top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Semiconductor disk lasers [[electronic resource] ] : physics and technology / / edited by Oleg G. Okhotnikov
Semiconductor disk lasers [[electronic resource] ] : physics and technology / / edited by Oleg G. Okhotnikov
Pubbl/distr/stampa Weinheim, : Wiley-VCH, 2010
Descrizione fisica 1 online resource (332 p.)
Disciplina 621.3661
Altri autori (Persone) OkhotnikovOleg G
Soggetto topico Semiconductor lasers
ISBN 1-282-69003-5
9786612690037
3-527-63039-2
3-527-63040-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto VECSEL semiconductor lasers : a path to high-power, quality beam and UV to IR wavelength by design -- Thermal management, structure design, and integration considerations for VECSELs -- Red semiconductor disk lasers by intracavity frequency conversion -- Long-wavelength GaSb disk lasers -- Semiconductor disk lasers based on quantum dots -- Mode-locked semiconductor disk lasers -- External-cavity surface-emitting diode lasers.
Record Nr. UNINA-9910829936903321
Weinheim, : Wiley-VCH, 2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Semiconductor Laser Diode : Technology and Applications / / edited by Dnyaneshwar Shaligram Patil
Semiconductor Laser Diode : Technology and Applications / / edited by Dnyaneshwar Shaligram Patil
Pubbl/distr/stampa [Place of publication not identified] : , : IntechOpen, , 2012
Descrizione fisica 1 online resource (390 pages)
Disciplina 621.366
Soggetto topico Semiconductor lasers
ISBN 953-51-4996-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Semiconductor Laser Diode
Record Nr. UNINA-9910137693303321
[Place of publication not identified] : , : IntechOpen, , 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Semiconductor laser engineering, reliability and diagnostics [[electronic resource] ] : a practical approach to high power and single mode devices / / Peter W. Epperlein
Semiconductor laser engineering, reliability and diagnostics [[electronic resource] ] : a practical approach to high power and single mode devices / / Peter W. Epperlein
Autore Epperlein Peter W
Edizione [1st edition]
Pubbl/distr/stampa Chichester, West Sussex, U.K., : John Wiley & Sons Inc., 2013
Descrizione fisica 1 online resource (522 p.)
Disciplina 621.36/61
Soggetto topico Semiconductor lasers
ISBN 1-118-48188-7
1-118-48187-9
1-118-48186-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Machine generated contents note: Dedication Preface About the Author PART I: DIODE LASER ENGINEERING Overview 1. Basic Diode Laser Engineering Principles Introduction 1.1. Brief Recapitulation 1.1.1. Key Features of a Diode Laser 1.1.2. Homo-Junction Diode Laser 1.1.3. Double-Heterostructure Diode Laser 1.1.4. Quantum Well Diode Laser 1.1.5. Common Compounds for Semiconductor Lasers 1.2. Optical Output Power - Diverse Aspects 1.2.1. Approaches to High Power Diode Lasers 1.2.2. High Optical Power Considerations 1.2.3. Power Limitations 1.2.4. High Power versus Reliability Trade-Offs 1.2.5. Typical and Record-High CW Optical Output Powers 1.3. Selected Relevant Basic Diode Laser Characteristics 1.3.1. Threshold Gain 1.3.2. Material Gain Spectra 1.3.3. Optical Confinement 1.3.4. Threshold Current 1.3.5. Transverse Vertical and Transverse Lateral Modes 1.3.6. Fabry-Perot Longitudinal Modes 1.3.7. Operating Characteristics 1.3.8. Mirror Reflectivity Modifications 1.4. Laser Fabrication Technology 1.4.1. Laser Wafer Growth 1.4.2. Laser Wafer Processing 1.4.3. Laser Packaging References 2. Design Considerations for High Power Single Spatial Mode Operation Introduction 2.1. Basic High Power Design Approaches 2.1.1. Key Aspects 2.1.2. Output Power Scaling 2.1.3. Transverse Vertical Waveguides 2.1.4. Narrow Stripe Weakly Index Guided Transverse Lateral Waveguides 2.1.5. Thermal Management 2.1.6. Catastrophic Optical Damage Elimination 2.2. Single Spatial Mode and Kink Control 2.2.1. Key Aspects 2.3.1. Introduction 2.3.2. Selected Calculated Parameter Dependencies 2.3.3. Selected Experimental Parameter Dependencies 2.4.1. Introduction 2.4.2. Broad Area Lasers 2.4.3. Unstable Resonator Lasers 2.4.4. Tapered Amplifier Lasers 2.4.5. Linear Laser Array Structures References Part II: DIODE LASER RELIABILITY Overview 3. Basic Diode Laser Degradation Modes Introduction 3.1. Degradation and Stability Criteria of Critical Diode Laser Characteristics 3.1.1. Optical Power, Threshold, Efficiency and Transverse Modes 3.1.2. Lasing Wavelength and Longitudinal Modes 3.2. Classification of Degradation Modes 3.2.1. Classification of Degradation Phenomena by Location 3.2.2. Basic Degradation Mechanisms 3.3. Key Laser Robustness Factors References 4. Optical Strength Engineering Introduction 4.1. Mirror Facet Properties - Physical Origins of Failure 4.2. Mirror Facet Passivation and Protection 4.2.1. Scope and Effects 4.2.2. Facet Passivation Techniques 4.2.3. Facet Protection Techniques 4.3. Non-Absorbing Mirror Technologies 4.3.1. Concept 4.3.2. Window Grown on Facet 4.3.3. Quantum Well Intermixing Processes 4.3.4. Bent Waveguide 4.4. Further Optical Strength Enhancement Approaches 4.4.1. Current Blocking Mirrors and Material Optimization 4.4.2. Heat Spreader Layer, Device Mounting and Number of Quantum Wells 4.4.3. Mode Spot Widening Techniques References 5. Basic Reliability Engineering Concepts Introduction 5.1. Descriptive Reliability Statistics 5.1.1. Probability Density Function 5.1.2. Cumulative Distribution Function 5.1.3. Reliability Function 5.1.4. Instantaneous Failure Rate or Hazard Rate 5.1.5. Cumulative Hazard Function 5.1.6. Average Failure Rate 5.1.7. Failure Rate Units 5.1.8. Bathtub Failure Rate Curve 5.2. Failure Distribution Functions - Statistics Models for Non-Repairable Populations 5.2.1. Introduction 5.2.2. Lognormal Distribution 5.2.3. Weibull Distribution 5.2.4. Exponential Distribution 5.3. Reliability Data Plotting 5.3.1. Life Test Data Plotting 5.4. Further Reliability Concepts 5.4.1. Data Types 5.4.2. Confidence Limits 5.4.3. Mean Time to Failure Calculations 5.4.4. Reliability Estimations 5.5. Accelerated Reliability Testing - Physics-Statistics Models 5.5.1. Acceleration Relationships 5.5.2. Remarks on Acceleration Models 5.6. System Reliability Calculations 5.6.1. Introduction 5.6.2. Independent Elements Connected in Series 5.6.3. Parallel System of Independent Components References 6. Diode Laser Reliability Engineering Program Introduction 6.1. Reliability Test Plan 6.1.1. Main Purpose, Motivation and Goals 6.1.2. Up-Front Requirements and Activities 6.1.3. Relevant Parameters for Long Term Stability and Reliability 6.1.4. Test Preparations and Operation 6.1.5. Overview Reliability Program Building Blocks 6.1.6. Development Tests 6.1.7. Manufacturing Tests 6.2. Reliability Growth Program 6.3. Reliability Benefits and Costs 6.3.1. Types of Benefit 6.3.2. Reliability - Cost Trade Offs References PART III: DIODE LASER DIAGNOSTICS Overview 7. Novel Diagnostic Laser Data for Active Layer Material Integrity, Impurity Trapping Effects and Mirror Temperatures Introduction 7.1. Optical Integrity of Laser Wafer Substrates 7.1.1. Motivation 7.1.2. Experimental Details 7.1.3. Discussion of Wafer Photoluminescence Maps 7.2. Integrity of Laser Active Layers 7.2.1. Motivation 7.2.2. Experimental Details 7.2.3. Discussion of Quantum Well PL Spectra 7.3. Deep-Level Defects at Interfaces of Active Regions 7.3.1. Motivation 7.3.2. Experimental Details 7.3.3. Discussion of Deep-Level Transient Spectroscopy Results 7.4. Micro-Raman Spectroscopy for Diode Laser Diagnostics 7.4.1. Motivation 7.4.2. Basics of Raman Inelastic Light Scattering 7.4.3. Experimental Details 7.4.4. Raman on Standard Diode Laser Facets 7.4.5. Raman for Facet Temperature Measurements 7.4.6. Various Dependences of Diode Laser Mirror Temperatures References 8. Novel Diagnostic Laser Data for Mirror Facet Disorder Effects, Mechanical Stress Effects and Facet Coating Instability Introduction 8.1. Diode Laser Mirror Facet Studies by Raman 8.1.1. Motivation 8.1.2. Raman Microprobe Spectra 8.1.3. Possible Origins of the 193 cm-1 Mode in (Al)GaAs 8.1.4. Facet Disorder - Facet Temperature - Catastrophic Optical Mirror Damage Robustness Correlations 8.2. Local Mechanical Strain in Ridge-Waveguide Diode Lasers 8.2.1. Motivation 8.2.2. Measurements - Raman Shifts and Stress Profiles 8.2.3. Detection of "Weak Spots" 8.2.4. Stress Model Experiments 8.3. Diode Laser Mirror Facet Coating Structural Instability 8.3.1. Motivation 8.3.2. Experimental Details 8.3.3. Silicon Recrystallization by Internal Power Exposure 8.3.4. Silicon Recrystallization by External Power Exposure - Control Experiments References 9. Novel Diagnostic Data for Diverse Laser Temperature Effects, Dynamic Laser Degradation Effects and Mirror Temperature Maps Introduction 9.1. Thermoreflectance Microscopy for Diode Laser Diagnostics 9.1.1. Motivation 9.1.2. Concept and Signal Interpretation 9.1.3. Reflectance - Temperature Change Relationship 9.1.4. Experimental Details 9.1.5. Potential Perturbation Effects on Reflectance 9.2. Thermoreflectance versus Optical Spectroscopies 9.2.1. General 9.2.2. Comparison 9.3. Lowest Detectable Temperature Rise 9.4. Diode Laser Mirror Temperatures by Micro-Thermoreflectance 9.4.1. Motivation 9.4.2. Dependence on Number of Active Quantum Wells 9.4.3. Dependence on Heat Spreader 9.4.4. Dependence on Mirror Treatment and Coating 9.4.5. Bent-Waveguide Non-Absorbing Mirror 9.5. Diode Laser Mirror Studies by Micro-Thermoreflectance 9.5.1. Motivation 9.5.2. Real-Time Temperature-Monitored Laser Degradation 9.5.3. Local Optical Probe 9.5.3.1. Threshold and heating distribution within near-field spot 9.6. Diode Laser Cavity Temperatures by Micro-Electroluminescence 9.6.1. Motivation 9.6.2. Experimental Details - Sample and Setup 9.6.3. Temperature Profiles along Laser Cavity 9.7. Diode Laser Facet Temperature - Two-Dimensional Mapping 9.7.1. Motivation 9.7.2. Experimental Concept 9.7.3. First Temperature Maps Ever 9.7.4. Independent Temperature Line Scans Perpendicular Active Layer 9.7.5. Temperature Modelling References Index.
Record Nr. UNINA-9910141509103321
Epperlein Peter W  
Chichester, West Sussex, U.K., : John Wiley & Sons Inc., 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Semiconductor laser engineering, reliability and diagnostics : a practical approach to high power and single mode devices / / Peter W. Epperlein
Semiconductor laser engineering, reliability and diagnostics : a practical approach to high power and single mode devices / / Peter W. Epperlein
Autore Epperlein Peter W
Edizione [1st edition]
Pubbl/distr/stampa Chichester, West Sussex, U.K., : John Wiley & Sons Inc., 2013
Descrizione fisica 1 online resource (522 p.)
Disciplina 621.36/61
Soggetto topico Semiconductor lasers
ISBN 1-118-48188-7
1-118-48187-9
1-118-48186-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Machine generated contents note: Dedication Preface About the Author PART I: DIODE LASER ENGINEERING Overview 1. Basic Diode Laser Engineering Principles Introduction 1.1. Brief Recapitulation 1.1.1. Key Features of a Diode Laser 1.1.2. Homo-Junction Diode Laser 1.1.3. Double-Heterostructure Diode Laser 1.1.4. Quantum Well Diode Laser 1.1.5. Common Compounds for Semiconductor Lasers 1.2. Optical Output Power - Diverse Aspects 1.2.1. Approaches to High Power Diode Lasers 1.2.2. High Optical Power Considerations 1.2.3. Power Limitations 1.2.4. High Power versus Reliability Trade-Offs 1.2.5. Typical and Record-High CW Optical Output Powers 1.3. Selected Relevant Basic Diode Laser Characteristics 1.3.1. Threshold Gain 1.3.2. Material Gain Spectra 1.3.3. Optical Confinement 1.3.4. Threshold Current 1.3.5. Transverse Vertical and Transverse Lateral Modes 1.3.6. Fabry-Perot Longitudinal Modes 1.3.7. Operating Characteristics 1.3.8. Mirror Reflectivity Modifications 1.4. Laser Fabrication Technology 1.4.1. Laser Wafer Growth 1.4.2. Laser Wafer Processing 1.4.3. Laser Packaging References 2. Design Considerations for High Power Single Spatial Mode Operation Introduction 2.1. Basic High Power Design Approaches 2.1.1. Key Aspects 2.1.2. Output Power Scaling 2.1.3. Transverse Vertical Waveguides 2.1.4. Narrow Stripe Weakly Index Guided Transverse Lateral Waveguides 2.1.5. Thermal Management 2.1.6. Catastrophic Optical Damage Elimination 2.2. Single Spatial Mode and Kink Control 2.2.1. Key Aspects 2.3.1. Introduction 2.3.2. Selected Calculated Parameter Dependencies 2.3.3. Selected Experimental Parameter Dependencies 2.4.1. Introduction 2.4.2. Broad Area Lasers 2.4.3. Unstable Resonator Lasers 2.4.4. Tapered Amplifier Lasers 2.4.5. Linear Laser Array Structures References Part II: DIODE LASER RELIABILITY Overview 3. Basic Diode Laser Degradation Modes Introduction 3.1. Degradation and Stability Criteria of Critical Diode Laser Characteristics 3.1.1. Optical Power, Threshold, Efficiency and Transverse Modes 3.1.2. Lasing Wavelength and Longitudinal Modes 3.2. Classification of Degradation Modes 3.2.1. Classification of Degradation Phenomena by Location 3.2.2. Basic Degradation Mechanisms 3.3. Key Laser Robustness Factors References 4. Optical Strength Engineering Introduction 4.1. Mirror Facet Properties - Physical Origins of Failure 4.2. Mirror Facet Passivation and Protection 4.2.1. Scope and Effects 4.2.2. Facet Passivation Techniques 4.2.3. Facet Protection Techniques 4.3. Non-Absorbing Mirror Technologies 4.3.1. Concept 4.3.2. Window Grown on Facet 4.3.3. Quantum Well Intermixing Processes 4.3.4. Bent Waveguide 4.4. Further Optical Strength Enhancement Approaches 4.4.1. Current Blocking Mirrors and Material Optimization 4.4.2. Heat Spreader Layer, Device Mounting and Number of Quantum Wells 4.4.3. Mode Spot Widening Techniques References 5. Basic Reliability Engineering Concepts Introduction 5.1. Descriptive Reliability Statistics 5.1.1. Probability Density Function 5.1.2. Cumulative Distribution Function 5.1.3. Reliability Function 5.1.4. Instantaneous Failure Rate or Hazard Rate 5.1.5. Cumulative Hazard Function 5.1.6. Average Failure Rate 5.1.7. Failure Rate Units 5.1.8. Bathtub Failure Rate Curve 5.2. Failure Distribution Functions - Statistics Models for Non-Repairable Populations 5.2.1. Introduction 5.2.2. Lognormal Distribution 5.2.3. Weibull Distribution 5.2.4. Exponential Distribution 5.3. Reliability Data Plotting 5.3.1. Life Test Data Plotting 5.4. Further Reliability Concepts 5.4.1. Data Types 5.4.2. Confidence Limits 5.4.3. Mean Time to Failure Calculations 5.4.4. Reliability Estimations 5.5. Accelerated Reliability Testing - Physics-Statistics Models 5.5.1. Acceleration Relationships 5.5.2. Remarks on Acceleration Models 5.6. System Reliability Calculations 5.6.1. Introduction 5.6.2. Independent Elements Connected in Series 5.6.3. Parallel System of Independent Components References 6. Diode Laser Reliability Engineering Program Introduction 6.1. Reliability Test Plan 6.1.1. Main Purpose, Motivation and Goals 6.1.2. Up-Front Requirements and Activities 6.1.3. Relevant Parameters for Long Term Stability and Reliability 6.1.4. Test Preparations and Operation 6.1.5. Overview Reliability Program Building Blocks 6.1.6. Development Tests 6.1.7. Manufacturing Tests 6.2. Reliability Growth Program 6.3. Reliability Benefits and Costs 6.3.1. Types of Benefit 6.3.2. Reliability - Cost Trade Offs References PART III: DIODE LASER DIAGNOSTICS Overview 7. Novel Diagnostic Laser Data for Active Layer Material Integrity, Impurity Trapping Effects and Mirror Temperatures Introduction 7.1. Optical Integrity of Laser Wafer Substrates 7.1.1. Motivation 7.1.2. Experimental Details 7.1.3. Discussion of Wafer Photoluminescence Maps 7.2. Integrity of Laser Active Layers 7.2.1. Motivation 7.2.2. Experimental Details 7.2.3. Discussion of Quantum Well PL Spectra 7.3. Deep-Level Defects at Interfaces of Active Regions 7.3.1. Motivation 7.3.2. Experimental Details 7.3.3. Discussion of Deep-Level Transient Spectroscopy Results 7.4. Micro-Raman Spectroscopy for Diode Laser Diagnostics 7.4.1. Motivation 7.4.2. Basics of Raman Inelastic Light Scattering 7.4.3. Experimental Details 7.4.4. Raman on Standard Diode Laser Facets 7.4.5. Raman for Facet Temperature Measurements 7.4.6. Various Dependences of Diode Laser Mirror Temperatures References 8. Novel Diagnostic Laser Data for Mirror Facet Disorder Effects, Mechanical Stress Effects and Facet Coating Instability Introduction 8.1. Diode Laser Mirror Facet Studies by Raman 8.1.1. Motivation 8.1.2. Raman Microprobe Spectra 8.1.3. Possible Origins of the 193 cm-1 Mode in (Al)GaAs 8.1.4. Facet Disorder - Facet Temperature - Catastrophic Optical Mirror Damage Robustness Correlations 8.2. Local Mechanical Strain in Ridge-Waveguide Diode Lasers 8.2.1. Motivation 8.2.2. Measurements - Raman Shifts and Stress Profiles 8.2.3. Detection of "Weak Spots" 8.2.4. Stress Model Experiments 8.3. Diode Laser Mirror Facet Coating Structural Instability 8.3.1. Motivation 8.3.2. Experimental Details 8.3.3. Silicon Recrystallization by Internal Power Exposure 8.3.4. Silicon Recrystallization by External Power Exposure - Control Experiments References 9. Novel Diagnostic Data for Diverse Laser Temperature Effects, Dynamic Laser Degradation Effects and Mirror Temperature Maps Introduction 9.1. Thermoreflectance Microscopy for Diode Laser Diagnostics 9.1.1. Motivation 9.1.2. Concept and Signal Interpretation 9.1.3. Reflectance - Temperature Change Relationship 9.1.4. Experimental Details 9.1.5. Potential Perturbation Effects on Reflectance 9.2. Thermoreflectance versus Optical Spectroscopies 9.2.1. General 9.2.2. Comparison 9.3. Lowest Detectable Temperature Rise 9.4. Diode Laser Mirror Temperatures by Micro-Thermoreflectance 9.4.1. Motivation 9.4.2. Dependence on Number of Active Quantum Wells 9.4.3. Dependence on Heat Spreader 9.4.4. Dependence on Mirror Treatment and Coating 9.4.5. Bent-Waveguide Non-Absorbing Mirror 9.5. Diode Laser Mirror Studies by Micro-Thermoreflectance 9.5.1. Motivation 9.5.2. Real-Time Temperature-Monitored Laser Degradation 9.5.3. Local Optical Probe 9.5.3.1. Threshold and heating distribution within near-field spot 9.6. Diode Laser Cavity Temperatures by Micro-Electroluminescence 9.6.1. Motivation 9.6.2. Experimental Details - Sample and Setup 9.6.3. Temperature Profiles along Laser Cavity 9.7. Diode Laser Facet Temperature - Two-Dimensional Mapping 9.7.1. Motivation 9.7.2. Experimental Concept 9.7.3. First Temperature Maps Ever 9.7.4. Independent Temperature Line Scans Perpendicular Active Layer 9.7.5. Temperature Modelling References Index.
Record Nr. UNINA-9910806108203321
Epperlein Peter W  
Chichester, West Sussex, U.K., : John Wiley & Sons Inc., 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Semiconductor lasers / edited by Eli Kapon
Semiconductor lasers / edited by Eli Kapon
Autore Kapon, Eli
Pubbl/distr/stampa San Diego : Academic Press, c1999
Descrizione fisica 2 v. : ill. ; 24 cm.
Collana Optics and photonics
Soggetto topico Semiconductor lasers
ISBN 0123976308 (v. 1)
0123976316 (v. 2)
Classificazione 53.2.63
621.36'6
TA1700.S453
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991001236369707536
Kapon, Eli  
San Diego : Academic Press, c1999
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Spatio-temporal modeling and device optimization of passively mode-locked semiconductor lasers / / Stefan Meinecke
Spatio-temporal modeling and device optimization of passively mode-locked semiconductor lasers / / Stefan Meinecke
Autore Meinecke Stefan
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (264 pages)
Disciplina 621.366
Collana Springer Theses
Soggetto topico Semiconductor lasers
ISBN 9783030962487
9783030962470
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996466840903316
Meinecke Stefan  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Spatio-temporal modeling and device optimization of passively mode-locked semiconductor lasers / / Stefan Meinecke
Spatio-temporal modeling and device optimization of passively mode-locked semiconductor lasers / / Stefan Meinecke
Autore Meinecke Stefan
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (264 pages)
Disciplina 621.366
Collana Springer Theses
Soggetto topico Semiconductor lasers
ISBN 9783030962487
9783030962470
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910556895703321
Meinecke Stefan  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Terahertz-Technologie mit Diodenlasern / / von Carsten Brenner
Terahertz-Technologie mit Diodenlasern / / von Carsten Brenner
Autore Brenner Carsten
Edizione [1. Auflage.]
Pubbl/distr/stampa Göttingen, [Germany] : , : Cuvillier Verlag, , 2009
Descrizione fisica 1 online resource (140 pages) : illustrations (some color), tables
Disciplina 621.38133
Soggetto topico Terahertz technology
Semiconductor lasers
Diodes, Semiconductor
ISBN 3-7369-3223-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione ger
Record Nr. UNINA-9910794952903321
Brenner Carsten  
Göttingen, [Germany] : , : Cuvillier Verlag, , 2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Terahertz-Technologie mit Diodenlasern / / von Carsten Brenner
Terahertz-Technologie mit Diodenlasern / / von Carsten Brenner
Autore Brenner Carsten
Edizione [1. Auflage.]
Pubbl/distr/stampa Göttingen, [Germany] : , : Cuvillier Verlag, , 2009
Descrizione fisica 1 online resource (140 pages) : illustrations (some color), tables
Disciplina 621.38133
Soggetto topico Terahertz technology
Semiconductor lasers
Diodes, Semiconductor
ISBN 3-7369-3223-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione ger
Record Nr. UNINA-9910820469803321
Brenner Carsten  
Göttingen, [Germany] : , : Cuvillier Verlag, , 2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Tunable external cavity diode lasers [[electronic resource] /] / Cunyun Ye
Tunable external cavity diode lasers [[electronic resource] /] / Cunyun Ye
Autore Ye Cunyun <1965->
Pubbl/distr/stampa Hackensack, N.J., : World Scientific, c2004
Descrizione fisica 1 online resource (273 p.)
Disciplina 621.36/61
Soggetto topico Semiconductor lasers
Diodes, Semiconductor
Soggetto genere / forma Electronic books.
ISBN 1-281-34771-X
9786611347710
1-61583-868-6
981-256-310-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Contents; Introduction; Basics of Semiconductor Diode Lasers; Tunable Monolithic Semiconductor Diode Lasers; Elements for Tunable External Cavity Diode Lasers; Systems for Tunable External Cavity Diode Lasers; Implementation of Tunable External Cavity Diode Lasers; Frequency Stabilization of Tunable External Cavity Diode Lasers; Applications of Tunable External Cavity Diode Lasers; Conclusions; Bibliography; Index
Record Nr. UNINA-9910450197703321
Ye Cunyun <1965->  
Hackensack, N.J., : World Scientific, c2004
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui

Data di pubblicazione

Altro...