top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Bolometers [[electronic resource] ] : theory, types and applications / / Torrence M. Walcott, editor
Bolometers [[electronic resource] ] : theory, types and applications / / Torrence M. Walcott, editor
Edizione [1st ed.]
Pubbl/distr/stampa New York, : Nova Science Publishers, c2011
Descrizione fisica 1 online resource (213 p.)
Disciplina 539.7/7
Altri autori (Persone) WalcottTorrence M
Collana Physics research and technology
Soggetto topico Bolometer
Bolometer - Industrial applications
Detectors
Electromagnetic devices
Terahertz technology
ISBN 1-61728-735-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- BOLOMETERS: THEORY, TYPES AND APPLICATIONS -- BOLOMETERS: THEORY, TYPES AND APPLICATIONS -- CONTENTS -- PREFACE -- Chapter 1 THIN FILM MICRO-BOLOMETERS WITH SI-GE THERMO-SENSING FILMS DEPOSITED FROM PLASMA DISCHARGE -- ABSTRACT -- 1. INTRODUCTION -- 2. PRINCIPLE OF PERFORMANCE -- 2.1. Bolometer Operation -- 2.2. Characteristics of the Bolometer -- a) Responsivity -- b) Noise -- c) Detectivity -- d) Thermal Response Time -- 3. REQUIREMENTS FOR DESIGN AND MATERIALS -- 3.1. Properties of Bolometer Materials -- a) Temperature Coefficient of Resistance -- b) Thermal Conductance -- c) Thermal Capacitance -- 4. SILICON-GERMANIUM AS THERMO-SENSING MATERIAL DEPOSITED BY PLASMA -- 4.1. Different Thermo Sensing Materials -- 4.2. Study of Silicon-Germanium Thin Films Deposited by Plasma -- a) Deposition rate (Vd) -- b) Composition -- c) Electrical Properties -- 4.3. Study of Silicon-Germanium-Boron Alloys as Thermo-Sensing Films -- a) Samples Preparation -- b) Results of Films Characterization -- 5. MODELING -- 5.1. Introduction -- 5.2. 2D Modeling -- 5.3. Results of Modeling -- 5.4. Experimental Results Relevant to Modeling -- 6. MICRO-BOLOMETERS CONFIGURATIONS AND FABRICATION -- 6.1. Micro-Bolometer Configurations -- 7. CHARACTERIZATION OF MICRO-BOLOMETERS -- 7.1. Characterization of Temperature Dependence of Conductivity in the Films and Estimation of Thermal Coefficient of Resistance, TCR -- 7.2. I(U) Measurements in Dark and under Infrared (IR) Radiation -- 7.3. Calculation of Responsivity -- 7.4. Noise Measurements -- 7.5. Calculation of Detectivity -- 7.6. Thermal Response Time Characterization -- 7.7. Temperature Dependence of Thermal Resistance and Calibration Curve -- 8. MICRO-BOLOMETERS IN THZ REGION -- 8.1. Experimental Details -- 8.2 Results -- 9. ALTERNATIVE (NON-RESISTIVE) MICROBOLOMETERS -- 10. COMMERCIALLY AVAILABLE DEVICES.
11. SUMMARY -- ACKNOWLEDGMENT -- REFERENCES -- Section 2 -- Section 3 -- Section 4 -- Section 5 -- Section 6 -- Section 7 -- Section 8 -- Section 9 -- Section 10 -- Chapter 2 INVESTIGATIONS OF PROPERTIES OF HIGH TEMPERATURE SUPERCONDUCTING BOLOMETERS -- ABSTRACT -- 1. INTRODUCTION -- 2. BOLOMETER NOISE THEORY AND MODELING -- 2.1. Principle of Bolometer Operation and Theory of Noise in Bolometers -- 2.2. Bolometer Noise Modeling -- 2.2.1. Passive Operational Modes with Constant Current Bias (CCM) and Constant Voltage Bias (CVM) -- 2.2.2. Operational Mode of HTSC Bolometer with Active Negative Electrothermal Feedback (АNETF) -- 3. EXCESS 1/F NOISE IN HTSC FILMS FOR BOLOMETERS -- 4. RESULTS OF EXPERIMENTAL NOISE RESEARCH OF HTSC BOLOMETERS -- 4.1. Noise of Antenna-Couple HTSC Microbolometers -- 4.2. Noise of HTSC Bolometers Based on Silicon Micromachining Technology -- CONCLUSION -- REFERENCES -- Chapter 3 OPERATING UNCOOLED RESISTIVE BOLOMETERS IN A CLOSED-LOOP MODE -- ABSTRACT -- 1. INTRODUCTION -- Notation Conventions -- Bolometer Principle and Model -- 2. CLOSED-LOOP OPERATION FOR BOLOMETERS -- 2.1. Advantages of Closed-Loop Operation for Bolometers -- 2.1.1. Linearization and Wider Dynamic Range -- 2.1.2. Operation around a Working Point -- 2.1.3. Extended Bandwidth -- 2.1.4. Noise Performance -- 2.2. Implementations of the Closed-Loop Configurations -- 2.2.1. Electrical Substitution or Electric Equivalence Principle -- 2.2.2. Electrical Heat Feedback for Resistive Bolometers -- 2.2.2.1. Type 1 -- 2.2.2.2.Type 2 -- 2.2.2.3. Type 3 -- 2.2.2.4.Comparison -- 3. TOWARD SMART BOLOMETERS -- CONCLUSION -- REFERENCES -- Chapter 4 A SECURITY CAMERA AS AN EXAMPLE FOR A THZ IMAGING APPLICATION -- ABSTRACT -- 1. INTRODUCTION -- 2. THZ CAMERA -- 3. WORKING PRINCIPLE OF TRANSITION EDGE SENSORS -- 4. OPERATION OF TRANSITION EDGE SENSORS -- 4.1. Cooling.
4.2. Radiation Coupling -- 4.3. Thermal Considerations -- 4.4. Mapping Speed and Array Size -- 4.5. Scalability -- 5. TRANSITION EDGE SENSORS FOR A SECURITY CAMERA -- 5.1. Fabrication of Transition Edge Sensors on Silicon Nitride Membranes -- 5.2. Optical System -- 5.3. Scanning System -- 5.4. Amplification Electronics and Data Processing -- 5.5. Camera Performance -- CONCLUSION -- REFERENCES -- Chapter 5 NOISE PROPERTIES OF HIGH-TC SUPERCONDUCTING TRANSITION EDGE BOLOMETERS WITH ELECTROTHERMAL FEEDBACK -- ABSTRACT -- INTRODUCTION -- 2. THEORY -- 2.1. Modes of HTSС Bolometer Operation -- 2.2. Characteristics of HTSС Bolometers in Passive CCM and CVM Modes -- 2.3. Characteristics of HTSС Bolometers in Active ANETF Mode -- 3. NUMERICAL AND EXPERIMENTAL MODELLING -- 3.1. Comparative Numerical Modeling in Passive CCM and CVM Modes -- 3.2. Comparative Numerical and Experimental Modeling in CCM and ANETF Modes -- CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 6 COMPARATIVE INVESTIGATION OF PASSIVE AND ACTIVE OPERATING MODES FOR HIGH-TC SUPERCONDUCTING TRANSITION EDGE BOLOMETERS WITH ELECTROTHERMAL FEEDBACK FOR INFRARED WAVES -- ABSTRACT -- 1. INTRODUCTION -- 2. BOLOMETER THEORY -- 2.1. Modes of HTSC Bolometer Operation -- 2.2. Characteristics of HTSC Bolometers in CCM and CVM -- 2.3. Characteristics of HTSC Bolometers in ANETF Mode -- 3. SAMPLES -- 4. NUMERICAL AND EXPERIMENTAL MODELING -- 4.1. Comparative Numerical Modeling in Passive CCM and CVM Modes -- 4.2. Comparative Numerical and Experimental Modeling in CCM and ANETF Modes -- 4.3. Temperature Stabilization of Bolometer Operating Point -- CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 7 EXPERIMENTAL MODELLING ACTIVE STRONG ELECTROTHERMAL FEEDBACK MODE FOR HIGH-TC SUPERCONDUCTING BOLOMETER ON SILICON NITRIDE MEMBRANE -- ABSTRACT -- 1. INTRODUCTION -- 2. BOLOMETER THEORY.
3. EXPERIMENTAL TECHNIQUE AND RESULTS -- CONCLUSION -- REFERENCES -- Chapter 8 YBCO FILMS ON SRTIO3 SUBSTRATES WITH RECORDLY LOW 1/F NOISE FOR BOLOMETER APPLICATIONS -- ABSTRACT -- 1. INTRODUCTION -- 2. NOISE EQUIVALENT POWER AND NOISE VOLTAGE OF HTSC BOLOMETER -- 3. SAMPLES AND EXPERIMENTAL TECHNIQUE -- 4. MAIN RESULTS OBTAINED AND DISCUSSION -- 5. ESTIMATION OF BOLOMETERS -- CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 9 ABSOLUTE HIGH-TC SUPERCONDUCTING RADIOMETER WITH ELECTRICAL-SUBSTITUTION FOR X-RAYS MEASUREMENTS -- ABSTRACT -- 1. INTRODUCTION -- 2. DESIGN, PRINCIPLE AND CHARACTERISTICS OF RADIOMETER -- 2.1. Design and Principle of Operation -- 2.2. Calculated Characteristics -- 3. INTERACTION OF THE RADIOMETER WITH RADIATION -- Effect of Radiometer Interaction with Radiation on Accuracy of Measurements -- Other Factors Having Influence on Efficiency of Radiometer Measurements -- 4. CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- INDEX -- Blank Page.
Record Nr. UNINA-9910828474003321
New York, : Nova Science Publishers, c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Broadband terahertz communication technologies / / Jianjun Yu
Broadband terahertz communication technologies / / Jianjun Yu
Autore Yu Jianjun
Pubbl/distr/stampa Gateway East, Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (280 pages)
Disciplina 621.38133
Soggetto topico Terahertz technology
ISBN 981-16-3160-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- 1 Introduction -- 1.1 Research Background and Significance -- 1.2 Research Status at Home and Abroad -- 1.2.1 International Research Status -- 1.2.2 Domestic Research Status -- 1.3 Challenges of Terahertz Communication Research -- 1.4 Main Contents and Structure of the Book -- References -- 2 Generation and Detection of Terahertz Signal -- 2.1 The Generation of Terahertz Signal -- 2.1.1 Generating Terahertz Signal by Electronic Devices -- 2.1.2 Generating Terahertz Signal by Photonics Methods -- 2.2 The Reception of Terahertz Signal -- 2.2.1 Direct Detection of Terahertz Signal -- 2.2.2 Heterodyne Coherent Detection -- 2.3 Comparison of Two Kinds of Photodetectors -- 2.4 Transmission Link of Terahertz Signal -- 2.4.1 Free Space Channel Transmission Model -- 2.4.2 Atmospheric Absorption of Terahertz Signal -- 2.5 Conclusion -- References -- 3 Basic Algorithm and Experimental Verification of Single-Carrier Terahertz Communication System -- 3.1 Introduction -- 3.2 Basic DSP Algorithm in High-Speed Single-Carrier Terahertz Communication System -- 3.2.1 Basic DSP Algorithm in Single-Carrier Terahertz Communication System -- 3.2.2 Back-End Signal Processing Algorithm in Single-Carrier Terahertz Communication System -- 3.3 Experimental Research on Electro-Generated Terahertz Wireless Communication System -- 3.3.1 Experimental Setup of Electric Generation Terahertz Wireless Communication System -- 3.3.2 Experimental Results and Analysis -- 3.4 Experimental Research on Photogenerated Single-Carrier 16QAM Terahertz Signal Transmission System -- 3.4.1 Experimental Setup -- 3.4.2 Experimental Results and Analysis -- 3.5 Conclusion -- References -- 4 Basic Algorithms and Experimental Verification of Multi-carrier Terahertz Communication -- 4.1 Introduction.
4.2 Terahertz Communication System Based on Optical Heterodyne Beat Frequency Scheme and Coherent Reception -- 4.3 Multi-carrier OFDM Modulation Format -- 4.4 Discrete-Fourier-Transform Spread Technology -- 4.4.1 Principle of Discrete-Fourier-Transform Spread Technology -- 4.4.2 Applications of Discrete-Fourier-Transform Spread Technology -- 4.4.3 Test Experiment -- 4.5 Intrasymbol Frequency-Domain Averaging Technology -- 4.5.1 Channel Estimation -- 4.5.2 Principle of Intrasymbol Frequency-Domain Averaging Technology -- 4.6 OFDM Millimeter Wave Coherent Reception System Based on DFT-S and ISFA -- 4.6.1 Experimental Setup -- 4.6.2 Experiment Results -- 4.7 Volterra Nonlinear Compensation Technology -- 4.7.1 Principle of Parallel Volterra Nonlinear Compensation Technology -- 4.8 Experimental Verification of Terahertz RoF-OFDM Communication System -- 4.8.1 Experimental Setup of 350−510 GHz Terahertz RoF-OFDM Communication System -- 4.8.2 Experimental Results and Analysis of 350-510 GHz Terahertz RoF-OFDM Communication System -- 4.8.3 High-Order QAM Terahertz RoF-OFDM Communication System Experiment -- 4.8.4 Experimental Results of High-Order QAM Terahertz RoF-OFDM Communication System -- 4.9 Conclusion -- References -- 5 Terahertz Signal MIMO Transmission -- 5.1 Introduction -- 5.2 2 × 2 MIMO Wireless Link Based on Optical Polarization Multiplexing -- 5.3 4 × 4 MIMO Wireless Link Based on Antenna Polarization Multiplexing -- 5.3.1 Study of Antenna Isolation and Crosstalk -- 5.3.2 Principle of Antenna Polarization Multiplexing -- 5.4 Wireless Crosstalk in MIMO Wireless Link -- 5.5 2 × 2 MIMO Wireless Link Based on Antenna Polarization Diversity with Low Wireless Crosstalk and a Simple Structure -- 5.6 2 × 2 MIMO Wireless Terahertz Wave Signal Transmission System -- 5.6.1 Introduction -- 5.6.2 Experimental Setup -- 5.6.3 Experimental Results.
5.7 Conclusion -- References -- 6 Multi-band Terahertz Signal Generation and Transmission -- 6.1 Introduction -- 6.2 Multi-band Terahertz MIMO Transmission Architecture -- 6.3 Multi-band Terahertz Transmission Experimental Device Diagram -- 6.4 Experimental Results of Multi-band Terahertz Transmission -- 6.5 Summary -- References -- 7 Frequency-Stable Photogenerated Vector Terahertz Signal Generation -- 7.1 Introduction -- 7.2 Principle of Optical External Modulator -- 7.2.1 Phase Modulator -- 7.2.2 Mach-Zehnder Modulator -- 7.2.3 Optical I/Q Modulator -- 7.3 Multi-Frequency Vector Terahertz Signal Generation Scheme Based on Cascaded Optical External Modulator -- 7.3.1 Technical Scheme of Multi-frequency Vector Terahertz Signal Generation Based on Cascaded Optical External Modulator -- 7.3.2 Optical Terahertz Signal Transmission Experiment Setup -- 7.3.3 Experimental Results and Analysis -- 7.4 Vector Terahertz Signal Generation Scheme Based on Carrier Suppression Eighth Frequency and Optical Single Sideband -- 7.4.1 Technical Scheme of Vector Terahertz Signal Based on Optical Carrier Suppression Eighth Frequency and Optical Single-Sideband Modulation -- 7.4.2 Experimental Setup of D-band Terahertz Signal Transmission Based on CSFE Scheme and Optical SSB Modulation -- 7.4.3 Experimental Results and Analysis -- 7.5 Summary -- References -- 8 Application of Probabilistic Shaping Technology in Terahertz Communication -- 8.1 Introduction -- 8.2 Principles of Probabilistic Shaping Technology -- 8.2.1 Probabilistic Shaping Modulation Principle Based on Maxwell-Boltzmann Distribution -- 8.2.2 Probabilistic Shaping Realization Method Combined with FEC Coding and Decoding Technology -- 8.3 Simulation Research on Probabilistic Shaping Technology -- 8.4 Experimental Research on Probabilistic Shaping Technology in Single-Carrier Terahertz Communication.
8.5 Experimental Study of Probabilistic Shaping Technology in Multi-Carrier W-band Communication System -- 8.5.1 Experimental Setup -- 8.5.2 Experimental Results -- 8.6 Summary -- References -- 9 Terahertz Communication System Based on KK Receiver -- 9.1 The Introduction -- 9.2 The Principle and Application of KK Algorithm -- 9.2.1 Intersignal Beat Frequency Interference (SSBI) Generation -- 9.2.2 Minimum Phase Condition -- 9.3 Application of KK Receiver -- 9.4 KK Algorithm Performance Simulation -- 9.5 Experimental Research on Photon-Assisted Single-Carrier RoF Communication System -- 9.5.1 Experimental Setup -- 9.5.2 Experimental Results and Analysis -- 9.6 Summary -- References -- 10 Ultra-Large-Capacity Terahertz Signal Wireless Transmission System -- 10.1 Introduction -- 10.2 Methods of High-Speed Wireless Transmission -- 10.2.1 Photon-Assisted Methods -- 10.2.2 Multi-dimensional Multiplexing -- 10.2.3 High-Order QAM Modulation Combined with Probabilistic Shaping Technology -- 10.2.4 Advanced DSP Algorithm -- 10.3 Large-Capacity Terahertz Transmission -- 10.3.1 328 Gb/s Dual Polarization D-band Terahertz 2 × 2 MU-MIMO Optical Carrier Wireless Transmission -- 10.3.2 Wireless Transmission of 1 Tb/s Terahertz Signal in D-band -- 10.4 Summary -- References -- 11 Application of Chaotic Encryption Technology in Terahertz Communication -- 11.1 Introduction -- 11.2 The Principle of Chaotic Encryption Technology -- 11.3 Application of Third-Order Chaotic Encryption Technology in Terahertz Communication -- 11.3.1 Experimental Setup of Third-Order Chaotic Encryption Terahertz Communication System -- 11.3.2 Experimental Results and Analysis -- 11.4 Summary -- References -- 12 Large-Capacity Optical and Wireless Seamless Integration and Real-Time Transmission System -- 12.1 Introduction -- 12.2 Principle of Photonic Millimeter Wave Demodulation.
12.2.1 Principle of Photon Demodulation Based on Push-Pull MZM -- 12.2.2 PM-Based Photon Demodulation Principle -- 12.2.3 Polarization Demultiplexing of PDM-QPSK-Modulated Fiber-Wireless-Fiber Fusion System -- 12.3 Experiment of Q-band Fiber-Wireless-Fiber Fusion System Based on Push-Pull MZM -- 12.4 Experiment of W-band Fiber-Wireless-Fiber Fusion System Based on Push-Pull MZM -- 12.5 Experiment of W-band Fiber-Wireless-Fiber Fusion System Based on PM -- 12.6 Real-Time Transmission Experiment Based on Heterodyne Detection -- 12.6.1 Real-Time Transmission Experiment Graph -- 12.6.2 Experimental Results -- 12.7 Summary -- References -- 13 THz and Optical Fiber Communication Seamless Integration System -- 13.1 Introduction -- 13.2 Process Algorithm for Heterodyne Coherent Detection -- 13.3 Optical Fibe-Terahertz Wireless-Fiber Seamless Fusion Communication System -- 13.3.1 System Experiment -- 13.3.2 Experimental Results -- 13.4 Optical Fiber-Terahertz Wireless-Optical Fiber 2 × 2MIMO Transmission System -- 13.4.1 System Experiment -- 13.4.2 Experimental Results -- 13.5 Summary -- References.
Record Nr. UNISA-996466847603316
Yu Jianjun  
Gateway East, Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Broadband terahertz communication technologies / / Jianjun Yu
Broadband terahertz communication technologies / / Jianjun Yu
Autore Yu Jianjun
Pubbl/distr/stampa Gateway East, Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (280 pages)
Disciplina 621.38133
Soggetto topico Terahertz technology
ISBN 981-16-3160-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- 1 Introduction -- 1.1 Research Background and Significance -- 1.2 Research Status at Home and Abroad -- 1.2.1 International Research Status -- 1.2.2 Domestic Research Status -- 1.3 Challenges of Terahertz Communication Research -- 1.4 Main Contents and Structure of the Book -- References -- 2 Generation and Detection of Terahertz Signal -- 2.1 The Generation of Terahertz Signal -- 2.1.1 Generating Terahertz Signal by Electronic Devices -- 2.1.2 Generating Terahertz Signal by Photonics Methods -- 2.2 The Reception of Terahertz Signal -- 2.2.1 Direct Detection of Terahertz Signal -- 2.2.2 Heterodyne Coherent Detection -- 2.3 Comparison of Two Kinds of Photodetectors -- 2.4 Transmission Link of Terahertz Signal -- 2.4.1 Free Space Channel Transmission Model -- 2.4.2 Atmospheric Absorption of Terahertz Signal -- 2.5 Conclusion -- References -- 3 Basic Algorithm and Experimental Verification of Single-Carrier Terahertz Communication System -- 3.1 Introduction -- 3.2 Basic DSP Algorithm in High-Speed Single-Carrier Terahertz Communication System -- 3.2.1 Basic DSP Algorithm in Single-Carrier Terahertz Communication System -- 3.2.2 Back-End Signal Processing Algorithm in Single-Carrier Terahertz Communication System -- 3.3 Experimental Research on Electro-Generated Terahertz Wireless Communication System -- 3.3.1 Experimental Setup of Electric Generation Terahertz Wireless Communication System -- 3.3.2 Experimental Results and Analysis -- 3.4 Experimental Research on Photogenerated Single-Carrier 16QAM Terahertz Signal Transmission System -- 3.4.1 Experimental Setup -- 3.4.2 Experimental Results and Analysis -- 3.5 Conclusion -- References -- 4 Basic Algorithms and Experimental Verification of Multi-carrier Terahertz Communication -- 4.1 Introduction.
4.2 Terahertz Communication System Based on Optical Heterodyne Beat Frequency Scheme and Coherent Reception -- 4.3 Multi-carrier OFDM Modulation Format -- 4.4 Discrete-Fourier-Transform Spread Technology -- 4.4.1 Principle of Discrete-Fourier-Transform Spread Technology -- 4.4.2 Applications of Discrete-Fourier-Transform Spread Technology -- 4.4.3 Test Experiment -- 4.5 Intrasymbol Frequency-Domain Averaging Technology -- 4.5.1 Channel Estimation -- 4.5.2 Principle of Intrasymbol Frequency-Domain Averaging Technology -- 4.6 OFDM Millimeter Wave Coherent Reception System Based on DFT-S and ISFA -- 4.6.1 Experimental Setup -- 4.6.2 Experiment Results -- 4.7 Volterra Nonlinear Compensation Technology -- 4.7.1 Principle of Parallel Volterra Nonlinear Compensation Technology -- 4.8 Experimental Verification of Terahertz RoF-OFDM Communication System -- 4.8.1 Experimental Setup of 350−510 GHz Terahertz RoF-OFDM Communication System -- 4.8.2 Experimental Results and Analysis of 350-510 GHz Terahertz RoF-OFDM Communication System -- 4.8.3 High-Order QAM Terahertz RoF-OFDM Communication System Experiment -- 4.8.4 Experimental Results of High-Order QAM Terahertz RoF-OFDM Communication System -- 4.9 Conclusion -- References -- 5 Terahertz Signal MIMO Transmission -- 5.1 Introduction -- 5.2 2 × 2 MIMO Wireless Link Based on Optical Polarization Multiplexing -- 5.3 4 × 4 MIMO Wireless Link Based on Antenna Polarization Multiplexing -- 5.3.1 Study of Antenna Isolation and Crosstalk -- 5.3.2 Principle of Antenna Polarization Multiplexing -- 5.4 Wireless Crosstalk in MIMO Wireless Link -- 5.5 2 × 2 MIMO Wireless Link Based on Antenna Polarization Diversity with Low Wireless Crosstalk and a Simple Structure -- 5.6 2 × 2 MIMO Wireless Terahertz Wave Signal Transmission System -- 5.6.1 Introduction -- 5.6.2 Experimental Setup -- 5.6.3 Experimental Results.
5.7 Conclusion -- References -- 6 Multi-band Terahertz Signal Generation and Transmission -- 6.1 Introduction -- 6.2 Multi-band Terahertz MIMO Transmission Architecture -- 6.3 Multi-band Terahertz Transmission Experimental Device Diagram -- 6.4 Experimental Results of Multi-band Terahertz Transmission -- 6.5 Summary -- References -- 7 Frequency-Stable Photogenerated Vector Terahertz Signal Generation -- 7.1 Introduction -- 7.2 Principle of Optical External Modulator -- 7.2.1 Phase Modulator -- 7.2.2 Mach-Zehnder Modulator -- 7.2.3 Optical I/Q Modulator -- 7.3 Multi-Frequency Vector Terahertz Signal Generation Scheme Based on Cascaded Optical External Modulator -- 7.3.1 Technical Scheme of Multi-frequency Vector Terahertz Signal Generation Based on Cascaded Optical External Modulator -- 7.3.2 Optical Terahertz Signal Transmission Experiment Setup -- 7.3.3 Experimental Results and Analysis -- 7.4 Vector Terahertz Signal Generation Scheme Based on Carrier Suppression Eighth Frequency and Optical Single Sideband -- 7.4.1 Technical Scheme of Vector Terahertz Signal Based on Optical Carrier Suppression Eighth Frequency and Optical Single-Sideband Modulation -- 7.4.2 Experimental Setup of D-band Terahertz Signal Transmission Based on CSFE Scheme and Optical SSB Modulation -- 7.4.3 Experimental Results and Analysis -- 7.5 Summary -- References -- 8 Application of Probabilistic Shaping Technology in Terahertz Communication -- 8.1 Introduction -- 8.2 Principles of Probabilistic Shaping Technology -- 8.2.1 Probabilistic Shaping Modulation Principle Based on Maxwell-Boltzmann Distribution -- 8.2.2 Probabilistic Shaping Realization Method Combined with FEC Coding and Decoding Technology -- 8.3 Simulation Research on Probabilistic Shaping Technology -- 8.4 Experimental Research on Probabilistic Shaping Technology in Single-Carrier Terahertz Communication.
8.5 Experimental Study of Probabilistic Shaping Technology in Multi-Carrier W-band Communication System -- 8.5.1 Experimental Setup -- 8.5.2 Experimental Results -- 8.6 Summary -- References -- 9 Terahertz Communication System Based on KK Receiver -- 9.1 The Introduction -- 9.2 The Principle and Application of KK Algorithm -- 9.2.1 Intersignal Beat Frequency Interference (SSBI) Generation -- 9.2.2 Minimum Phase Condition -- 9.3 Application of KK Receiver -- 9.4 KK Algorithm Performance Simulation -- 9.5 Experimental Research on Photon-Assisted Single-Carrier RoF Communication System -- 9.5.1 Experimental Setup -- 9.5.2 Experimental Results and Analysis -- 9.6 Summary -- References -- 10 Ultra-Large-Capacity Terahertz Signal Wireless Transmission System -- 10.1 Introduction -- 10.2 Methods of High-Speed Wireless Transmission -- 10.2.1 Photon-Assisted Methods -- 10.2.2 Multi-dimensional Multiplexing -- 10.2.3 High-Order QAM Modulation Combined with Probabilistic Shaping Technology -- 10.2.4 Advanced DSP Algorithm -- 10.3 Large-Capacity Terahertz Transmission -- 10.3.1 328 Gb/s Dual Polarization D-band Terahertz 2 × 2 MU-MIMO Optical Carrier Wireless Transmission -- 10.3.2 Wireless Transmission of 1 Tb/s Terahertz Signal in D-band -- 10.4 Summary -- References -- 11 Application of Chaotic Encryption Technology in Terahertz Communication -- 11.1 Introduction -- 11.2 The Principle of Chaotic Encryption Technology -- 11.3 Application of Third-Order Chaotic Encryption Technology in Terahertz Communication -- 11.3.1 Experimental Setup of Third-Order Chaotic Encryption Terahertz Communication System -- 11.3.2 Experimental Results and Analysis -- 11.4 Summary -- References -- 12 Large-Capacity Optical and Wireless Seamless Integration and Real-Time Transmission System -- 12.1 Introduction -- 12.2 Principle of Photonic Millimeter Wave Demodulation.
12.2.1 Principle of Photon Demodulation Based on Push-Pull MZM -- 12.2.2 PM-Based Photon Demodulation Principle -- 12.2.3 Polarization Demultiplexing of PDM-QPSK-Modulated Fiber-Wireless-Fiber Fusion System -- 12.3 Experiment of Q-band Fiber-Wireless-Fiber Fusion System Based on Push-Pull MZM -- 12.4 Experiment of W-band Fiber-Wireless-Fiber Fusion System Based on Push-Pull MZM -- 12.5 Experiment of W-band Fiber-Wireless-Fiber Fusion System Based on PM -- 12.6 Real-Time Transmission Experiment Based on Heterodyne Detection -- 12.6.1 Real-Time Transmission Experiment Graph -- 12.6.2 Experimental Results -- 12.7 Summary -- References -- 13 THz and Optical Fiber Communication Seamless Integration System -- 13.1 Introduction -- 13.2 Process Algorithm for Heterodyne Coherent Detection -- 13.3 Optical Fibe-Terahertz Wireless-Fiber Seamless Fusion Communication System -- 13.3.1 System Experiment -- 13.3.2 Experimental Results -- 13.4 Optical Fiber-Terahertz Wireless-Optical Fiber 2 × 2MIMO Transmission System -- 13.4.1 System Experiment -- 13.4.2 Experimental Results -- 13.5 Summary -- References.
Record Nr. UNINA-9910488693203321
Yu Jianjun  
Gateway East, Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Conference on Millimeter-Wave and Terahertz Technologies : [proceedings]
Conference on Millimeter-Wave and Terahertz Technologies : [proceedings]
Pubbl/distr/stampa Piscataway, NJ, : Institute of Electrical and Electronic Engineers
Disciplina 621.381
Soggetto topico Millimeter wave devices
Terahertz technology
Soggetto genere / forma Periodicals.
Conference papers and proceedings.
ISSN 2157-0973
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Altri titoli varianti MMWaTT
Record Nr. UNISA-996279712703316
Piscataway, NJ, : Institute of Electrical and Electronic Engineers
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Emerging trends in terahertz engineering and system technologies : devices, materials, imaging, data acquisition and processing / / Arindam Biswas [and three others], editors
Emerging trends in terahertz engineering and system technologies : devices, materials, imaging, data acquisition and processing / / Arindam Biswas [and three others], editors
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (VI, 227 p. 231 illus., 47 illus. in color.)
Disciplina 621.38133
Soggetto topico Terahertz technology
ISBN 981-15-9766-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto THz Advanced Medical Imaging -- Design and Development of Wide Band Gap Semiconductor Based THz Solid State Source -- Terahertz Optical Asymmetric Demultiplexer (TOAD) Based Switch in Computing, Communication and Control -- Pattern Recognition and Tomographic Reconstruction for THz Biomedical Imaging by Machine Learning and Artificial Intelligence -- Wearable Devices and IoT -- THz in Biotechnological Advances -- Novel materials and engineered structures in THz photonics -- Emerging trends in THz modeling -- Innovative fabrication technologies for novel THz devices -- Photonics for futuristic applications: THz sources, optical communications, imaging, detectors and sensors, optical data storage and displays, medical optics and biophotonics.
Record Nr. UNISA-996466730403316
Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Emerging trends in terahertz engineering and system technologies : devices, materials, imaging, data acquisition and processing / / Arindam Biswas [and three others], editors
Emerging trends in terahertz engineering and system technologies : devices, materials, imaging, data acquisition and processing / / Arindam Biswas [and three others], editors
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (VI, 227 p. 231 illus., 47 illus. in color.)
Disciplina 621.38133
Soggetto topico Terahertz technology
ISBN 981-15-9766-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto THz Advanced Medical Imaging -- Design and Development of Wide Band Gap Semiconductor Based THz Solid State Source -- Terahertz Optical Asymmetric Demultiplexer (TOAD) Based Switch in Computing, Communication and Control -- Pattern Recognition and Tomographic Reconstruction for THz Biomedical Imaging by Machine Learning and Artificial Intelligence -- Wearable Devices and IoT -- THz in Biotechnological Advances -- Novel materials and engineered structures in THz photonics -- Emerging trends in THz modeling -- Innovative fabrication technologies for novel THz devices -- Photonics for futuristic applications: THz sources, optical communications, imaging, detectors and sensors, optical data storage and displays, medical optics and biophotonics.
Record Nr. UNINA-9910484187703321
Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fundamentals of terahertz devices and applications / / editor, Dimitris Pavlidis
Fundamentals of terahertz devices and applications / / editor, Dimitris Pavlidis
Pubbl/distr/stampa Hoboken, NJ : , : John Wiley & Sons, Incorporated, , [2021]
Descrizione fisica 1 online resource (579 pages)
Disciplina 621.38133
Soggetto topico Terahertz technology
Soggetto genere / forma Electronic books.
ISBN 1-119-46073-5
1-119-46074-3
1-119-46072-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- About the Editor -- List of Contributors -- About the Companion Website -- Chapter 1 Introduction to THz Technologies -- Chapter 2 Integrated Silicon Lens Antennas at Submillimeter-wave Frequencies -- 2.1 Introduction -- 2.2 Elliptical Lens Antennas -- 2.2.1 Elliptical Lens Synthesis -- 2.2.2 Radiation of Elliptical Lenses -- 2.2.2.1 Transmission Function T(Q) -- 2.2.2.2 Spreading Factor S(Q) -- 2.2.2.3 Equivalent Current Distribution and Far-field Calculation -- 2.2.2.4 Lens Reflection Efficiency -- 2.3 Extended Semi-hemispherical Lens Antennas -- 2.3.1 Radiation of Extended Semi-hemispherical Lenses -- 2.4 Shallow Lenses Excited by Leaky Wave/Fabry-Perot Feeds -- 2.4.1 Analysis of the Leaky-wave Propagation Constant -- 2.4.2 Primary Fields Radiated by a Leaky-wave Antenna Feed on an Infinite Medium -- 2.4.3 Shallow-lens Geometry Optimization -- 2.5 Fly-eye Antenna Array -- 2.5.1 Silicon DRIE Micromachining Process at Submillimeter-wave Frequencies -- 2.5.1.1 Fabrication of Silicon Lenses Using DRIE -- 2.5.1.2 Surface Accuracy -- 2.5.2 Examples of Fabricated Antennas -- Exercises -- Exercise 1: Derivation of the Transmission Coefficients and Lens Critical Angle -- Exercise 2 -- Exercise 3 -- References -- Chapter 3 Photoconductive THz Sources Driven at 1550 nm -- 3.1 Introduction -- 3.1.1 Overview of THz Photoconductive Sources -- 3.1.2 Lasers and Fiber Optics -- 3.2 1550-nm THz Photoconductive Sources -- 3.2.1 Epitaxial Materials -- 3.2.1.1 Bandgap Engineering -- 3.2.1.2 Low-Temperature Growth -- 3.2.2 Device Types and Modes of Operation -- 3.2.3 Analysis of THz Photoconductive Sources -- 3.2.3.1 PC-Switch Analysis -- 3.2.3.2 Photomixer Analysis -- 3.2.4 Practical Issues -- 3.2.4.1 Contact Effects -- 3.2.4.2 Thermal Effects -- 3.2.4.3 Circuit Limitations -- 3.3 THz Metrology.
3.3.1 Power Measurements -- 3.3.1.1 A Traceable Power Sensor -- 3.3.1.2 Exemplary THz Power Measurement Exercise -- 3.3.1.3 Other Sources of Error -- 3.3.2 Frequency Metrology -- 3.4 THz Antenna Coupling -- 3.4.1 Fundamental Principles -- 3.4.2 Planar Antennas on Dielectric Substrates -- 3.4.2.1 Input Impedance -- 3.4.2.2 ÄEIRP (Increase in the EIRP of the Transmitting Antenna) -- 3.4.2.3 G/T or Aeff/T -- 3.4.3 Estimation of Power Coupling Factor -- 3.4.4 Exemplary THz Planar Antennas -- 3.4.4.1 Resonant Antennas -- 3.4.4.2 Quick Survey of Self-complementary Antennas -- 3.5 State of the Art in 1550-nm Photoconductive Sources -- 3.5.1 1550-nm MSM Photoconductive Switches -- 3.5.1.1 Material and Device Design -- 3.5.1.2 THz Performance -- 3.5.2 1550-nm Photodiode CW (Photomixer) Sources -- 3.5.2.1 Material and Device Design -- 3.5.2.2 THz Performance -- 3.6 Alternative 1550-nm THz Photoconductive Sources -- 3.6.1 Fe-Doped InGaAs -- 3.6.2 ErAs Nanoparticles in GaAs: Extrinsic Photoconductivity -- 3.7 System Applications -- 3.7.1 Comparison Between Pulsed and CW THz Systems -- 3.7.1.1 Device Aspects -- 3.7.1.2 Systems Aspects -- 3.7.2 Wireless Communications -- 3.7.3 THz Spectroscopy -- 3.7.3.1 Time vs Frequency Domain Systems -- 3.7.3.2 Analysis of Frequency Domain Systems: Amplitude and Phase Modulation -- Exercises (1-4) -- Exercises (5-8) THz Interaction with Matter -- Exercises (9-12) Antennas, Links, and Beams -- Exercises (13-15) Planar Antennas -- Exercises (16-19) Device Noise, System Noise, and Dynamic Range -- Exercises (20-22) Ultrafast Photoconductivity and Photodiodes -- Explanatory Notes (see superscripts in text) -- References -- Chapter 4 THz Photomixers -- 4.1 Introduction -- 4.2 Photomixing Basics -- 4.2.1 Photomixing Principle -- 4.2.2 Historical Background -- 4.3 Modeling THz Photomixers -- 4.3.1 Photoconductors.
4.3.1.1 Photocurrent Generation -- 4.3.1.2 Electrical Model -- 4.3.1.3 Efficiency and Maximum Power -- 4.3.2 Photodiode -- 4.3.2.1 PIN photodiodes -- 4.3.2.2 Uni-Traveling-Carrier Photodiodes -- 4.3.2.3 Photocurrent Generation -- 4.3.2.4 Electrical Model and Output Power -- 4.3.3 Frequency Down-conversion Using Photomixers -- 4.3.3.1 Electrical Model: Conversion Loss -- 4.4 Standard Photomixing Devices -- 4.4.1 Planar Photoconductors -- 4.4.1.1 Intrinsic Limitation -- 4.4.2 UTC Photodiodes -- 4.4.2.1 Backside Illuminated UTC Photodiodes -- 4.4.2.2 Waveguide-fed UTC Photodiodes -- 4.5 Optical Cavity Based Photomixers -- 4.5.1 LT-GaAs Photoconductors -- 4.5.1.1 Optical Modeling -- 4.5.1.2 Experimental Validation -- 4.5.2 UTC Photodiodes -- 4.5.2.1 Nano Grid Top Contact Electrodes -- 4.5.2.2 UTC Photodiodes Using Nano-Grid Top Contact Electrodes -- 4.5.2.3 Photoresponse Measurement -- 4.5.2.4 THz Power Generation by Photomixing -- 4.6 THz Antennas -- 4.6.1 Planar Antennas -- 4.6.2 Micromachined Antennas -- 4.7 Characterization of Photomixing Devices -- 4.7.1 On Wafer Characterization -- 4.7.2 Free Space Characterization -- Exercises -- Exercise A. Photodetector Theory -- Exercise B. Photomixing Model -- 1. Ultrafast Photoconductor -- 2. UTC Photodiode -- Exercise C. Antennas -- References -- Chapter 5 Plasmonics-enhanced Photoconductive Terahertz Devices -- 5.1 Introduction -- 5.2 Photoconductive Antennas -- 5.2.1 Photoconductors for THz Operation -- 5.2.2 Photoconductive THz Emitters -- 5.2.2.1 Pulsed THz Emitters -- 5.2.2.2 Continuous-wave THz Emitters -- 5.2.3 Photoconductive THz Detectors -- 5.2.4 Common Photoconductors and Antennas for Photoconductive THz Devices -- 5.2.4.1 Choice of Photoconductor -- 5.2.4.2 Choice of Antenna -- 5.3 Plasmonics-enhanced Photoconductive Antennas -- 5.3.1 Fundamentals of Plasmonics.
5.3.2 Plasmonics for Enhancing Performance of Photoconductive THz Devices -- 5.3.2.1 Principles of Plasmonic Enhancement -- 5.3.2.2 Design Considerations for Plasmonic Nanostructures -- 5.3.3 State-of-the-art Plasmonics-enhanced Photoconductive THz Devices -- 5.3.3.1 Photoconductive THz Devices with Plasmonic Light Concentrators -- 5.3.3.2 Photoconductive THz Devices with Plasmonic Contact Electrodes -- 5.3.3.3 Large Area Plasmonic Photoconductive Nanoantenna Arrays -- 5.3.3.4 Plasmonic Photoconductive THz Devices with Optical Nanocavities -- 5.4 Conclusion and Outlook -- Exercises -- References -- Chapter 6 Terahertz Quantum Cascade Lasers -- 6.1 Introduction -- 6.2 Fundamentals of Intersubband Transitions -- 6.3 Active Material Design -- 6.4 Optical Waveguides and Cavities -- 6.5 State-of-the-Art Performance and Limitations -- 6.6 Novel Materials Systems -- 6.6.1 III-Nitride Quantum Wells -- 6.6.2 SiGe Quantum Wells -- 6.7 Conclusion -- Acknowledgments -- Exercises -- References -- Chapter 7 Advanced Devices Using Two-Dimensional Layer Technology -- 7.1 Graphene-Based THz Devices -- 7.1.1 THz Properties of Graphene -- 7.1.2 How to Simulate and Model Graphene? -- 7.1.3 Terahertz Device Applications of Graphene -- 7.1.3.1 Modulators -- 7.1.3.2 Active Filters -- 7.1.3.3 Phase Modulation in Graphene-Based Metamaterials -- 7.2 TMD Based THz Devices -- 7.3 Applications -- Exercises -- Exercise 1 Computation of the Optical Conductivity of Graphene -- Exercise 2 Terahertz Transmission Through a 2D Material Layer Placed at an Optical Interface -- Exercise 3 Transfer Matrix Approach for Multi-layer Transmission Problems -- Exercise 4 A Condition for Perfect Absorption -- Exercise 5 Terahertz Plasmon Resonances in Periodically Patterned Graphene Disk Arrays -- Exercise 6 Electron Plasma Waves in Gated Graphene.
Exercise 7 Equivalent Circuit Modeling of 2D Material-Loaded Frequency Selective Surfaces -- Exercise 8 Maximum Terahertz Absorption in 2D Material-Loaded Frequency Selective Surfaces -- References -- Chapter 8 THz Plasma Field Effect Transistor Detectors -- 8.1 Introduction -- 8.2 Field Effect Transistors (FETs) and THz Plasma Oscillations -- 8.2.1 Dispersion of Plasma Waves in FETs -- 8.2.2 THz Detection by an FET -- 8.2.2.1 Resonant Detection -- 8.2.2.2 Broadband Detection -- 8.2.2.3 Enhancement by DC Drain Current -- 8.3 THz Detectors Based on Silicon FETs -- 8.4 Terahertz Detection by Graphene Plasmonic FETs -- 8.5 Terahertz Detection in Black-Phosphorus Nano-Transistors -- 8.6 Diamond Plasmonic THz Detectors -- 8.7 Conclusion -- Exercises -- Exercises 1-2 -- Exercises 3-10 -- Exercises 11-13 -- References -- Chapter 9 Signal Generation by Diode Frequency Multiplication -- 9.1 Introduction -- 9.2 Bridging the Microwave to Photonics Gap with Terahertz Frequency Multipliers -- 9.3 A Practical Approach to the Design of Frequency Multipliers -- 9.3.1 Frequency Multiplier Versus Comb Generator -- 9.3.2 Frequency Multiplier Ideal Matching Network and Ideal Device Performance -- 9.3.3 Symmetry at Device Level Versus Symmetry at Circuit Level -- 9.3.4 Classic Balanced Frequency Doublers -- 9.3.4.1 General Circuit Description -- 9.3.4.2 Necessary Condition to Balance the Circuit -- 9.3.5 Balanced Frequency Triplers with an Anti-Parallel Pair of Diodes -- 9.3.6 Multi-Anode Frequency Triplers in a Virtual Loop Configuration -- 9.3.6.1 General Circuit Description -- 9.3.6.2 Necessary Condition to Balance the Circuit -- 9.3.7 Multiplier Design Optimization -- 9.3.7.1 General Design Methodology -- 9.3.7.2 Nonlinear Modeling of the Schottky Diode Barrier -- 9.3.7.3 3D Modeling of the Extrinsic Structure of the Diodes.
9.3.7.4 Modeling and Optimization of the Diode Cell.
Record Nr. UNINA-9910555277903321
Hoboken, NJ : , : John Wiley & Sons, Incorporated, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fundamentals of terahertz devices and applications / / editor, Dimitris Pavlidis
Fundamentals of terahertz devices and applications / / editor, Dimitris Pavlidis
Pubbl/distr/stampa Hoboken, NJ : , : John Wiley & Sons, Incorporated, , [2021]
Descrizione fisica 1 online resource (579 pages)
Disciplina 621.38133
Soggetto topico Terahertz technology
ISBN 1-119-46073-5
1-119-46074-3
1-119-46072-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- About the Editor -- List of Contributors -- About the Companion Website -- Chapter 1 Introduction to THz Technologies -- Chapter 2 Integrated Silicon Lens Antennas at Submillimeter-wave Frequencies -- 2.1 Introduction -- 2.2 Elliptical Lens Antennas -- 2.2.1 Elliptical Lens Synthesis -- 2.2.2 Radiation of Elliptical Lenses -- 2.2.2.1 Transmission Function T(Q) -- 2.2.2.2 Spreading Factor S(Q) -- 2.2.2.3 Equivalent Current Distribution and Far-field Calculation -- 2.2.2.4 Lens Reflection Efficiency -- 2.3 Extended Semi-hemispherical Lens Antennas -- 2.3.1 Radiation of Extended Semi-hemispherical Lenses -- 2.4 Shallow Lenses Excited by Leaky Wave/Fabry-Perot Feeds -- 2.4.1 Analysis of the Leaky-wave Propagation Constant -- 2.4.2 Primary Fields Radiated by a Leaky-wave Antenna Feed on an Infinite Medium -- 2.4.3 Shallow-lens Geometry Optimization -- 2.5 Fly-eye Antenna Array -- 2.5.1 Silicon DRIE Micromachining Process at Submillimeter-wave Frequencies -- 2.5.1.1 Fabrication of Silicon Lenses Using DRIE -- 2.5.1.2 Surface Accuracy -- 2.5.2 Examples of Fabricated Antennas -- Exercises -- Exercise 1: Derivation of the Transmission Coefficients and Lens Critical Angle -- Exercise 2 -- Exercise 3 -- References -- Chapter 3 Photoconductive THz Sources Driven at 1550 nm -- 3.1 Introduction -- 3.1.1 Overview of THz Photoconductive Sources -- 3.1.2 Lasers and Fiber Optics -- 3.2 1550-nm THz Photoconductive Sources -- 3.2.1 Epitaxial Materials -- 3.2.1.1 Bandgap Engineering -- 3.2.1.2 Low-Temperature Growth -- 3.2.2 Device Types and Modes of Operation -- 3.2.3 Analysis of THz Photoconductive Sources -- 3.2.3.1 PC-Switch Analysis -- 3.2.3.2 Photomixer Analysis -- 3.2.4 Practical Issues -- 3.2.4.1 Contact Effects -- 3.2.4.2 Thermal Effects -- 3.2.4.3 Circuit Limitations -- 3.3 THz Metrology.
3.3.1 Power Measurements -- 3.3.1.1 A Traceable Power Sensor -- 3.3.1.2 Exemplary THz Power Measurement Exercise -- 3.3.1.3 Other Sources of Error -- 3.3.2 Frequency Metrology -- 3.4 THz Antenna Coupling -- 3.4.1 Fundamental Principles -- 3.4.2 Planar Antennas on Dielectric Substrates -- 3.4.2.1 Input Impedance -- 3.4.2.2 ÄEIRP (Increase in the EIRP of the Transmitting Antenna) -- 3.4.2.3 G/T or Aeff/T -- 3.4.3 Estimation of Power Coupling Factor -- 3.4.4 Exemplary THz Planar Antennas -- 3.4.4.1 Resonant Antennas -- 3.4.4.2 Quick Survey of Self-complementary Antennas -- 3.5 State of the Art in 1550-nm Photoconductive Sources -- 3.5.1 1550-nm MSM Photoconductive Switches -- 3.5.1.1 Material and Device Design -- 3.5.1.2 THz Performance -- 3.5.2 1550-nm Photodiode CW (Photomixer) Sources -- 3.5.2.1 Material and Device Design -- 3.5.2.2 THz Performance -- 3.6 Alternative 1550-nm THz Photoconductive Sources -- 3.6.1 Fe-Doped InGaAs -- 3.6.2 ErAs Nanoparticles in GaAs: Extrinsic Photoconductivity -- 3.7 System Applications -- 3.7.1 Comparison Between Pulsed and CW THz Systems -- 3.7.1.1 Device Aspects -- 3.7.1.2 Systems Aspects -- 3.7.2 Wireless Communications -- 3.7.3 THz Spectroscopy -- 3.7.3.1 Time vs Frequency Domain Systems -- 3.7.3.2 Analysis of Frequency Domain Systems: Amplitude and Phase Modulation -- Exercises (1-4) -- Exercises (5-8) THz Interaction with Matter -- Exercises (9-12) Antennas, Links, and Beams -- Exercises (13-15) Planar Antennas -- Exercises (16-19) Device Noise, System Noise, and Dynamic Range -- Exercises (20-22) Ultrafast Photoconductivity and Photodiodes -- Explanatory Notes (see superscripts in text) -- References -- Chapter 4 THz Photomixers -- 4.1 Introduction -- 4.2 Photomixing Basics -- 4.2.1 Photomixing Principle -- 4.2.2 Historical Background -- 4.3 Modeling THz Photomixers -- 4.3.1 Photoconductors.
4.3.1.1 Photocurrent Generation -- 4.3.1.2 Electrical Model -- 4.3.1.3 Efficiency and Maximum Power -- 4.3.2 Photodiode -- 4.3.2.1 PIN photodiodes -- 4.3.2.2 Uni-Traveling-Carrier Photodiodes -- 4.3.2.3 Photocurrent Generation -- 4.3.2.4 Electrical Model and Output Power -- 4.3.3 Frequency Down-conversion Using Photomixers -- 4.3.3.1 Electrical Model: Conversion Loss -- 4.4 Standard Photomixing Devices -- 4.4.1 Planar Photoconductors -- 4.4.1.1 Intrinsic Limitation -- 4.4.2 UTC Photodiodes -- 4.4.2.1 Backside Illuminated UTC Photodiodes -- 4.4.2.2 Waveguide-fed UTC Photodiodes -- 4.5 Optical Cavity Based Photomixers -- 4.5.1 LT-GaAs Photoconductors -- 4.5.1.1 Optical Modeling -- 4.5.1.2 Experimental Validation -- 4.5.2 UTC Photodiodes -- 4.5.2.1 Nano Grid Top Contact Electrodes -- 4.5.2.2 UTC Photodiodes Using Nano-Grid Top Contact Electrodes -- 4.5.2.3 Photoresponse Measurement -- 4.5.2.4 THz Power Generation by Photomixing -- 4.6 THz Antennas -- 4.6.1 Planar Antennas -- 4.6.2 Micromachined Antennas -- 4.7 Characterization of Photomixing Devices -- 4.7.1 On Wafer Characterization -- 4.7.2 Free Space Characterization -- Exercises -- Exercise A. Photodetector Theory -- Exercise B. Photomixing Model -- 1. Ultrafast Photoconductor -- 2. UTC Photodiode -- Exercise C. Antennas -- References -- Chapter 5 Plasmonics-enhanced Photoconductive Terahertz Devices -- 5.1 Introduction -- 5.2 Photoconductive Antennas -- 5.2.1 Photoconductors for THz Operation -- 5.2.2 Photoconductive THz Emitters -- 5.2.2.1 Pulsed THz Emitters -- 5.2.2.2 Continuous-wave THz Emitters -- 5.2.3 Photoconductive THz Detectors -- 5.2.4 Common Photoconductors and Antennas for Photoconductive THz Devices -- 5.2.4.1 Choice of Photoconductor -- 5.2.4.2 Choice of Antenna -- 5.3 Plasmonics-enhanced Photoconductive Antennas -- 5.3.1 Fundamentals of Plasmonics.
5.3.2 Plasmonics for Enhancing Performance of Photoconductive THz Devices -- 5.3.2.1 Principles of Plasmonic Enhancement -- 5.3.2.2 Design Considerations for Plasmonic Nanostructures -- 5.3.3 State-of-the-art Plasmonics-enhanced Photoconductive THz Devices -- 5.3.3.1 Photoconductive THz Devices with Plasmonic Light Concentrators -- 5.3.3.2 Photoconductive THz Devices with Plasmonic Contact Electrodes -- 5.3.3.3 Large Area Plasmonic Photoconductive Nanoantenna Arrays -- 5.3.3.4 Plasmonic Photoconductive THz Devices with Optical Nanocavities -- 5.4 Conclusion and Outlook -- Exercises -- References -- Chapter 6 Terahertz Quantum Cascade Lasers -- 6.1 Introduction -- 6.2 Fundamentals of Intersubband Transitions -- 6.3 Active Material Design -- 6.4 Optical Waveguides and Cavities -- 6.5 State-of-the-Art Performance and Limitations -- 6.6 Novel Materials Systems -- 6.6.1 III-Nitride Quantum Wells -- 6.6.2 SiGe Quantum Wells -- 6.7 Conclusion -- Acknowledgments -- Exercises -- References -- Chapter 7 Advanced Devices Using Two-Dimensional Layer Technology -- 7.1 Graphene-Based THz Devices -- 7.1.1 THz Properties of Graphene -- 7.1.2 How to Simulate and Model Graphene? -- 7.1.3 Terahertz Device Applications of Graphene -- 7.1.3.1 Modulators -- 7.1.3.2 Active Filters -- 7.1.3.3 Phase Modulation in Graphene-Based Metamaterials -- 7.2 TMD Based THz Devices -- 7.3 Applications -- Exercises -- Exercise 1 Computation of the Optical Conductivity of Graphene -- Exercise 2 Terahertz Transmission Through a 2D Material Layer Placed at an Optical Interface -- Exercise 3 Transfer Matrix Approach for Multi-layer Transmission Problems -- Exercise 4 A Condition for Perfect Absorption -- Exercise 5 Terahertz Plasmon Resonances in Periodically Patterned Graphene Disk Arrays -- Exercise 6 Electron Plasma Waves in Gated Graphene.
Exercise 7 Equivalent Circuit Modeling of 2D Material-Loaded Frequency Selective Surfaces -- Exercise 8 Maximum Terahertz Absorption in 2D Material-Loaded Frequency Selective Surfaces -- References -- Chapter 8 THz Plasma Field Effect Transistor Detectors -- 8.1 Introduction -- 8.2 Field Effect Transistors (FETs) and THz Plasma Oscillations -- 8.2.1 Dispersion of Plasma Waves in FETs -- 8.2.2 THz Detection by an FET -- 8.2.2.1 Resonant Detection -- 8.2.2.2 Broadband Detection -- 8.2.2.3 Enhancement by DC Drain Current -- 8.3 THz Detectors Based on Silicon FETs -- 8.4 Terahertz Detection by Graphene Plasmonic FETs -- 8.5 Terahertz Detection in Black-Phosphorus Nano-Transistors -- 8.6 Diamond Plasmonic THz Detectors -- 8.7 Conclusion -- Exercises -- Exercises 1-2 -- Exercises 3-10 -- Exercises 11-13 -- References -- Chapter 9 Signal Generation by Diode Frequency Multiplication -- 9.1 Introduction -- 9.2 Bridging the Microwave to Photonics Gap with Terahertz Frequency Multipliers -- 9.3 A Practical Approach to the Design of Frequency Multipliers -- 9.3.1 Frequency Multiplier Versus Comb Generator -- 9.3.2 Frequency Multiplier Ideal Matching Network and Ideal Device Performance -- 9.3.3 Symmetry at Device Level Versus Symmetry at Circuit Level -- 9.3.4 Classic Balanced Frequency Doublers -- 9.3.4.1 General Circuit Description -- 9.3.4.2 Necessary Condition to Balance the Circuit -- 9.3.5 Balanced Frequency Triplers with an Anti-Parallel Pair of Diodes -- 9.3.6 Multi-Anode Frequency Triplers in a Virtual Loop Configuration -- 9.3.6.1 General Circuit Description -- 9.3.6.2 Necessary Condition to Balance the Circuit -- 9.3.7 Multiplier Design Optimization -- 9.3.7.1 General Design Methodology -- 9.3.7.2 Nonlinear Modeling of the Schottky Diode Barrier -- 9.3.7.3 3D Modeling of the Extrinsic Structure of the Diodes.
9.3.7.4 Modeling and Optimization of the Diode Cell.
Record Nr. UNINA-9910830663703321
Hoboken, NJ : , : John Wiley & Sons, Incorporated, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
IEEE transactions on terahertz science and technology
IEEE transactions on terahertz science and technology
Pubbl/distr/stampa Piscataway, NJ, : IEEE Microwave Theory and Techniques Society
Disciplina 535.8
Soggetto topico Terahertz spectroscopy
Terahertz technology
Electromagnetic devices
Soggetto genere / forma Periodicals.
ISSN 2156-3446
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Altri titoli varianti Terahertz science and technology
Terahertz science and technology, IEEE transactions on
Record Nr. UNISA-996279579003316
Piscataway, NJ, : IEEE Microwave Theory and Techniques Society
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
IEEE transactions on terahertz science and technology
IEEE transactions on terahertz science and technology
Pubbl/distr/stampa Piscataway, NJ, : IEEE Microwave Theory and Techniques Society
Disciplina 535.8
Soggetto topico Terahertz spectroscopy
Terahertz technology
Electromagnetic devices
Soggetto genere / forma Periodicals.
ISSN 2156-3446
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Altri titoli varianti Terahertz science and technology
Terahertz science and technology, IEEE transactions on
Record Nr. UNINA-9910626140803321
Piscataway, NJ, : IEEE Microwave Theory and Techniques Society
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui