher Summary; 6.1 Introduction; 6.2 Technology Factors in Surface Contamination; 6.3 Size of Contaminants; 6.4 Contamination; 6.5 Integrated Circuit Cleaning; 6.6 Thin Film Heads; 6.7 Flat Panel Display Cleanings; 6.8 Compact Discs; 6.9 Printed Circuit Boards; 6.10 Cleaning Semiconductor Surfaces; 6.11 Laser Ablative Cleaning; 6.12 Debris Removal; Glossary of Terms
Chapter 7: Annealing and PlanarizingPublisher Summary; 7.1 Introduction; 7.2 Annealing Parameters; 7.3 Laser versus Electron Beam; 7.4 Pulsed versus Continuous Lasers; 7.5 Annealing Process Control; 7.6 Laser Planarization; 7.7 IC Topography Problems; 7.8 Resist Imaging on Topography; 7.9 Planarization with Polymer Coatings; 7.10 Nonlaser Thermal Planarization; 7.11 UV Laser Planarization; Glossary of Terms; Chapter 8: Deep-UV Microlithography; Publisher Summary; 8.1 Introduction; 8.2 Evolution of Deep-UV Lithography; 8.3 Deep-UV Technology: Resolution; 8.4 Resolution: The "k" parameter
8.5 Exposing Wavelength
Record Nr. UNINA-9910786645403321
Elliott David J.  
San Diego : , : Academic Press, , [1995]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui