top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
2022 IEEE 33rd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC) : 12-15 September 2022, Kyoto, Japan / / Institute of Electrical and Electronics Engineers
2022 IEEE 33rd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC) : 12-15 September 2022, Kyoto, Japan / / Institute of Electrical and Electronics Engineers
Pubbl/distr/stampa Piscataway, NJ : , : IEEE, , [2022]
Descrizione fisica 1 online resource : illustrations
Disciplina 621.382
Soggetto topico Mobile communication systems
Personal communication service systems
Software radio
ISBN 9781665480536
166548053X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996575154203316
Piscataway, NJ : , : IEEE, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Autonomous software-defined radio receivers for deep space applications [[electronic resource] /] / edited by Jon Hamkins and Marvin K. Simon
Autonomous software-defined radio receivers for deep space applications [[electronic resource] /] / edited by Jon Hamkins and Marvin K. Simon
Pubbl/distr/stampa Hoboken, N.J., : Wiley-Interscience, c2006
Descrizione fisica 1 online resource (459 p.)
Disciplina 621.384197
629.4743
Altri autori (Persone) HamkinsJon <1968->
SimonMarvin Kenneth <1939->
Collana Deep-space communications and navigation series
Soggetto topico Astronautics - Communication systems
Software radio
Soggetto genere / forma Electronic books.
ISBN 1-280-72165-0
9786610721658
0-470-08780-3
0-470-08779-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Autonomous Software-Defined Radio Receivers for Deep Space Applications; Table of Contents; Foreword; Preface; Acknowledgments; Contributors; Chapter 1: Introduction and Overview; 1.1 Preliminaries; 1.1.1 Signal Model; 1.1.2 Anatomy of the Received Signal; 1.2 Radio Receiver Architectures; 1.2.1 A Conventional Radio Receiver; 1.2.2 Electra; 1.2.3 An Autonomous Radio; 1.3 Estimators and Classifiers of the Autonomous Radio; 1.3.1 Carrier Phase Tracking; 1.3.2 Modulation Classification; 1.3.3 Signal-to-Noise Ratio Estimation; 1.3.4 Frequency Tracking
1.4 An Iterative Message-Passing Architecture1.4.1 Messages from the Symbol-Timing Estimator; 1.4.2 Messages from the Phase Tracker; 1.4.3 Messages from the Modulation Classification; 1.4.4 Messages from the Decoder; 1.5 A Demonstration Testbed; References; Chapter 2: The Electra Radio; 2.1 Electra Receiver Front-End Processing; 2.1.1 AGC; 2.1.2 ADC; 2.1.3 Digital Downconversion and Decimation; 2.2 Electra Demodulation; 2.2.1 Frequency-Acquisition and Carrier-Tracking Loop; 2.2.2 Navigation: Doppler Phase Measurement; 2.2.3 Symbol-Timing Recovery
2.2.4 Viterbi Node Sync and Symbol SNR Estimation2.3 Electra Digital Modulator; References; Chapter 3: Modulation Index Estimation; 3.1 Coherent Estimation; 3.1.1 BPSK; 3.1.2 M-PSK; 3.2 Noncoherent Estimation; 3.3 Estimation in the Absence of Knowledge of the Modulation, Data Rate, Symbol Timing, and SNR; 3.4 Noncoherent Estimation in the Absence of Carrier Frequency Knowledge; Chapter 4: Frequency Correction; 4.1 Frequency Correction for Residual Carrier; 4.1.1 Channel Model; 4.1.2 Optimum Frequency Estimation over an AWGN Channel
4.1.3 Optimum Frequency Estimation over a Raleigh Fading Channel4.1.4 Open-Loop Frequency Estimation; 4.1.5 Closed-Loop Frequency Estimation; 4.2 Frequency Correction for Known Data-Modulated Signals; 4.2.1 Channel Model; 4.2.2 Open-Loop Frequency Estimation; 4.2.3 Closed-Loop Frequency Estimation; 4.3 Frequency Correction for Modulated Signals with Unknown Data; 4.3.1 Open-Loop Frequency Estimation; 4.3.2 Closed-Loop Frequency Estimation; References; Chapter 5: Data Format and Pulse Shape Classification; 5.1 Coherent Classifiers of Data Format for BPSK
5.1.1 Maximum-Likelihood Coherent Classifier of Data Format for BPSK5.1.2 Reduced-Complexity Data Format BPSK Classifiers; 5.1.3 Probability of Misclassification for Coherent BPSK; 5.2 Coherent Classifiers of Data Format for QPSK; 5.2.1 Maximum-Likelihood Coherent Classifier of Data Format for QPSK; 5.2.2 Reduced-Complexity Data Format QPSK Classifiers; 5.2.3 Probability of Misclassification for Coherent QPSK; 5.3 Noncoherent Classification of Data Format for BPSK; 5.3.1 Maximum-Likelihood Noncoherent Classifier of Data Format for BPSK
5.3.2 Probability of Misclassification for Noncoherent BPSK
Record Nr. UNINA-9910143688103321
Hoboken, N.J., : Wiley-Interscience, c2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Autonomous software-defined radio receivers for deep space applications [[electronic resource] /] / edited by Jon Hamkins and Marvin K. Simon
Autonomous software-defined radio receivers for deep space applications [[electronic resource] /] / edited by Jon Hamkins and Marvin K. Simon
Pubbl/distr/stampa Hoboken, N.J., : Wiley-Interscience, c2006
Descrizione fisica 1 online resource (459 p.)
Disciplina 621.384197
629.4743
Altri autori (Persone) HamkinsJon <1968->
SimonMarvin Kenneth <1939->
Collana Deep-space communications and navigation series
Soggetto topico Astronautics - Communication systems
Software radio
ISBN 1-280-72165-0
9786610721658
0-470-08780-3
0-470-08779-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Autonomous Software-Defined Radio Receivers for Deep Space Applications; Table of Contents; Foreword; Preface; Acknowledgments; Contributors; Chapter 1: Introduction and Overview; 1.1 Preliminaries; 1.1.1 Signal Model; 1.1.2 Anatomy of the Received Signal; 1.2 Radio Receiver Architectures; 1.2.1 A Conventional Radio Receiver; 1.2.2 Electra; 1.2.3 An Autonomous Radio; 1.3 Estimators and Classifiers of the Autonomous Radio; 1.3.1 Carrier Phase Tracking; 1.3.2 Modulation Classification; 1.3.3 Signal-to-Noise Ratio Estimation; 1.3.4 Frequency Tracking
1.4 An Iterative Message-Passing Architecture1.4.1 Messages from the Symbol-Timing Estimator; 1.4.2 Messages from the Phase Tracker; 1.4.3 Messages from the Modulation Classification; 1.4.4 Messages from the Decoder; 1.5 A Demonstration Testbed; References; Chapter 2: The Electra Radio; 2.1 Electra Receiver Front-End Processing; 2.1.1 AGC; 2.1.2 ADC; 2.1.3 Digital Downconversion and Decimation; 2.2 Electra Demodulation; 2.2.1 Frequency-Acquisition and Carrier-Tracking Loop; 2.2.2 Navigation: Doppler Phase Measurement; 2.2.3 Symbol-Timing Recovery
2.2.4 Viterbi Node Sync and Symbol SNR Estimation2.3 Electra Digital Modulator; References; Chapter 3: Modulation Index Estimation; 3.1 Coherent Estimation; 3.1.1 BPSK; 3.1.2 M-PSK; 3.2 Noncoherent Estimation; 3.3 Estimation in the Absence of Knowledge of the Modulation, Data Rate, Symbol Timing, and SNR; 3.4 Noncoherent Estimation in the Absence of Carrier Frequency Knowledge; Chapter 4: Frequency Correction; 4.1 Frequency Correction for Residual Carrier; 4.1.1 Channel Model; 4.1.2 Optimum Frequency Estimation over an AWGN Channel
4.1.3 Optimum Frequency Estimation over a Raleigh Fading Channel4.1.4 Open-Loop Frequency Estimation; 4.1.5 Closed-Loop Frequency Estimation; 4.2 Frequency Correction for Known Data-Modulated Signals; 4.2.1 Channel Model; 4.2.2 Open-Loop Frequency Estimation; 4.2.3 Closed-Loop Frequency Estimation; 4.3 Frequency Correction for Modulated Signals with Unknown Data; 4.3.1 Open-Loop Frequency Estimation; 4.3.2 Closed-Loop Frequency Estimation; References; Chapter 5: Data Format and Pulse Shape Classification; 5.1 Coherent Classifiers of Data Format for BPSK
5.1.1 Maximum-Likelihood Coherent Classifier of Data Format for BPSK5.1.2 Reduced-Complexity Data Format BPSK Classifiers; 5.1.3 Probability of Misclassification for Coherent BPSK; 5.2 Coherent Classifiers of Data Format for QPSK; 5.2.1 Maximum-Likelihood Coherent Classifier of Data Format for QPSK; 5.2.2 Reduced-Complexity Data Format QPSK Classifiers; 5.2.3 Probability of Misclassification for Coherent QPSK; 5.3 Noncoherent Classification of Data Format for BPSK; 5.3.1 Maximum-Likelihood Noncoherent Classifier of Data Format for BPSK
5.3.2 Probability of Misclassification for Noncoherent BPSK
Record Nr. UNINA-9910831073003321
Hoboken, N.J., : Wiley-Interscience, c2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Cognitive networks : towards self-aware networks / / edited by Qusay H. Mahmoud
Cognitive networks : towards self-aware networks / / edited by Qusay H. Mahmoud
Autore Mahmoud Qusay
Edizione [1st edition]
Pubbl/distr/stampa Chichester, England ; , : John Wiley & Sons Ltd., , c2007
Descrizione fisica 1 online resource (382 p.)
Disciplina 621.3821
621.384
Altri autori (Persone) MahmoudQusay H. <1971->
Soggetto topico Cognitive radio networks
Software radio
Wireless communication systems
Autonomic computing
ISBN 1-281-03209-3
9786611032098
0-470-51514-7
0-470-51515-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contributors. -- Foreword 1. -- Foreword 2. -- Preface. -- Acknowledgements. -- Introduction. -- Chapter 1: Biologically Inspired Networking. -- Chapter 2: The Role of Autonomic Networking in Cognitive Networks. -- Chapter 3: Adaptive Networks. -- Chapter 4: Self-Managing Networks. -- Chapter 5: Machine Learning for Cognitive Networks: Technology Assessment and Research Challenges. -- Chapter 6: Cross-Layer Design and Optimization in Wireless Networks. -- Chapter 7: Cognitive Radio Architecture. -- Chapter 8: The Wisdom of Crowds: Cognitive Ad hoc Networks. -- Chapter 9: Distributed Learning and Reasoning in Cognitive Networks: Methods and Design Decisions. -- Chapter 10: The Semantic Side of Cognitive Radio. -- Chapter 11: Security Issues in Cognitive Radio Networks. -- Chapter 12: Intrusion Detection in Cognitive Networks. -- Chapter 13: Erasure Tolerant Coding for Cognitive Radios. -- Index.
Record Nr. UNINA-9910144583803321
Mahmoud Qusay  
Chichester, England ; , : John Wiley & Sons Ltd., , c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Cognitive networks : towards self-aware networks / / edited by Qusay H. Mahmoud
Cognitive networks : towards self-aware networks / / edited by Qusay H. Mahmoud
Autore Mahmoud Qusay
Edizione [1st edition]
Pubbl/distr/stampa Chichester, England ; , : John Wiley & Sons Ltd., , c2007
Descrizione fisica 1 online resource (382 p.)
Disciplina 621.3821
621.384
Altri autori (Persone) MahmoudQusay H. <1971->
Soggetto topico Cognitive radio networks
Software radio
Wireless communication systems
Autonomic computing
ISBN 1-281-03209-3
9786611032098
0-470-51514-7
0-470-51515-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contributors. -- Foreword 1. -- Foreword 2. -- Preface. -- Acknowledgements. -- Introduction. -- Chapter 1: Biologically Inspired Networking. -- Chapter 2: The Role of Autonomic Networking in Cognitive Networks. -- Chapter 3: Adaptive Networks. -- Chapter 4: Self-Managing Networks. -- Chapter 5: Machine Learning for Cognitive Networks: Technology Assessment and Research Challenges. -- Chapter 6: Cross-Layer Design and Optimization in Wireless Networks. -- Chapter 7: Cognitive Radio Architecture. -- Chapter 8: The Wisdom of Crowds: Cognitive Ad hoc Networks. -- Chapter 9: Distributed Learning and Reasoning in Cognitive Networks: Methods and Design Decisions. -- Chapter 10: The Semantic Side of Cognitive Radio. -- Chapter 11: Security Issues in Cognitive Radio Networks. -- Chapter 12: Intrusion Detection in Cognitive Networks. -- Chapter 13: Erasure Tolerant Coding for Cognitive Radios. -- Index.
Record Nr. UNINA-9910830496703321
Mahmoud Qusay  
Chichester, England ; , : John Wiley & Sons Ltd., , c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Cognitive radio / / edited by Tonu Trump
Cognitive radio / / edited by Tonu Trump
Pubbl/distr/stampa [Place of publication not identified] : , : IntechOpen, , [2017]
Descrizione fisica 1 online resource (102 pages)
Disciplina 004
Soggetto topico Information technology
Wireless communication systems
Artificial intelligence
Software radio
ISBN 953-51-4766-8
953-51-3338-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910251424703321
[Place of publication not identified] : , : IntechOpen, , [2017]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Cognitive radio and dynamic spectrum access / / Lars Berlemann and Stefan Mangold
Cognitive radio and dynamic spectrum access / / Lars Berlemann and Stefan Mangold
Autore Berlemann Lars
Pubbl/distr/stampa Hoboken, New Jersey : , : J. Wiley & Sons, , 2009
Descrizione fisica 1 online resource (266 p.)
Disciplina 621.384
Altri autori (Persone) MangoldStefan
Soggetto topico Cognitive radio networks
Radio frequency allocation
Software radio
ISBN 1-282-68377-2
9786612683770
0-470-75442-7
0-470-75443-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto List of Figures -- List of Tables -- About The Authors -- Foreword -- Acknowledgement -- Preface -- Abbreviations -- 1. INTRODUCTION -- 1.1 Access to radio spectrum -- 1.2 Artificial spectrum scarcity from unexploited frequencies -- 1.3 Cognitive radio and dynamic spectrum access as solution -- 1.4 This book 28 -- 2. RADIO SPECTRUM TODAY - REGULATION AND SPECTRUM USAGE -- 2.1 History and terminology -- 2.1.1 The four basic approaches for radio spectrum regulation -- 2.1.2 Guiding principles -- 2.2 Institutions that regulate radio spectrum -- 2.2.1 International Telecommunication Union, ITU -- 2.2.2 Europe -- 2.2.3 Germany -- 2.2.4 United Kingdom -- 2.2.5 Japan -- 2.2.6 P.R. China -- 2.2.7 United States of America -- 2.3 Licensed and unlicensed spectrum -- 2.3.1 The disadvantages of spectrum licensing -- 2.3.2 Unlicensed spectrum as alternative -- 2.3.3 Tragedy of commons in unlicensed spectrum -- 2.3.4 Spectrum measurements -- 3. RADIO SPECTRUM TOMORROW ? DYNAMIC SPECTRUM ACCESS & SPECTRUM SHARING -- 3.1 Spectrum sharing and dynamic spectrum access: concepts and terminology -- 3.1.1 Spectrum trading and spectrum liberalization -- 3.1.2 Underlay and overlay spectrum sharing -- 3.1.3 Vertical and horizontal spectrum sharing -- 3.1.4 Coexistence, coordination and cooperation -- 3.2 Horizontal spectrum sharing -- 3.2.1 Coexistence -- 3.2.2 Centralized spectrum coordination for horizontal sharing -- 3.2.3 Spectrum sharing games -- 3.3 Vertical spectrum sharing -- 3.3.1 Re-use of TV bands for vertical spectrum sharing -- 3.3.2 Spectrum pooling and a common control for vertical spectrum sharing -- 3.3.3 Operator-assistance in vertical spectrum sharing -- 3.3.4 Spectrum load smoothing for vertical spectrum sharing -- 3.4 Taxonomy for spectrum sharing -- 4. TOWARDS COGNITIVE RADIO - RESEARCH AND STANDARDIZATION -- 4.1 Research programs and projects -- 4.1.1 DARPA Next Generation Communications Program, XG -- 4.1.2 National Science Foundation's project GENI -- 4.1.3 European project E3.
4.1.4 European project WINNER+ -- 4.1.5 European project WIP -- 4.1.6 European project SOCRATES -- 4.1.7 European project ROCKET -- 4.1.8 European project ORACLE -- 4.2 IEEE coordination, and the Coexistence Advisory Group IEEE 802.19 -- 4.3 IEEE SCC41/P1900 -- 4.3.1 IEEE P1900.1 -- 4.3.2 IEEE P1900.2 -- 4.3.3 IEEE P1900.3 -- 4.3.4 IEEE P1900.4 -- 4.3.5 IEEE P1900.5 -- 4.4 Wi-Fi Wireless Local Area Networks IEEE 802.11 -- 4.4.1 IEEE 802.11k for radio resource measurements -- 4.4.2 IEEE 802.11n for high throughput -- 4.4.3 IEEE 802.11s for mesh networks -- 4.4.4 IEEE 802.11y for high power Wi-Fi -- 4.5 WiMAX Wirless Metropolitan Area Networks IEEE 802.16 -- 4.5.1 IEEE 802.16.2 Coexistence -- 4.5.2 IEEE 802.16h license exempt -- 4.5.3 IEEE 802.22 for wireless rural area networks -- 4.6 Other standardization activities -- 4.6.1 White Spaces Coalition & Wireless Innovation Alliance -- 4.6.2 The New America Foundation and open spectrum -- 4.6.3 SDR Forum -- 4.6.4 Third Generation Partnership Project 3GPP -- 4.6.5 European Telecommunications Standards Institute ETSI -- 4.6.6 Academic research conferences and workshops -- 5. PROPOSED ENABLERS FOR REALIZING HORIZONTAL SPECTRUM SHARING -- 5.1 IEEE 802.11 in unlicensed spectrum -- 5.1.1 Overview -- 5.1.2 Physical layer -- 5.1.3 Medium access control -- 5.1.4 Learning from 802.11 -- 5.2 IEEE 802.16 in unlicensed spectrum -- 5.2.1 Coexistence scenario -- 5.2.2 Protecting the beginning of 802.16 MAC frame -- 5.2.3 Protecting the 802.16 UL subframe -- 5.2.4 Shifting the contention slots -- 5.2.5 Quality-of-service, efficiency, and fairness -- 5.3 Policies in spectrum usage -- 5.3.1 Policy framework -- 5.3.2 Spectrum navigation -- 5.3.3 Reasoning based spectrum navigation -- 5.4 Policy language -- 5.5 Spectrum sharing games -- 5.5.1 Related work -- 5.5.2 802.11e coexistence scenario -- 5.5.3 Game overview -- 5.5.4 Single stage game for frame based interaction -- 5.5.5 Quality-of-service as utility -- 5.5.6 Analytic game model -- 5.5.7 Behavior.
5.5.8 Equilibrium analysis -- 5.5.9 Multi stage game model -- 5.5.10 Discounting of future payoffs -- 5.5.11 Strategies -- 5.5.12 Nash equilibrium in multi stage games -- 5.5.13 QoS evaluation of strategies -- 5.5.14 Game approach as policy -- 5.5.15 Learning from spectrum sharing games -- 6. PROPOSED ENABLERS FOR REALIZING VERTICAL SPECTRUM SHARING -- 6.1 Frequency division duplex for Wi-Fi: FDD WLANs -- 6.2 Operator assisted cognitive radio with beaconing -- 6.2.1 Existing standard beaconing concepts -- 6.2.2 What is a beacon? -- 6.2.3 Improved signaling mechanism with dual beacons -- 6.2.4 Beacon implementation in IEEE 802.11 -- 6.2.5 Evaluation -- 6.2.6 Dual beaconing for the reuse of TV bands as policy -- 6.3 Spectrum load smoothing -- 6.3.1 Related work -- 6.3.2 Enabling cognitive radios -- 6.3.3 Spectrum load smoothing in the time domain -- 6.3.4 Initial simulations and convergence experiments -- 6.3.5 Modeling spectrum load smoothing in spectrum sharing scenarios -- 6.3.6 QoS support in IEEE 802.11e coexistence scenarios -- 6.3.7 SLS with reservations - approach to the re-use of TV-bands -- 6.3.8 SLS without reservations - opportunistic spectrum usage scenario -- 6.3.9 Evaluation of QoS capabilities -- 6.3.10 Spectrum load smoothing as policy -- 6.3.11 Learning from spectrum load smoothing approach -- 7. OUR VISION ? THE TRUE COGNITIVE RADIO -- 7.1 Mitola's cognition circle and related cognitive radio definitions -- 7.2 Cognitive radios can gain from delay-tolerant software radio -- 7.3 DARPA XG provides implementation guidelines, including the access protocol -- 7.3.1 Traceable decision making -- 7.3.2 Machine-understandable radio semantics -- 7.4 Spectrum etiquette may stimulate cognitive behavior -- 7.4.1 What is spectrum etiquette? -- 7.4.2 Value orientation -- 7.5 Network operators may assist dynamic spectrum access -- 7.6 Business opportunities -- 8 CONCLUDING REMARKS -- A. APPENDIX "JEMULA802" -- B. APPENDIX "YOUSHI" -- B.1 Modeling QoS requirements and demands.
B.2 Resource allocation and collisions -- B.3 Graphical user interface -- References -- Index.
Record Nr. UNINA-9910139784103321
Berlemann Lars  
Hoboken, New Jersey : , : J. Wiley & Sons, , 2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Cognitive radio and dynamic spectrum access / / Lars Berlemann and Stefan Mangold
Cognitive radio and dynamic spectrum access / / Lars Berlemann and Stefan Mangold
Autore Berlemann Lars
Pubbl/distr/stampa Hoboken, New Jersey : , : J. Wiley & Sons, , 2009
Descrizione fisica 1 online resource (266 p.)
Disciplina 621.384
Altri autori (Persone) MangoldStefan
Soggetto topico Cognitive radio networks
Radio frequency allocation
Software radio
ISBN 1-282-68377-2
9786612683770
0-470-75442-7
0-470-75443-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto List of Figures -- List of Tables -- About The Authors -- Foreword -- Acknowledgement -- Preface -- Abbreviations -- 1. INTRODUCTION -- 1.1 Access to radio spectrum -- 1.2 Artificial spectrum scarcity from unexploited frequencies -- 1.3 Cognitive radio and dynamic spectrum access as solution -- 1.4 This book 28 -- 2. RADIO SPECTRUM TODAY - REGULATION AND SPECTRUM USAGE -- 2.1 History and terminology -- 2.1.1 The four basic approaches for radio spectrum regulation -- 2.1.2 Guiding principles -- 2.2 Institutions that regulate radio spectrum -- 2.2.1 International Telecommunication Union, ITU -- 2.2.2 Europe -- 2.2.3 Germany -- 2.2.4 United Kingdom -- 2.2.5 Japan -- 2.2.6 P.R. China -- 2.2.7 United States of America -- 2.3 Licensed and unlicensed spectrum -- 2.3.1 The disadvantages of spectrum licensing -- 2.3.2 Unlicensed spectrum as alternative -- 2.3.3 Tragedy of commons in unlicensed spectrum -- 2.3.4 Spectrum measurements -- 3. RADIO SPECTRUM TOMORROW ? DYNAMIC SPECTRUM ACCESS & SPECTRUM SHARING -- 3.1 Spectrum sharing and dynamic spectrum access: concepts and terminology -- 3.1.1 Spectrum trading and spectrum liberalization -- 3.1.2 Underlay and overlay spectrum sharing -- 3.1.3 Vertical and horizontal spectrum sharing -- 3.1.4 Coexistence, coordination and cooperation -- 3.2 Horizontal spectrum sharing -- 3.2.1 Coexistence -- 3.2.2 Centralized spectrum coordination for horizontal sharing -- 3.2.3 Spectrum sharing games -- 3.3 Vertical spectrum sharing -- 3.3.1 Re-use of TV bands for vertical spectrum sharing -- 3.3.2 Spectrum pooling and a common control for vertical spectrum sharing -- 3.3.3 Operator-assistance in vertical spectrum sharing -- 3.3.4 Spectrum load smoothing for vertical spectrum sharing -- 3.4 Taxonomy for spectrum sharing -- 4. TOWARDS COGNITIVE RADIO - RESEARCH AND STANDARDIZATION -- 4.1 Research programs and projects -- 4.1.1 DARPA Next Generation Communications Program, XG -- 4.1.2 National Science Foundation's project GENI -- 4.1.3 European project E3.
4.1.4 European project WINNER+ -- 4.1.5 European project WIP -- 4.1.6 European project SOCRATES -- 4.1.7 European project ROCKET -- 4.1.8 European project ORACLE -- 4.2 IEEE coordination, and the Coexistence Advisory Group IEEE 802.19 -- 4.3 IEEE SCC41/P1900 -- 4.3.1 IEEE P1900.1 -- 4.3.2 IEEE P1900.2 -- 4.3.3 IEEE P1900.3 -- 4.3.4 IEEE P1900.4 -- 4.3.5 IEEE P1900.5 -- 4.4 Wi-Fi Wireless Local Area Networks IEEE 802.11 -- 4.4.1 IEEE 802.11k for radio resource measurements -- 4.4.2 IEEE 802.11n for high throughput -- 4.4.3 IEEE 802.11s for mesh networks -- 4.4.4 IEEE 802.11y for high power Wi-Fi -- 4.5 WiMAX Wirless Metropolitan Area Networks IEEE 802.16 -- 4.5.1 IEEE 802.16.2 Coexistence -- 4.5.2 IEEE 802.16h license exempt -- 4.5.3 IEEE 802.22 for wireless rural area networks -- 4.6 Other standardization activities -- 4.6.1 White Spaces Coalition & Wireless Innovation Alliance -- 4.6.2 The New America Foundation and open spectrum -- 4.6.3 SDR Forum -- 4.6.4 Third Generation Partnership Project 3GPP -- 4.6.5 European Telecommunications Standards Institute ETSI -- 4.6.6 Academic research conferences and workshops -- 5. PROPOSED ENABLERS FOR REALIZING HORIZONTAL SPECTRUM SHARING -- 5.1 IEEE 802.11 in unlicensed spectrum -- 5.1.1 Overview -- 5.1.2 Physical layer -- 5.1.3 Medium access control -- 5.1.4 Learning from 802.11 -- 5.2 IEEE 802.16 in unlicensed spectrum -- 5.2.1 Coexistence scenario -- 5.2.2 Protecting the beginning of 802.16 MAC frame -- 5.2.3 Protecting the 802.16 UL subframe -- 5.2.4 Shifting the contention slots -- 5.2.5 Quality-of-service, efficiency, and fairness -- 5.3 Policies in spectrum usage -- 5.3.1 Policy framework -- 5.3.2 Spectrum navigation -- 5.3.3 Reasoning based spectrum navigation -- 5.4 Policy language -- 5.5 Spectrum sharing games -- 5.5.1 Related work -- 5.5.2 802.11e coexistence scenario -- 5.5.3 Game overview -- 5.5.4 Single stage game for frame based interaction -- 5.5.5 Quality-of-service as utility -- 5.5.6 Analytic game model -- 5.5.7 Behavior.
5.5.8 Equilibrium analysis -- 5.5.9 Multi stage game model -- 5.5.10 Discounting of future payoffs -- 5.5.11 Strategies -- 5.5.12 Nash equilibrium in multi stage games -- 5.5.13 QoS evaluation of strategies -- 5.5.14 Game approach as policy -- 5.5.15 Learning from spectrum sharing games -- 6. PROPOSED ENABLERS FOR REALIZING VERTICAL SPECTRUM SHARING -- 6.1 Frequency division duplex for Wi-Fi: FDD WLANs -- 6.2 Operator assisted cognitive radio with beaconing -- 6.2.1 Existing standard beaconing concepts -- 6.2.2 What is a beacon? -- 6.2.3 Improved signaling mechanism with dual beacons -- 6.2.4 Beacon implementation in IEEE 802.11 -- 6.2.5 Evaluation -- 6.2.6 Dual beaconing for the reuse of TV bands as policy -- 6.3 Spectrum load smoothing -- 6.3.1 Related work -- 6.3.2 Enabling cognitive radios -- 6.3.3 Spectrum load smoothing in the time domain -- 6.3.4 Initial simulations and convergence experiments -- 6.3.5 Modeling spectrum load smoothing in spectrum sharing scenarios -- 6.3.6 QoS support in IEEE 802.11e coexistence scenarios -- 6.3.7 SLS with reservations - approach to the re-use of TV-bands -- 6.3.8 SLS without reservations - opportunistic spectrum usage scenario -- 6.3.9 Evaluation of QoS capabilities -- 6.3.10 Spectrum load smoothing as policy -- 6.3.11 Learning from spectrum load smoothing approach -- 7. OUR VISION ? THE TRUE COGNITIVE RADIO -- 7.1 Mitola's cognition circle and related cognitive radio definitions -- 7.2 Cognitive radios can gain from delay-tolerant software radio -- 7.3 DARPA XG provides implementation guidelines, including the access protocol -- 7.3.1 Traceable decision making -- 7.3.2 Machine-understandable radio semantics -- 7.4 Spectrum etiquette may stimulate cognitive behavior -- 7.4.1 What is spectrum etiquette? -- 7.4.2 Value orientation -- 7.5 Network operators may assist dynamic spectrum access -- 7.6 Business opportunities -- 8 CONCLUDING REMARKS -- A. APPENDIX "JEMULA802" -- B. APPENDIX "YOUSHI" -- B.1 Modeling QoS requirements and demands.
B.2 Resource allocation and collisions -- B.3 Graphical user interface -- References -- Index.
Record Nr. UNINA-9910807241403321
Berlemann Lars  
Hoboken, New Jersey : , : J. Wiley & Sons, , 2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Cognitive radio architecture [[electronic resource] ] : the engineering foundations of radio XML / / Joseph Mitola III
Cognitive radio architecture [[electronic resource] ] : the engineering foundations of radio XML / / Joseph Mitola III
Autore Mitola Joseph
Pubbl/distr/stampa Hoboken, N.J., : Wiley-Interscience, c2006
Descrizione fisica 1 online resource (487 p.)
Disciplina 621.384
Soggetto topico Software radio
XML (Document markup language)
ISBN 1-280-64998-4
9786610649983
0-470-35390-2
0-471-77373-5
0-471-77372-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto COGNITIVE RADIO ARCHITECTURE; CONTENTS; PREFACE; ACKNOWLEDGMENTS; 1 INTRODUCTION; 1.1 Perception; 1.2 Aware, Adaptive, or Cognitive?; 1.3 Adaptation; 1.4 Cognition; 1.5 Cognitive Radio and Public Policy; 1.6 Are We There Yet?; 1.7 Key Questions; 1.8 Organization of the Text; 1.9 Exercises; I FOUNDATIONS; 2 TECHNICAL OVERVIEW; 2.1 The iCR Has Seven Capabilities; 2.2 Sensing and Perception: What and Whom to Perceive; 2.3 Ideal Cognitive Radio (iCR) Platform Evolution; 2.4 The serModel of Machine Learning for iCR; 2.5 Architecture; 2.6 Synoptic iCR Functional Definition; 2.7 Exercises
3 EVOLVING FROM AWARE AND ADAPTIVE TO COGNITIVE RADIO3.1 Revolution or Evolution?; 3.2 Moving Day; 3.3 Developing AML for Genie; 3.4 Learning Etiquette; 3.5 Value Proposition for AML in AACR; 3.6 Exercises; 4 AUTONOMOUS MACHINE LEARNING FOR AACR; 4.1 Machine Learning Framework; 4.2 Histogram as a Discovery Algorithm; 4.3 User-Domain Learning; 4.4 Radio-Domain Learning; 4.5 Reinforcement, Extension, and Constraint Discovery; 4.6 Learning Strategies; 4.7 Exercises; 5 COGNITIVE RADIO ARCHITECTURE; 5.1 CRA I: Functions, Components, and Design Rules; 5.2 CRA II: The Cognition Cycle
5.3 CRA III: The Inference Hierarchy5.4 CRA IV: Architecture Maps; 5.5 CRA V: Building the CRA on SDR Architectures; 5.6 Cognition Architecture Research Topics; 5.7 Exercises; II RADIO-DOMAIN COMPETENCE; 6 RADIO-DOMAIN USE CASES; 6.1 Radio Use-Case Metrics; 6.2 FCC Unused TV Spectrum Use Case; 6.3 Demand Shaping Use Case; 6.4 Military Market Segment Use Cases; 6.5 RF Knowledge That Saves Lives; 6.6 Prognostication; 6.7 Exercises; 7 RADIO KNOWLEDGE; 7.1 Radio-Domain Overview; 7.2 Knowledge of the HF Radio Band; 7.3 Knowledge of the LVHF Radio Band; 7.4 Radio Noise and Interference
7.5 Knowledge of the VHF Radio Band7.6 Knowledge of the UHF Radio Band; 7.7 Knowledge of the SHF Radio Band; 7.8 Knowledge of EHF, Terahertz, and Free Space Optics; 7.9 Satellite Communications Knowledge; 7.10 Cross-Band/Mode Knowledge; 8 IMPLEMENTING RADIO-DOMAIN SKILLS; 8.1 Cognitive Radio Architecture Structures Radio Skills; 8.2 Embedded Databases Enable Skills; 8.3 Production Systems Enable Skills; 8.4 Embedded Inference Enables Skills; 8.5 Radio Knowledge Objects (RKOs); 8.6 Evolving Skills Via RKO and RDH; 8.7 Implementing Spatial Skills; 8.8 Generalized
8.9 Microworlds8.10 Radio Skills Conclusions; 8.11 Exercises; III USER-DOMAIN COMPETENCE; 9 USER-DOMAIN USE CASES; 9.1 Emergency Companion Use Case; 9.2 Office Assistant Use Case; 9.3 Cognitive Assistants for Wireless; 9.4 User Skill Enhancements; 9.5 Exercises; 10 USER-DOMAIN KNOWLEDGE; 10.1 Users' Natural Language Expression; 10.2 Acoustic Sensory Perception; 10.3 Visual Sensory Perception; 10.4 Audio-Visual Integration; 10.5 Lexical Conceptual Semantics (LCS); 10.6 Other Sensors; 10.7 Architecture Implications; 10.8 Exercises; 11 IMPLEMENTING USER-DOMAIN SKILLS; 11.1 Integrating Cognition
11.2 Autonomous Extensibility
Record Nr. UNINA-9910144586003321
Mitola Joseph  
Hoboken, N.J., : Wiley-Interscience, c2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Cognitive radio architecture [[electronic resource] ] : the engineering foundations of radio XML / / Joseph Mitola III
Cognitive radio architecture [[electronic resource] ] : the engineering foundations of radio XML / / Joseph Mitola III
Autore Mitola Joseph
Pubbl/distr/stampa Hoboken, N.J., : Wiley-Interscience, c2006
Descrizione fisica 1 online resource (487 p.)
Disciplina 621.384
Soggetto topico Software radio
XML (Document markup language)
ISBN 1-280-64998-4
9786610649983
0-470-35390-2
0-471-77373-5
0-471-77372-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto COGNITIVE RADIO ARCHITECTURE; CONTENTS; PREFACE; ACKNOWLEDGMENTS; 1 INTRODUCTION; 1.1 Perception; 1.2 Aware, Adaptive, or Cognitive?; 1.3 Adaptation; 1.4 Cognition; 1.5 Cognitive Radio and Public Policy; 1.6 Are We There Yet?; 1.7 Key Questions; 1.8 Organization of the Text; 1.9 Exercises; I FOUNDATIONS; 2 TECHNICAL OVERVIEW; 2.1 The iCR Has Seven Capabilities; 2.2 Sensing and Perception: What and Whom to Perceive; 2.3 Ideal Cognitive Radio (iCR) Platform Evolution; 2.4 The serModel of Machine Learning for iCR; 2.5 Architecture; 2.6 Synoptic iCR Functional Definition; 2.7 Exercises
3 EVOLVING FROM AWARE AND ADAPTIVE TO COGNITIVE RADIO3.1 Revolution or Evolution?; 3.2 Moving Day; 3.3 Developing AML for Genie; 3.4 Learning Etiquette; 3.5 Value Proposition for AML in AACR; 3.6 Exercises; 4 AUTONOMOUS MACHINE LEARNING FOR AACR; 4.1 Machine Learning Framework; 4.2 Histogram as a Discovery Algorithm; 4.3 User-Domain Learning; 4.4 Radio-Domain Learning; 4.5 Reinforcement, Extension, and Constraint Discovery; 4.6 Learning Strategies; 4.7 Exercises; 5 COGNITIVE RADIO ARCHITECTURE; 5.1 CRA I: Functions, Components, and Design Rules; 5.2 CRA II: The Cognition Cycle
5.3 CRA III: The Inference Hierarchy5.4 CRA IV: Architecture Maps; 5.5 CRA V: Building the CRA on SDR Architectures; 5.6 Cognition Architecture Research Topics; 5.7 Exercises; II RADIO-DOMAIN COMPETENCE; 6 RADIO-DOMAIN USE CASES; 6.1 Radio Use-Case Metrics; 6.2 FCC Unused TV Spectrum Use Case; 6.3 Demand Shaping Use Case; 6.4 Military Market Segment Use Cases; 6.5 RF Knowledge That Saves Lives; 6.6 Prognostication; 6.7 Exercises; 7 RADIO KNOWLEDGE; 7.1 Radio-Domain Overview; 7.2 Knowledge of the HF Radio Band; 7.3 Knowledge of the LVHF Radio Band; 7.4 Radio Noise and Interference
7.5 Knowledge of the VHF Radio Band7.6 Knowledge of the UHF Radio Band; 7.7 Knowledge of the SHF Radio Band; 7.8 Knowledge of EHF, Terahertz, and Free Space Optics; 7.9 Satellite Communications Knowledge; 7.10 Cross-Band/Mode Knowledge; 8 IMPLEMENTING RADIO-DOMAIN SKILLS; 8.1 Cognitive Radio Architecture Structures Radio Skills; 8.2 Embedded Databases Enable Skills; 8.3 Production Systems Enable Skills; 8.4 Embedded Inference Enables Skills; 8.5 Radio Knowledge Objects (RKOs); 8.6 Evolving Skills Via RKO and RDH; 8.7 Implementing Spatial Skills; 8.8 Generalized
8.9 Microworlds8.10 Radio Skills Conclusions; 8.11 Exercises; III USER-DOMAIN COMPETENCE; 9 USER-DOMAIN USE CASES; 9.1 Emergency Companion Use Case; 9.2 Office Assistant Use Case; 9.3 Cognitive Assistants for Wireless; 9.4 User Skill Enhancements; 9.5 Exercises; 10 USER-DOMAIN KNOWLEDGE; 10.1 Users' Natural Language Expression; 10.2 Acoustic Sensory Perception; 10.3 Visual Sensory Perception; 10.4 Audio-Visual Integration; 10.5 Lexical Conceptual Semantics (LCS); 10.6 Other Sensors; 10.7 Architecture Implications; 10.8 Exercises; 11 IMPLEMENTING USER-DOMAIN SKILLS; 11.1 Integrating Cognition
11.2 Autonomous Extensibility
Record Nr. UNINA-9910830720703321
Mitola Joseph  
Hoboken, N.J., : Wiley-Interscience, c2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui