top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Quantum information theory / / Mark M. Wilde, McGill University, Montréal [[electronic resource]]
Quantum information theory / / Mark M. Wilde, McGill University, Montréal [[electronic resource]]
Autore Wilde Mark <1980->
Pubbl/distr/stampa Cambridge : , : Cambridge University Press, , 2013
Descrizione fisica 1 online resource (xv, 655 pages) : digital, PDF file(s)
Disciplina 003/.54
Soggetto topico Quantum computers
Quantum communication
Information theory - Data processing
Electronic data processing - Technological innovations
ISBN 1-316-09039-6
1-107-25577-5
1-107-05712-4
1-107-05961-5
1-107-05836-8
1-107-05604-7
1-139-52534-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Machine generated contents note: How to use this book; Acknowledgements; Part I. Introduction: 1. Concepts in quantum Shannon theory; 2. Classical Shannon theory; Part II. The Quantum Theory: 3. The noiseless quantum theory; 4. The noisy quantum theory; 5. The purified quantum theory; Part III. Unit Quantum Protocols: 6. Three unit quantum protocols; 7. Coherent protocols; 8. The unit resource capacity region; Part IV. Tools of Quantum Shannon Theory: 9. Distance measures; 10. Classical information and entropy; 11. Quantum information and entropy; 12. The information of quantum channels; 13. Classical typicality; 14. Quantum typicality; 15. The packing lemma; 16. The covering lemma; Part V. Noiseless Quantum Shannon Theory: 17. Schumacher compression; 18. Entanglement concentration; Part VI. Noisy Quantum Shannon Theory: 19. Classical communication; 20. Entanglement-assisted classical communication; 21. Coherent communication with noisy resources; 22. Private classical communication; 23. Quantum communication; 24. Trading resources for communication; 25. Summary and outlook; Appendix A. Miscellaneous mathematics; Appendix B. Monotonicity of quantum relative entropy; References; Index.
Record Nr. UNINA-9910462588103321
Wilde Mark <1980->  
Cambridge : , : Cambridge University Press, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Quantum information theory / / Mark M. Wilde, McGill University, Montréal [[electronic resource]]
Quantum information theory / / Mark M. Wilde, McGill University, Montréal [[electronic resource]]
Autore Wilde Mark <1980->
Pubbl/distr/stampa Cambridge : , : Cambridge University Press, , 2013
Descrizione fisica 1 online resource (xv, 655 pages) : digital, PDF file(s)
Disciplina 003/.54
Soggetto topico Quantum computers
Quantum communication
Information theory - Data processing
Electronic data processing - Technological innovations
ISBN 1-316-09039-6
1-107-25577-5
1-107-05712-4
1-107-05961-5
1-107-05836-8
1-107-05604-7
1-139-52534-4
Classificazione COM083000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Machine generated contents note: How to use this book; Acknowledgements; Part I. Introduction: 1. Concepts in quantum Shannon theory; 2. Classical Shannon theory; Part II. The Quantum Theory: 3. The noiseless quantum theory; 4. The noisy quantum theory; 5. The purified quantum theory; Part III. Unit Quantum Protocols: 6. Three unit quantum protocols; 7. Coherent protocols; 8. The unit resource capacity region; Part IV. Tools of Quantum Shannon Theory: 9. Distance measures; 10. Classical information and entropy; 11. Quantum information and entropy; 12. The information of quantum channels; 13. Classical typicality; 14. Quantum typicality; 15. The packing lemma; 16. The covering lemma; Part V. Noiseless Quantum Shannon Theory: 17. Schumacher compression; 18. Entanglement concentration; Part VI. Noisy Quantum Shannon Theory: 19. Classical communication; 20. Entanglement-assisted classical communication; 21. Coherent communication with noisy resources; 22. Private classical communication; 23. Quantum communication; 24. Trading resources for communication; 25. Summary and outlook; Appendix A. Miscellaneous mathematics; Appendix B. Monotonicity of quantum relative entropy; References; Index.
Record Nr. UNINA-9910786999003321
Wilde Mark <1980->  
Cambridge : , : Cambridge University Press, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Quantum information theory / / Mark M. Wilde, McGill University, Montréal [[electronic resource]]
Quantum information theory / / Mark M. Wilde, McGill University, Montréal [[electronic resource]]
Autore Wilde Mark <1980->
Pubbl/distr/stampa Cambridge : , : Cambridge University Press, , 2013
Descrizione fisica 1 online resource (xv, 655 pages) : digital, PDF file(s)
Disciplina 003/.54
Soggetto topico Quantum computers
Quantum communication
Information theory - Data processing
Electronic data processing - Technological innovations
ISBN 1-316-09039-6
1-107-25577-5
1-107-05712-4
1-107-05961-5
1-107-05836-8
1-107-05604-7
1-139-52534-4
Classificazione COM083000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Machine generated contents note: How to use this book; Acknowledgements; Part I. Introduction: 1. Concepts in quantum Shannon theory; 2. Classical Shannon theory; Part II. The Quantum Theory: 3. The noiseless quantum theory; 4. The noisy quantum theory; 5. The purified quantum theory; Part III. Unit Quantum Protocols: 6. Three unit quantum protocols; 7. Coherent protocols; 8. The unit resource capacity region; Part IV. Tools of Quantum Shannon Theory: 9. Distance measures; 10. Classical information and entropy; 11. Quantum information and entropy; 12. The information of quantum channels; 13. Classical typicality; 14. Quantum typicality; 15. The packing lemma; 16. The covering lemma; Part V. Noiseless Quantum Shannon Theory: 17. Schumacher compression; 18. Entanglement concentration; Part VI. Noisy Quantum Shannon Theory: 19. Classical communication; 20. Entanglement-assisted classical communication; 21. Coherent communication with noisy resources; 22. Private classical communication; 23. Quantum communication; 24. Trading resources for communication; 25. Summary and outlook; Appendix A. Miscellaneous mathematics; Appendix B. Monotonicity of quantum relative entropy; References; Index.
Record Nr. UNINA-9910826840003321
Wilde Mark <1980->  
Cambridge : , : Cambridge University Press, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Quantum key distribution networks : a quality of service perspective / / Miralem Mehic [and three others]
Quantum key distribution networks : a quality of service perspective / / Miralem Mehic [and three others]
Autore Mehic Miralem
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (232 pages)
Disciplina 005.74028563
Soggetto topico Quality of service (Computer networks)
Quantum communication
Quantum computing
ISBN 3-031-06608-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Acknowledgments -- Contents -- 1 Fundamentals of Quantum Key Distribution -- 1.1 Information-Theoretic Secrecy -- 1.2 QKD Protocols -- 1.2.1 BB84 Protocol -- 1.2.1.1 Sifting: Extraction of a Raw Key -- 1.2.1.2 Error Rate Estimation -- 1.2.1.3 Error Key Reconciliation -- 1.2.1.4 Privacy Amplification -- 1.2.1.5 Authentication -- 1.2.2 B92 Protocol -- 1.2.3 CV-QKD -- 1.3 Key Length -- 1.4 Summary -- References -- 2 Quality of Service Requirements -- 2.1 Quality of Service -- 2.2 Quality of Service Constraints -- 2.3 Quality of Service Components -- 2.4 QKD Networking -- 2.4.1 QKD Networks -- 2.4.1.1 Key Relay -- 2.4.2 QKD Virtual Private Networking -- 2.4.3 IPsec -- 2.4.3.1 Authentication Header -- 2.4.3.2 Encapsulating Security Payload -- 2.4.3.3 IP Payload Compression Protocol (IPComp) -- 2.4.3.4 Internet Key Exchange (IKE) Protocols -- 2.4.4 IPsec and QKD -- 2.4.5 Passive and Active Eavesdropping -- 2.4.6 QoS Constraints in QKD Network -- 2.5 Similarities Between QKD and Ad Hoc Networking -- 2.6 Summary -- References -- 3 Quality of Service Architectures of Quantum Key Distribution Networks -- 3.1 Integrated Services -- 3.1.1 RSVP Protocol -- 3.1.2 ETSI 004: QKD Application Interface -- 3.2 Differentiated Services -- 3.2.1 DiffServ Components -- 3.2.2 The Per Hop Behavior (PHB) Classes -- 3.2.3 Per-Domain Behavior (PDB) Metrics -- 3.2.4 ETSI 014: Protocol and Data Format of REST-Based Key Delivery API -- 3.3 MultiProtocol Label Switching -- 3.3.1 MPLS Operation and Architecture Basics -- 3.3.1.1 MPLS Header -- 3.3.1.2 MPLS Control and Forwarding Planes -- 3.3.2 MPLS and QKD -- 3.4 Flexible Quality of Service Model -- 3.5 Summary -- References -- 4 Quality of Service Media Access Control of Quantum Key Distribution Networks -- 4.1 Post-Processing Applications -- 4.1.1 Improving Error Reconciliation -- 4.1.1.1 Adaptive Cascade.
4.1.1.2 Using Error Correcting Codes -- 4.1.2 Out-of-Band Authentication and Key Validation -- 4.1.2.1 Watermarking by Quantum Coin Flipping -- 4.1.2.2 Watermarking Using Pseudorandom Sequences -- 4.2 Overlay QKD Networking -- 4.3 Impact of QKD Key Management -- 4.4 Summary -- References -- 5 Quality of Service Signaling Protocols in Quantum Key Distribution Networks -- 5.1 In-Band signaling and QKD -- 5.1.1 QSIP: A Quantum Key Distribution Signaling Protocol -- 5.2 Out-of-Band Signaling and QKD -- 5.2.1 Q3P: Quantum Point-to-Point Protocol -- 5.2.1.1 Q3P Key Store -- 5.2.1.2 Q3P Network Stack -- 5.2.2 RSVP -- 5.3 Summary -- References -- 6 Quality of Service Routing in Quantum Key Distribution Networks -- 6.1 Routing in General -- 6.1.1 Routing Algorithms -- 6.1.2 Routing Architecture -- 6.2 Routing Requirements in QKD Networks -- 6.3 Addressing in QKD Networks -- 6.4 Routing Protocols -- 6.4.1 Distance Vector Routing Protocols -- 6.4.1.1 Distance Vector-Based QKD Routing -- 6.4.2 Link State Routing Protocols -- 6.4.3 QKD Routing Based on Link-States -- 6.5 Greedy Perimeter Stateless Routing for QKD Networks -- 6.5.1 QKD Link Metric -- 6.5.1.1 Quantum Channel Status Metric -- 6.5.1.2 Public Channel Status Metric -- 6.5.1.3 Overall QKD Link Status Metric -- 6.5.1.4 GPSRQ Routing Protocol -- 6.5.2 Greedy Forwarding -- 6.5.3 Recovery-Mode Forwarding -- 6.6 Summary -- References -- 7 From Point-to-Point to End-to-End Security in Quantum Key Distribution Networks -- 7.1 Single-Path Transmission: Trusted Relay -- 7.2 Relaxing the Trust Assumption: Multipath Transmission -- 7.2.1 Quantifying the Probability of Eavesdropping -- 7.2.1.1 Computing the Probability of Eavesdropping -- 7.2.2 Quantifying the Probability for a DoS -- 7.2.3 Quantifying Multiple Security Goals -- 7.3 Weaponizing the Detection of Eavesdropping -- 7.4 Summary -- References.
8 Modern Trends in Quantum Key Distribution Networks -- 8.1 QKD in 5G Networks -- 8.2 Measurement-Device Independent QKD -- 8.3 Quantum Repeater -- 8.4 Summary -- References.
Record Nr. UNISA-996490363603316
Mehic Miralem  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Quantum network with multiple cold atomic ensembles / / Bo Jing
Quantum network with multiple cold atomic ensembles / / Bo Jing
Autore Jing Bo
Pubbl/distr/stampa Singapore : , : Springer, , [2022]
Descrizione fisica 1 online resource (197 pages)
Disciplina 621.382
Collana Springer theses
Soggetto topico Quantum communication
Quantum computing
Quantum optics
ISBN 9789811903281
9789811903274
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Supervisor's Foreword -- Abstract -- Preface -- Acknowledgements -- Contents -- 1 Introduction -- 1.1 Quantum Teleportation -- 1.2 Connection of Two Quantum Network Nodes -- 1.3 Connection of Multiple Quantum Network Nodes -- 1.4 Physical Realizations of Quantum Networks -- 1.5 State of the Art of Quantum Networks -- 1.6 Thesis Structure -- References -- 2 Interaction Between Single Photons and Atomic Ensembles -- 2.1 Photon-Atom Interaction: Classical Description -- 2.1.1 Photon-Atom Interaction in Free Space -- 2.1.2 Photon-Atom Interaction Inside a Ring Cavity -- 2.2 Cavity Enhanced Photon-Atom Interaction: Quantum Theory -- 2.2.1 Jaynes-Cummings Model -- 2.2.2 Photon Scattering via the Atom Inside the Cavity -- 2.2.3 Interaction Between Photons and Atomic Ensembles Inside a Cavity -- 2.3 Summary -- References -- 3 Preparation of Cold Atomic Ensembles -- 3.1 Vacuum System -- 3.2 Laser System -- 3.2.1 Lasers at 780 nm -- 3.2.2 Lasers at 795 nm -- 3.3 Magnetic Field -- 3.4 Magneto-Optical Trap -- 3.4.1 Fundamentals -- 3.4.2 Numbers of Atoms in MOT -- 3.5 Polarization Gradient Cooling -- 3.6 Cold Atomic Optical Depth and Temperature -- 3.6.1 Measurement of Optical Depth via Absorption Imaging -- 3.6.2 Measurement of Cold Atomic Temperature -- 3.7 Further Cooling of Cold Atoms -- 3.8 Summary -- References -- 4 Highly Retrievable Quantum Memories -- 4.1 Background -- 4.2 DLCZ Quantum Memory and Its Quantization -- 4.2.1 The Write Process -- 4.2.2 The Read Process -- 4.2.3 EIT in the Read Process -- 4.2.4 Performance Criteria for Quantum Memory -- 4.2.5 Storage Lifetime -- 4.3 DLCZ Quantum Memory in the Free Space -- 4.3.1 Experimental Settings -- 4.3.2 Compensation of Environmental Magnetic Field -- 4.3.3 Initialization of Atomic States -- 4.3.4 Accidental Coincidence Events -- 4.3.5 Multi-excitation Events.
4.4 DLCZ Quantum Memory with Ring Cavity Enhancement -- 4.4.1 Setup and Locking of the Ring Cavity -- 4.4.2 Phase Compensation of Cavity Wave Plates -- 4.4.3 Frequency of Cavity Locking Beam and Read Beam -- 4.4.4 Noise from the Cavity Locking Beam -- 4.4.5 Photonic Phase Shift Induced by Atoms -- 4.4.6 Cavity Finesse -- 4.4.7 Influence of Stability of Locked Cavity on Retrieval Efficiency -- 4.4.8 Influence of the Number of Experimental Trials on Retrieval Efficiency -- 4.4.9 Influence of Intensity of Read Beam on Retrieval Efficiency -- 4.4.10 Influence of Excitation Probability on Single Photon Quality Function α -- 4.4.11 Influence of Excitation Probability on Second-Order Correlation Function g2 -- 4.5 DLCZ Quantum Memory with Atoms Initially Prepared in |F=1,mF=-1rangle -- 4.6 Summary -- References -- 5 Entanglement of Three Cold Atomic Ensembles -- 5.1 Background -- 5.2 Entanglement Between Single Photons and Cold Atomic Ensembles -- 5.2.1 Photonic Polarization and Bias Magnetic Field -- 5.2.2 Accidental Coincidences -- 5.2.3 Raman Process -- 5.2.4 Multi-excitation Events -- 5.2.5 Initial State Purity -- 5.2.6 Photon-Atom Entanglement Fidelity -- 5.2.7 Efficiency of Photon-Atom Entanglement -- 5.3 Entanglement Between Two Cold Atomic Ensembles -- 5.3.1 Pulse Shape of Write Beam -- 5.3.2 Indistinguishability of Write-Out Photons -- 5.3.3 Imperfection of Polarization -- 5.3.4 From Photon-Atom Entanglement to Atom-Atom Entanglement -- 5.3.5 Experimental Results -- 5.4 Hybrid Entanglement of Three Cold Atomic Ensembles and Three Flying Photons -- 5.5 GHZ Entanglement of Three Cold Atomic Quantum Memories -- 5.6 Efficiency of Entanglement Generation and Verification -- 5.7 Summary -- References -- 6 Interference of Three Frequency Distinguished Photons -- 6.1 Background -- 6.2 Single Photon Source.
6.3 HOM Interference Between Two Indistinguishable Single Photons -- 6.4 Interference of Two Frequency Distinguished Photons -- 6.5 Interference of Three Frequency Distinguished Photons -- 6.5.1 Experimental Setup and Results -- 6.5.2 Fidelity Analysis -- 6.6 Summary -- References -- 7 Entanglement of Two Cold Atomic Ensembles via 50 km Fibers -- 7.1 Background -- 7.2 Experimental Principle and Setup -- 7.3 Experimental Results -- 7.4 Summary -- References -- 8 Summary and Outlook -- Appendix A Saturated Absorption Spectrum for 87Rb D1 and D2 Line -- Appendix B Calculation of Magnetic Field Generated by Rectangular Helmholtz Coils -- Appendix C Retrieval Efficiency Under Different Polarization Combinations -- Appendix D Fidelity Estimation of Bell State and GHZ State.
Record Nr. UNISA-996466837103316
Jing Bo  
Singapore : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Quantum network with multiple cold atomic ensembles / / Bo Jing
Quantum network with multiple cold atomic ensembles / / Bo Jing
Autore Jing Bo
Pubbl/distr/stampa Singapore : , : Springer, , [2022]
Descrizione fisica 1 online resource (197 pages)
Disciplina 621.382
Collana Springer theses
Soggetto topico Quantum communication
Quantum computing
Quantum optics
ISBN 9789811903281
9789811903274
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Supervisor's Foreword -- Abstract -- Preface -- Acknowledgements -- Contents -- 1 Introduction -- 1.1 Quantum Teleportation -- 1.2 Connection of Two Quantum Network Nodes -- 1.3 Connection of Multiple Quantum Network Nodes -- 1.4 Physical Realizations of Quantum Networks -- 1.5 State of the Art of Quantum Networks -- 1.6 Thesis Structure -- References -- 2 Interaction Between Single Photons and Atomic Ensembles -- 2.1 Photon-Atom Interaction: Classical Description -- 2.1.1 Photon-Atom Interaction in Free Space -- 2.1.2 Photon-Atom Interaction Inside a Ring Cavity -- 2.2 Cavity Enhanced Photon-Atom Interaction: Quantum Theory -- 2.2.1 Jaynes-Cummings Model -- 2.2.2 Photon Scattering via the Atom Inside the Cavity -- 2.2.3 Interaction Between Photons and Atomic Ensembles Inside a Cavity -- 2.3 Summary -- References -- 3 Preparation of Cold Atomic Ensembles -- 3.1 Vacuum System -- 3.2 Laser System -- 3.2.1 Lasers at 780 nm -- 3.2.2 Lasers at 795 nm -- 3.3 Magnetic Field -- 3.4 Magneto-Optical Trap -- 3.4.1 Fundamentals -- 3.4.2 Numbers of Atoms in MOT -- 3.5 Polarization Gradient Cooling -- 3.6 Cold Atomic Optical Depth and Temperature -- 3.6.1 Measurement of Optical Depth via Absorption Imaging -- 3.6.2 Measurement of Cold Atomic Temperature -- 3.7 Further Cooling of Cold Atoms -- 3.8 Summary -- References -- 4 Highly Retrievable Quantum Memories -- 4.1 Background -- 4.2 DLCZ Quantum Memory and Its Quantization -- 4.2.1 The Write Process -- 4.2.2 The Read Process -- 4.2.3 EIT in the Read Process -- 4.2.4 Performance Criteria for Quantum Memory -- 4.2.5 Storage Lifetime -- 4.3 DLCZ Quantum Memory in the Free Space -- 4.3.1 Experimental Settings -- 4.3.2 Compensation of Environmental Magnetic Field -- 4.3.3 Initialization of Atomic States -- 4.3.4 Accidental Coincidence Events -- 4.3.5 Multi-excitation Events.
4.4 DLCZ Quantum Memory with Ring Cavity Enhancement -- 4.4.1 Setup and Locking of the Ring Cavity -- 4.4.2 Phase Compensation of Cavity Wave Plates -- 4.4.3 Frequency of Cavity Locking Beam and Read Beam -- 4.4.4 Noise from the Cavity Locking Beam -- 4.4.5 Photonic Phase Shift Induced by Atoms -- 4.4.6 Cavity Finesse -- 4.4.7 Influence of Stability of Locked Cavity on Retrieval Efficiency -- 4.4.8 Influence of the Number of Experimental Trials on Retrieval Efficiency -- 4.4.9 Influence of Intensity of Read Beam on Retrieval Efficiency -- 4.4.10 Influence of Excitation Probability on Single Photon Quality Function α -- 4.4.11 Influence of Excitation Probability on Second-Order Correlation Function g2 -- 4.5 DLCZ Quantum Memory with Atoms Initially Prepared in |F=1,mF=-1rangle -- 4.6 Summary -- References -- 5 Entanglement of Three Cold Atomic Ensembles -- 5.1 Background -- 5.2 Entanglement Between Single Photons and Cold Atomic Ensembles -- 5.2.1 Photonic Polarization and Bias Magnetic Field -- 5.2.2 Accidental Coincidences -- 5.2.3 Raman Process -- 5.2.4 Multi-excitation Events -- 5.2.5 Initial State Purity -- 5.2.6 Photon-Atom Entanglement Fidelity -- 5.2.7 Efficiency of Photon-Atom Entanglement -- 5.3 Entanglement Between Two Cold Atomic Ensembles -- 5.3.1 Pulse Shape of Write Beam -- 5.3.2 Indistinguishability of Write-Out Photons -- 5.3.3 Imperfection of Polarization -- 5.3.4 From Photon-Atom Entanglement to Atom-Atom Entanglement -- 5.3.5 Experimental Results -- 5.4 Hybrid Entanglement of Three Cold Atomic Ensembles and Three Flying Photons -- 5.5 GHZ Entanglement of Three Cold Atomic Quantum Memories -- 5.6 Efficiency of Entanglement Generation and Verification -- 5.7 Summary -- References -- 6 Interference of Three Frequency Distinguished Photons -- 6.1 Background -- 6.2 Single Photon Source.
6.3 HOM Interference Between Two Indistinguishable Single Photons -- 6.4 Interference of Two Frequency Distinguished Photons -- 6.5 Interference of Three Frequency Distinguished Photons -- 6.5.1 Experimental Setup and Results -- 6.5.2 Fidelity Analysis -- 6.6 Summary -- References -- 7 Entanglement of Two Cold Atomic Ensembles via 50 km Fibers -- 7.1 Background -- 7.2 Experimental Principle and Setup -- 7.3 Experimental Results -- 7.4 Summary -- References -- 8 Summary and Outlook -- Appendix A Saturated Absorption Spectrum for 87Rb D1 and D2 Line -- Appendix B Calculation of Magnetic Field Generated by Rectangular Helmholtz Coils -- Appendix C Retrieval Efficiency Under Different Polarization Combinations -- Appendix D Fidelity Estimation of Bell State and GHZ State.
Record Nr. UNINA-9910552731303321
Jing Bo  
Singapore : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Quantum networking / / Rodney Van Meter
Quantum networking / / Rodney Van Meter
Autore Van Meter Rodney
Pubbl/distr/stampa London, [England] ; ; Hoboken, New Jersey : , : ISTE Ltd : , : John Wiley & Sons, , 2014
Descrizione fisica 1 online resource (357 p.)
Disciplina 621.382
Collana Networks and Telecommunications Series
Soggetto topico Quantum communication
ISBN 1-118-64893-5
1-118-64891-9
1-118-64892-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright; Table of Contents; Notations; Acknowledgments; Introduction; Chapter 1. Overview; 1.1. Introduction; 1.2. Quantum information; 1.2.1. Principles; 1.2.2. Imperfect quantum systems; 1.2.3. Quantum computers; 1.2.4. Applications of distributed quantum information; 1.3. Quantum repeaters; 1.3.1. Physical communication technologies; 1.3.2. Multi-hop Bell pairs: quantum communication sessions; 1.4. Network architectures; 1.4.1.Semantics of distributed quantum information; 1.4.2. Identifiers; 1.4.3. Paths; 1.4.4. Resource management discipline; 1.4.5. A quantum internet
1.5. ConclusionsPART 1. Fundamentals; Chapter 2. Quantum Background; 2.1. Introduction; 2.2. Schrödinger's equation; 2.3. Qubits; 2.3.1. What is a qubit?; 2.3.2. Quantum registers and weighted probabilities; 2.3.3. Interference; 2.3.4. Entanglement; 2.3.5. Decoherence; 2.3.6. Pure and mixed states and the density matrix; 2.3.7. Fidelity; 2.3.8. Measurement; 2.3.9. The partial trace; 2.4. Manipulating qubits; 2.4.1. What is a quantum gate?; 2.4.2. Single-qubit gates and the Bloch sphere; 2.4.3. Global versus relative phase; 2.4.4. Two-qubit gates; 2.4.5. Quantum circuits; 2.5. Bell pairs
2.5.1. The Bell basis2.5.2. Measurement in the Bell basis; 2.5.3. The Bell inequalities and non-locality; 2.5.4. Experimental demonstration of violation of Bell's inequality; 2.6. The no-cloning theorem; 2.7. Conclusion; Chapter 3. Networking Background; 3.1. Concepts; 3.1.1. Multihop communication: networks as graphs; 3.1.2. Resources; 3.1.3. Protocols; 3.1.4. Naming and addressing; 3.1.5. Security; 3.2. Challenges in scaling up networks; 3.2.1. Heterogeneity; 3.2.2. Scale; 3.2.3. Dealing with out-of-date information; 3.2.4. Organizational needs; 3.2.5. Misbehaving nodes
3.3. Design patterns3.3.1. Hierarchy; 3.3.2. Layering; 3.3.3. Narrow waist; 3.3.4. Multiplexing resources; 3.3.5. Smart versus dumb networks; 3.3.6. Distributed management and autonomy; 3.3.7. State machines; 3.3.8. Weak consistency and soft failure; 3.3.9. Distributed routing protocols; 3.3.10. Overlays, virtualization and recursion; 3.4. The Internet; 3.5. Conclusion; Chapter 4. Teleportation; 4.1. The basic teleportation operation; 4.2. Experimental demonstration of teleportation; 4.3. State machines for teleportation; 4.4. Teleporting gates; 4.5. Conclusion; PART 2. Applications
Chapter 5. Quantum Key Distribution5.1. QKD and the purpose of cryptography; 5.2. BB84: single-photon QKD; 5.3. E91: entanglement-based protocol; 5.4. Using QKD; 5.4.1. Campus-to-campus virtual private network; 5.4.2. Transport-layer security (TLS); 5.4.3. Resilience of networks dependent on QKD; 5.5. Existing QKD networks; 5.6. Classical control protocols; 5.7. Conclusion; Chapter 6. Distributed Digital Computation and Communication; 6.1. Useful distributed quantum states; 6.1.1. The stabilizer representation; 6.1.2. GHZ and W states; 6.1.3. Graph states; 6.2. Coin flipping
6.2.1. The simplest multi-party distributed quantum protocol
Record Nr. UNINA-9910139146303321
Van Meter Rodney  
London, [England] ; ; Hoboken, New Jersey : , : ISTE Ltd : , : John Wiley & Sons, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Quantum technologies and military strategy / / Ajey Lele
Quantum technologies and military strategy / / Ajey Lele
Autore Lele Ajey
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (ix, 182 pages)
Disciplina 355.343
Collana Advanced sciences and technologies for security applications
Soggetto topico Strategy - Data processing
Quantum computing
Quantum communication
ISBN 3-030-72721-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910484477603321
Lele Ajey  
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Transitions from digital communications to quantum communications : concepts and prospects / / Malek Benslama, Hadj Batatia, Abderraouf Messai
Transitions from digital communications to quantum communications : concepts and prospects / / Malek Benslama, Hadj Batatia, Abderraouf Messai
Autore Benslama Malek
Pubbl/distr/stampa London, [England] ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2016
Descrizione fisica 1 online resource (218 p.)
Disciplina 621.382
Collana Networks and Telecommunications Series
Soggetto topico Digital communications
Quantum communication
ISBN 1-119-33019-X
1-119-33027-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Table of Contents; Dedication; Title; Copyright; Foreword; Preface; Introduction; List of Acronyms; PART 1: Theory; 1 Non-linear Signal Processing; 1.1. Distributions; 1.2. Variance; 1.3. Covariance; 1.4. Stationarity; 1.5. Bayes inference; 1.6. Tensors in signal processing; 1.7. Processing the quantum signal; 2 Non-Gaussian Processes; 2.1. Defining Gaussian processes; 2.2. Non-Gaussian processes; 2.3. Principal component analysis or Karhunen-Loève transformation; 2.4. Sparse Gaussian processes; 2.5. Levy process; 2.6. Links with quantum communications; 3 Sparse Signals and Compressed Sensing
3.1. Sparse Signals3.2. Compressed sensing; 3.3. Compressed sensing and quantum signal; 4 The Fourier Transform; 4.1. The Classic Fourier Transform; 4.2. The Discreet Fourier Transform and the Fast Fourier Transform; 4.3. The Fourier Transform and hyper-functions; 4.4. Hilbert Transform; 4.5. Clifford algebra and the Fourier Transform; 4.6. Spinors and quantum signals; 5 The Contribution of Arithmetic to Signal Processing; 5.1. Gauss sums; 5.2. Applications for Gauss sums; 6 Riemannian Geometry and Signal Processing; 6.1. Context; 6.2. Riemannian varieties; 6.3. Voronoi cells
6.4. Applications to Voronoi cellsPART 2: Applications; 7 MIMO Systems; 7.1. Introduction; 7.2. A brief history of OFDM; 7.3. Multi-carrier technology; 7.4. OFDM technique; 7.5. Generating OFDM symbols; 7.6. Inter-symbol and inter-carrier interference; 7.7. Cyclic prefix; 7.8. Mathematical model of the OFDM system; 7.9. MIMO channels; 7.10. The MIMO channel model; 7.11. MIMO OFDM channel model; 8 Minimizing Interferences in DS-CDMA Systems; 8.1. Convolutional encoding; 8.2. Structure of convolutive codes; 8.3. Polynomial representation; 8.4. Graphic representations of convolutive codes
8.5. Decoding algorithms8.6. Discreet Wavelet Transform (DWT); 8.7. Construction and discreet filtering; 8.8. Defining the wavelet function: the place of detail; 8.9. Wavelets and filter banks; 8.10. Thresholding coefficients; 8.11. Simulating results; 9 STAP Radar; 9.1. Introduction; 9.2. Space-time adaptive processing (STAP); 9.3. Structure of the covariance matrix; 9.4. Clutter; 9.5. Optimal STAP; 9.6. Performance measures; 9.7. Influence of the radar's parameters on detection; 9.8. Sample matrix inversion algorithm (SMI); 9.9. Conclusion
10 Tracking Radar (Using the Dempster-Shafer Theory)10.1. Introduction; 10.2. Dempster-Shafer theory; 10.3. Rules of combination; 10.4. Decision rules; 10.5. Digital simulation; 10.6. Conclusion; 11 InSAR Radar; 11.1. Introduction; 11.2. Coherence; 11.3. System model; 11.4. Inferometric phase statistics; 11.5. Quantitative examples; 11.6. Conclusion; 12 Telecommunications Networks; 12.1. Introduction; 12.2. Describing the ad hoc simulated network's topology; 12.3. The different scenarios enacted; 12.4. The statistics collected; 12.5. Discussion of results
12.6. Part two: network using OLSR for routing
Record Nr. UNINA-9910136957103321
Benslama Malek  
London, [England] ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Transitions from digital communications to quantum communications : concepts and prospects / / Malek Benslama, Hadj Batatia, Abderraouf Messai
Transitions from digital communications to quantum communications : concepts and prospects / / Malek Benslama, Hadj Batatia, Abderraouf Messai
Autore Benslama Malek
Pubbl/distr/stampa London, [England] ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2016
Descrizione fisica 1 online resource (218 p.)
Disciplina 621.382
Collana Networks and Telecommunications Series
Soggetto topico Digital communications
Quantum communication
ISBN 1-119-33019-X
1-119-33027-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Table of Contents; Dedication; Title; Copyright; Foreword; Preface; Introduction; List of Acronyms; PART 1: Theory; 1 Non-linear Signal Processing; 1.1. Distributions; 1.2. Variance; 1.3. Covariance; 1.4. Stationarity; 1.5. Bayes inference; 1.6. Tensors in signal processing; 1.7. Processing the quantum signal; 2 Non-Gaussian Processes; 2.1. Defining Gaussian processes; 2.2. Non-Gaussian processes; 2.3. Principal component analysis or Karhunen-Loève transformation; 2.4. Sparse Gaussian processes; 2.5. Levy process; 2.6. Links with quantum communications; 3 Sparse Signals and Compressed Sensing
3.1. Sparse Signals3.2. Compressed sensing; 3.3. Compressed sensing and quantum signal; 4 The Fourier Transform; 4.1. The Classic Fourier Transform; 4.2. The Discreet Fourier Transform and the Fast Fourier Transform; 4.3. The Fourier Transform and hyper-functions; 4.4. Hilbert Transform; 4.5. Clifford algebra and the Fourier Transform; 4.6. Spinors and quantum signals; 5 The Contribution of Arithmetic to Signal Processing; 5.1. Gauss sums; 5.2. Applications for Gauss sums; 6 Riemannian Geometry and Signal Processing; 6.1. Context; 6.2. Riemannian varieties; 6.3. Voronoi cells
6.4. Applications to Voronoi cellsPART 2: Applications; 7 MIMO Systems; 7.1. Introduction; 7.2. A brief history of OFDM; 7.3. Multi-carrier technology; 7.4. OFDM technique; 7.5. Generating OFDM symbols; 7.6. Inter-symbol and inter-carrier interference; 7.7. Cyclic prefix; 7.8. Mathematical model of the OFDM system; 7.9. MIMO channels; 7.10. The MIMO channel model; 7.11. MIMO OFDM channel model; 8 Minimizing Interferences in DS-CDMA Systems; 8.1. Convolutional encoding; 8.2. Structure of convolutive codes; 8.3. Polynomial representation; 8.4. Graphic representations of convolutive codes
8.5. Decoding algorithms8.6. Discreet Wavelet Transform (DWT); 8.7. Construction and discreet filtering; 8.8. Defining the wavelet function: the place of detail; 8.9. Wavelets and filter banks; 8.10. Thresholding coefficients; 8.11. Simulating results; 9 STAP Radar; 9.1. Introduction; 9.2. Space-time adaptive processing (STAP); 9.3. Structure of the covariance matrix; 9.4. Clutter; 9.5. Optimal STAP; 9.6. Performance measures; 9.7. Influence of the radar's parameters on detection; 9.8. Sample matrix inversion algorithm (SMI); 9.9. Conclusion
10 Tracking Radar (Using the Dempster-Shafer Theory)10.1. Introduction; 10.2. Dempster-Shafer theory; 10.3. Rules of combination; 10.4. Decision rules; 10.5. Digital simulation; 10.6. Conclusion; 11 InSAR Radar; 11.1. Introduction; 11.2. Coherence; 11.3. System model; 11.4. Inferometric phase statistics; 11.5. Quantitative examples; 11.6. Conclusion; 12 Telecommunications Networks; 12.1. Introduction; 12.2. Describing the ad hoc simulated network's topology; 12.3. The different scenarios enacted; 12.4. The statistics collected; 12.5. Discussion of results
12.6. Part two: network using OLSR for routing
Record Nr. UNINA-9910812858003321
Benslama Malek  
London, [England] ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui