top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Mechanical response of future combat systems (FCS) high-energy gun propellants at high-strain rate [[electronic resource] /] / by Michael G. Leadore
Mechanical response of future combat systems (FCS) high-energy gun propellants at high-strain rate [[electronic resource] /] / by Michael G. Leadore
Autore Leadore Michael G
Pubbl/distr/stampa Aberdeen Proving Ground, MD : , : U.S. Army Research Laboratory, , [2002]
Descrizione fisica 1 online resource (viii, 26 pages) : illustrations
Collana ARL-TR
Soggetto topico Firearms - Testing
Propellants
Propellant actuated devices
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Mechanical response of future combat systems
Record Nr. UNINA-9910699956803321
Leadore Michael G  
Aberdeen Proving Ground, MD : , : U.S. Army Research Laboratory, , [2002]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Metal-fluorocarbon based energetic materials [[electronic resource] /] / Ernst-Christian Koch
Metal-fluorocarbon based energetic materials [[electronic resource] /] / Ernst-Christian Koch
Autore Koch Ernst-Christian
Pubbl/distr/stampa Weinheim [Germany], : Wiley-VCH, 2012
Descrizione fisica 1 online resource (362 p.)
Disciplina 662.2
Soggetto topico Fluorocarbons
Combustion
Thermodynamics
Explosives
Propellants
ISBN 3-527-64419-9
1-280-66304-9
9786613639974
3-527-64418-0
3-527-64420-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Metal-Fluorocarbon Based Energetic Materials; Contents; Foreword; Preface; Acknowledgment; 1 Introduction to Pyrolants; References; 2 History; 2.1 Organometallic Beginning; 2.2 Explosive & Obscurant Properties; 2.3 Rise of Fluorocarbons; 2.4 Rockets Fired Against Aircraft; 2.5 Metal/Fluorocarbon Pyrolants; References; Further Reading; 3 Properties of Fluorocarbons; 3.1 Polytetrafluoroethylene (PTFE); 3.2 Polychlorotrifluoroethylene (PCTFE); 3.3 Polyvinylidene Fluoride (PVDF); 3.4 Polycarbon Monofluoride (PMF); 3.5 Vinylidene Fluoride-Hexafluoropropene Copolymer; 3.5.1 LFC-1
3.6 Vinylidene Fluoride-Chlorotrifluoroethylene Copolymer3.7 Copolymer of TFE and VDF; 3.8 Terpolymers of TFE, HFP and VDF; 3.9 Summary of chemical and physical properties of common fluoropolymers; References; 4 Thermochemical and Physical Properties of Metals and their Fluorides; References; 5 Reactivity and Thermochemistry of Selected Metal/Fluorocarbon Systems; 5.1 Lithium; 5.2 Magnesium; 5.3 Titanium; 5.4 Zirconium; 5.5 Hafnium; 5.6 Niob; 5.7 Tantalum; 5.8 Zinc; 5.9 Cadmium; 5.10 Boron; 5.11 Aluminium; 5.12 Silicon; 5.13 Calcium Silicide; 5.14 Tin; References
6 Ignition and Combustion Mechanism of MTV6.1 Ignition and Pre-Ignition of Metal/Fluorocarbon Pyrolants; 6.2 Magnesium-Grignard Hypothesis; References; 7 Ignition of MTV; References; 8 Combustion; 8.1 Magnesium/Teflon/Viton; 8.1.1 Pressure Effects on the Burn Rate; 8.1.2 Particle Size Distribution and Surface Area Effects on the Burn Rate; 8.2 Porosity; 8.3 Burn Rate Description; 8.4 Combustion of Metal-Fluorocarbon Pyrolants with Fuels Other than Magnesium; 8.4.1 Magnesium Hydride; 8.4.2 Alkali and Alkaline Earth Metal; 8.4.2.1 Lithium; 8.4.2.2 Magnesium-Aluminium Alloy; 8.4.3 Titan
8.4.4 Zirconium8.4.5 Zinc; 8.4.6 Boron; 8.4.7 Magnesium Boride, MgB2; 8.4.8 Aluminium; 8.4.9 Silicon; 8.4.10 Silicides; 8.4.10.1 Dimagnesium Silicide, Mg2Si; 8.4.10.2 Calcium Disilicide; 8.4.10.3 Zirconium Disilicide; 8.4.11 Tungsten-Zirconium Alloy; 8.5 Underwater Combustion; References; 9 Spectroscopy; 9.1 Introduction; 9.2 UV-VIS Spectra; 9.2.1 Polytetrafluoroethylene Combustion; 9.2.2 Magnesium/Fluorocarbon Pyrolants; 9.2.3 MgH2, MgB2, Mg3N2, Mg2Si/Mg3Al2/Fluorocarbon Based pyrolants; 9.2.4 Silicon/PTFE Based Pyrolants; 9.2.5 Boron/PTFE/Viton Based Pyrolants; 9.3 MWIR Spectra
9.3.1 Polytetrafluoroethylene Combustion9.3.2 Magnesium/Fluorocarbon Combustion; 9.3.3 MgH2, MgB2, Mg3N2, Mg2Si/Fluorocarbon Based Pyrolants; 9.3.4 Si/Fluorocarbon Based Pyrolants; 9.3.5 Boron/PTFE/Viton Based Pyrolants; 9.4 Temperature Determination; 9.4.1 Condensed-Phase Temperature; 9.4.2 Gas-Phase Temperature; References; 10 Infrared Emitters; 10.1 Decoy Flares; 10.2 Nonexpendable Flares; 10.2.1 Target Augmentation; 10.2.2 Missile Tracking Flares; 10.3 Metal-Fluorocarbon Flare Combustion Flames as Sources of Radiation; 10.3.1 Flame Structure and Morphology; 10.3.2 Radiation of MTV
10.4 Infrared Compositions
Record Nr. UNINA-9910141322603321
Koch Ernst-Christian  
Weinheim [Germany], : Wiley-VCH, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Metal-fluorocarbon based energetic materials / / Ernst-Christian Koch
Metal-fluorocarbon based energetic materials / / Ernst-Christian Koch
Autore Koch Ernst-Christian
Edizione [2nd ed.]
Pubbl/distr/stampa Weinheim [Germany], : Wiley-VCH, 2012
Descrizione fisica 1 online resource (362 p.)
Disciplina 662.2
Soggetto topico Fluorocarbons
Combustion
Thermodynamics
Explosives
Propellants
ISBN 3-527-64419-9
1-280-66304-9
9786613639974
3-527-64418-0
3-527-64420-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Metal-Fluorocarbon Based Energetic Materials; Contents; Foreword; Preface; Acknowledgment; 1 Introduction to Pyrolants; References; 2 History; 2.1 Organometallic Beginning; 2.2 Explosive & Obscurant Properties; 2.3 Rise of Fluorocarbons; 2.4 Rockets Fired Against Aircraft; 2.5 Metal/Fluorocarbon Pyrolants; References; Further Reading; 3 Properties of Fluorocarbons; 3.1 Polytetrafluoroethylene (PTFE); 3.2 Polychlorotrifluoroethylene (PCTFE); 3.3 Polyvinylidene Fluoride (PVDF); 3.4 Polycarbon Monofluoride (PMF); 3.5 Vinylidene Fluoride-Hexafluoropropene Copolymer; 3.5.1 LFC-1
3.6 Vinylidene Fluoride-Chlorotrifluoroethylene Copolymer3.7 Copolymer of TFE and VDF; 3.8 Terpolymers of TFE, HFP and VDF; 3.9 Summary of chemical and physical properties of common fluoropolymers; References; 4 Thermochemical and Physical Properties of Metals and their Fluorides; References; 5 Reactivity and Thermochemistry of Selected Metal/Fluorocarbon Systems; 5.1 Lithium; 5.2 Magnesium; 5.3 Titanium; 5.4 Zirconium; 5.5 Hafnium; 5.6 Niob; 5.7 Tantalum; 5.8 Zinc; 5.9 Cadmium; 5.10 Boron; 5.11 Aluminium; 5.12 Silicon; 5.13 Calcium Silicide; 5.14 Tin; References
6 Ignition and Combustion Mechanism of MTV6.1 Ignition and Pre-Ignition of Metal/Fluorocarbon Pyrolants; 6.2 Magnesium-Grignard Hypothesis; References; 7 Ignition of MTV; References; 8 Combustion; 8.1 Magnesium/Teflon/Viton; 8.1.1 Pressure Effects on the Burn Rate; 8.1.2 Particle Size Distribution and Surface Area Effects on the Burn Rate; 8.2 Porosity; 8.3 Burn Rate Description; 8.4 Combustion of Metal-Fluorocarbon Pyrolants with Fuels Other than Magnesium; 8.4.1 Magnesium Hydride; 8.4.2 Alkali and Alkaline Earth Metal; 8.4.2.1 Lithium; 8.4.2.2 Magnesium-Aluminium Alloy; 8.4.3 Titan
8.4.4 Zirconium8.4.5 Zinc; 8.4.6 Boron; 8.4.7 Magnesium Boride, MgB2; 8.4.8 Aluminium; 8.4.9 Silicon; 8.4.10 Silicides; 8.4.10.1 Dimagnesium Silicide, Mg2Si; 8.4.10.2 Calcium Disilicide; 8.4.10.3 Zirconium Disilicide; 8.4.11 Tungsten-Zirconium Alloy; 8.5 Underwater Combustion; References; 9 Spectroscopy; 9.1 Introduction; 9.2 UV-VIS Spectra; 9.2.1 Polytetrafluoroethylene Combustion; 9.2.2 Magnesium/Fluorocarbon Pyrolants; 9.2.3 MgH2, MgB2, Mg3N2, Mg2Si/Mg3Al2/Fluorocarbon Based pyrolants; 9.2.4 Silicon/PTFE Based Pyrolants; 9.2.5 Boron/PTFE/Viton Based Pyrolants; 9.3 MWIR Spectra
9.3.1 Polytetrafluoroethylene Combustion9.3.2 Magnesium/Fluorocarbon Combustion; 9.3.3 MgH2, MgB2, Mg3N2, Mg2Si/Fluorocarbon Based Pyrolants; 9.3.4 Si/Fluorocarbon Based Pyrolants; 9.3.5 Boron/PTFE/Viton Based Pyrolants; 9.4 Temperature Determination; 9.4.1 Condensed-Phase Temperature; 9.4.2 Gas-Phase Temperature; References; 10 Infrared Emitters; 10.1 Decoy Flares; 10.2 Nonexpendable Flares; 10.2.1 Target Augmentation; 10.2.2 Missile Tracking Flares; 10.3 Metal-Fluorocarbon Flare Combustion Flames as Sources of Radiation; 10.3.1 Flame Structure and Morphology; 10.3.2 Radiation of MTV
10.4 Infrared Compositions
Record Nr. UNINA-9910810763203321
Koch Ernst-Christian  
Weinheim [Germany], : Wiley-VCH, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nano and Micro-Scale Energetic Materials : Propellants and Explosives / / edited by Weiqiang Pang and Luigi T. DeLuca
Nano and Micro-Scale Energetic Materials : Propellants and Explosives / / edited by Weiqiang Pang and Luigi T. DeLuca
Pubbl/distr/stampa Weinheim, Germany : , : WILEY-VCH GmbH, , [2023]
Descrizione fisica 1 online resource (777 pages)
Disciplina 662.2
Soggetto topico Explosives
Propellants
ISBN 3-527-83532-6
3-527-83534-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- About the Editors -- Part I Fundamentals -- Chapter 1 Composite Heterogeneous Energetic Materials: Propellants and Explosives, Similar but Different? -- 1.1 Introduction -- 1.2 Structure and Composition -- 1.2.1 Energetic Fillers -- 1.2.2 Binder Systems -- 1.2.2.1 Binder Systems for Cast Cure Propellants and Explosives -- 1.2.2.2 Pressed PBXs -- 1.2.2.3 Plasticizers -- 1.2.3 Surface Active Materials (SAMs) -- 1.3 Performance -- 1.4 Sensitivity -- 1.4.1 Sensitivity Correlations -- 1.4.2 Transfer to Detonation in Propellants and PBXs -- 1.4.2.1 Factors Determining Transfer to Detonation -- 1.4.2.2 DDT Description -- 1.5 Summary -- References -- Chapter 2 High‐Pressure Combustion Studies of Energetic Materials -- 2.1 Introduction -- 2.2 Burning Rates as a Function of Pressure -- 2.3 Visual Observations of Burning Behavior as a Function of Pressure -- 2.4 Discussion -- 2.5 Conclusions -- Acknowledgments -- References -- Part II New Energetic Ingredients -- Chapter 3 Cyclic Nitramines as Nanoenergetic Organic Materials -- 3.1 Introduction -- 3.2 Nanosized RDX -- 3.3 Nanosized HMX -- 3.4 Nanosized CL‐20 -- 3.4.1 Ultrasound‐ and Spray‐Assisted Precipitation of Ultrafine CL‐20 -- 3.4.2 Preparation of CL‐20 Nanoparticles Via Oil in Water Microemulsions -- 3.4.3 Production of Nanoscale CL‐20 Using Ultrasonic Spray‐Assisted Electrostatic Adsorption Method (USEA) -- 3.4.4 Preparation of Nano CL‐20 Via Sonocrystallization -- 3.4.5 Preparation of Micro‐Sized Particles and their Comparison with Nanoscale CL‐20 -- 3.4.6 Method for Production of Nano CL‐20 in Supercritical CO2 and 1,1,1,2‐Tetrafluoroethane (TFE) -- 3.4.7 Creation of Nano CL‐20 Particles by the Method of Bidirectional Rotary Mill -- 3.4.8 Electrospray of CL‐20 Particles.
3.4.9 Production of Sub‐Micro CL‐20‐Based Energetic Polymer Composite Ink -- 3.4.10 Nanoscale Composites Based on CL‐20 -- 3.4.11 Comparison of the Detonation Performance of Micro−/Nanoscale High‐Energy Materials -- 3.4.12 Preparation of Nano‐Sized CL‐20/NQ Co‐Crystal Via Vacuum Freeze Drying -- 3.4.13 Nanoscale 2CL‐20·HMX High Explosive Cocrystal Synthesized by Bead Milling -- 3.4.14 Mechanochemical Fabrication and Properties of CL‐20/RDX Nano Co/Mixed Crystals -- 3.4.15 Preparation of Nano CL‐20/HMX Cocrystal by Milling Method -- 3.4.16 Synthesis of Nano CL‐20/HMX Co‐Crystals by Ultrasonic Spray‐Assisted Electrostatic Adsorption Method -- 3.4.17 Preparation of Nano‐CL‐20/TNT Cocrystal Explosives by Mechanical Ball‐Milling Method -- 3.4.18 Preparation of Nanoscale CL‐20/Graphene Oxide by One‐Step Ball Milling -- 3.4.19 Preparation and Properties of CL‐20 Based Composite by Direct Ink Writing -- 3.4.20 CL‐20 Based Explosive Ink of Emulsion Binder System for Direct Ink Writing -- 3.5 Conclusions and Future Outlook -- References -- Chapter 4 Clathrates of CL‐20: Thermal Decomposition and Combustion -- 4.1 Introduction -- 4.2 Host-guest Energetic Material Based on CL‐20 and Nitrogen Oxides -- 4.2.1 Synthesis and Determination of the Structure of New Clathrates -- 4.2.2 Thermal Stability of the New Clathrates -- 4.2.3 Vapour Pressure Above the New Clathrates -- 4.2.4 Combustion Behaviors of the New Clathrates -- 4.2.5 Energetic Performance of the New Clathrates -- 4.3 Conclusion Remarks -- Acknowledgments -- References -- Chapter 5 HMX and CL‐20 Crystals Containing Metallic Micro and Nanoparticles -- 5.1 Introduction -- 5.2 Research on High‐Energy Cyclic Nitramines HMX and CL‐20 -- 5.2.1 Synthesis of HMX and CL‐20 Crystals with Inclusion of Metal Particles -- 5.3 Production of Cyclic Nitramine Crystals with Metal Inclusions.
5.3.1 Production of CL‐20 Crystals with Metal Inclusions -- 5.3.2 Production of HMX Crystals with Metal Inclusions -- 5.4 Research on the Physicochemical and Explosive Characteristics of CL‐20 and HMX Crystals with Metal Inclusions -- 5.5 Research on the Combustion of Fuel Samples Based on CL‐20 Crystals with Metal Inclusions -- 5.6 Conclusions -- Funding -- Acknowledgments -- References -- Chapter 6 Effects of TKX‐50 on the Performance of Solid Propellants and Explosives -- 6.1 Introduction -- 6.2 Physicochemical Properties of TKX‐50 -- 6.3 Interactions Between TKX‐50 and EMs -- 6.3.1 TKX‐50/EMs Co‐crystals -- 6.3.2 TKX‐50/EMs Mixtures -- 6.4 Performance of Nano‐sensitized TKX‐50 -- 6.5 Application in Solid Propellants -- 6.5.1 Ideal Energetic Performance -- 6.5.1.1 HTPB/TKX‐50 -- 6.5.1.2 GAP/TKX‐50 -- 6.5.1.3 NEPE/TKX‐50 System -- 6.5.1.4 CMDB/TKX‐50 System -- 6.5.2 Combustion Features -- 6.5.2.1 Combustion Behavior of TKX‐50 -- 6.5.2.2 Combustion Behavior of Solid Propellants Containing TKX‐50 -- 6.5.3 Thermal Decomposition -- 6.6 Application in Explosives -- 6.7 Conclusions -- References -- Part III Metal‐based Pyrotechnic Nanocomposites -- Chapter 7 Recent Advances in Preparation and Reactivity of Metastable Intermixed Composites -- 7.1 Introduction -- 7.2 The Preparation and Reactivity Control of MICs -- 7.2.1 Al‐Based MICs with Random Distributed Structures -- 7.2.1.1 Preparation Methods -- 7.2.1.2 Characterization -- 7.2.1.3 Reactivity Control -- 7.2.2 Al‐Based MICs with Multilayered Structures -- 7.2.2.1 Preparation Methods -- 7.2.2.2 Characterization -- 7.2.2.3 Reactivity Control -- 7.2.3 Al‐Based MICs with Core-Shell Structures -- 7.2.3.1 Preparation Methods -- 7.2.3.2 Characterization -- 7.2.3.3 Reactivity Control -- 7.3 Conclusion and Suggestions -- References -- Chapter 8 Nanothermites: Developments and Future Perspectives.
8.1 Introduction -- 8.2 Nanothermites Versus Microthermites -- 8.3 Nanothermite‐friendly Oxidizers -- 8.3.1 Metallic Oxidizers -- 8.3.2 Oxidizing Salts -- 8.4 Carbon Nanomaterials and Energetic Compositions -- 8.5 Future Challenges -- 8.6 Conclusion -- References -- Chapter 9 Engineering Particle Agglomerate and Flame Propagation in 3D‐printed Al/CuO Nanocomposites -- 9.1 Introduction -- 9.2 Printing High Nanothermite Loading Composite Via a Direct Writing Approach -- 9.3 Agglomerating in High Al/CuO Nanothermite Loading Composite -- 9.3.1 In‐Operando Observation of Flame Front -- 9.3.2 Mapping Optical to Electron Microscopy of Agglomeration -- 9.3.3 Agglomeration Affects the Propagation Rate -- 9.4 Engineering Agglomerating and Propagating through Oxidizer Size and Morphology -- 9.4.1 The Concept of a Pocket Size -- 9.4.2 Reducing Agglomeration with CuO Wires -- 9.4.3 Promote Propagating through Using CuO Wires -- 9.4.4 Polymer Addition Significantly Reduces the Micro‐Explosion of the Agglomerations -- 9.4.5 Summary -- 9.5 Engineering Agglomeration and Propagating through Restraining the Movement of Agglomerations -- 9.5.1 Adding Carbon Fibers to Promote Energy Release Rate in Energetic Composites -- 9.5.2 Embedding Carbon Fibers into High Loading Al/CuO Nanothermite Composite -- 9.5.3 Enhanced Propagation of Al/CuO Composite with Carbon Fibers -- 9.5.4 Enhanced Heat Feedback and Heat Transfer with Carbon Fibers: Restraining the Movement of Agglomerations -- 9.5.5 Summary -- 9.6 Conclusions and Future Directions -- Acknowledgments -- References -- Part IV Solid Propellants and Fuels for Rocket Propulsion -- Chapter 10 Glycidyl Azide Polymer Combustion and Applications Studies Performed at ISAS/JAXA -- 10.1 Introduction -- 10.2 Combustion Mechanism -- 10.2.1 Simplified Model by Asymptotic Analysis.
10.2.2 Three Phase‐One Dimensional Full Kinetics Model -- 10.3 Application of GAP to Gas Hybrid Rocket Motor [2, 51--53] -- 10.4 Summary -- References -- Chapter 11 Effect of Different Binders and Metal Hydrides on the Performance and Hydrochloric Acid Exhaust Products Scavenging of AP‐Based Composite Solid Propellants: A Theoretical Analysis -- 11.1 Introduction -- 11.2 Theoretical Background and Computation Procedure -- 11.2.1 Performance of Composite Solid Propellants -- 11.2.2 Propellant Energetic Ingredients -- 11.2.3 Computation Procedure of CSPs Performance -- 11.3 Results and Discussion -- 11.4 Conclusion -- References -- Chapter 12 Combustion of Flake Aluminum with PTFE in Solid and Hybrid Rockets -- 12.1 Introduction -- 12.1.1 Solid Rockets -- 12.1.1.1 Need for High Burn Rates in Solid Rockets -- 12.1.2 Hybrid Rockets -- 12.2 Aluminum Combustion in Composite Solid Propellant -- 12.2.1 Literature on Aluminum Combustion -- 12.3 Effect of Mechanical Activation in Composite Solid Propellants -- 12.3.1 Experiments with Solid Propellants -- 12.3.1.1 Preparation of Mechanically Activated Pyral -- 12.3.1.2 Preparation of Propellants -- 12.3.1.3 Experimental Setup -- 12.3.1.4 Experimental Procedure -- 12.3.2 Results and Discussions on Solid Rockets -- 12.3.2.1 Chemical Equilibrium Analysis -- 12.3.2.2 DSC and TG Analysis of Mechanically Activated Pyral -- 12.3.2.3 SEM Analysis of Mechanically Activated Pyral -- 12.3.2.4 Burn Rates and Temperature Sensitivity Analysis with Varying PTFE Fraction -- 12.3.2.5 Effect of Mechanical Activation of Pyral on Density, Viscosity, and Heat of Combustion of Propellant -- 12.3.2.6 Effect of Mechanically Activation of Pyral on the Agglomeration of Aluminum -- 12.3.2.7 Redesigning the Upper Stages of Launch Vehicles -- 12.4 Aluminum Combustion in Hybrid Rockets -- 12.4.1 Literature Review.
12.4.2 Experiments with Mechanically Activated Pyral in Hybrid Rockets.
Record Nr. UNINA-9910830623103321
Weinheim, Germany : , : WILEY-VCH GmbH, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nuclear thermal propulsion (NTP) : a proven, growth technology for "fast transit" human missions to Mars / / Stanley K. Borowski, David R. McCurdy and Thomas W. Packard
Nuclear thermal propulsion (NTP) : a proven, growth technology for "fast transit" human missions to Mars / / Stanley K. Borowski, David R. McCurdy and Thomas W. Packard
Autore Borowski Stanley K.
Pubbl/distr/stampa Cleveland, Ohio : , : National Aeronautics and Space Administration, Glenn Research Center, , October 2014
Descrizione fisica 1 online resource (22 pages) : color illustrations
Collana NASA/TM
Soggetto topico Nuclear propulsion
Mars missions
Liquid hydrogen
Propellants
Weightlessness
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Nuclear thermal propulsion
Record Nr. UNINA-9910703638503321
Borowski Stanley K.  
Cleveland, Ohio : , : National Aeronautics and Space Administration, Glenn Research Center, , October 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Possible propellants for use in a nuclear rocket / / Lawrence R. Sitney
Possible propellants for use in a nuclear rocket / / Lawrence R. Sitney
Autore Sitney L. R.
Pubbl/distr/stampa Los Alamos, New Mexico : , : Los Alamos Scientific Laboratory of the University of California, , 1956
Descrizione fisica 1 online resource (28 unnumbered pages) : illustrations
Collana LAMS
Soggetto topico Propellants
Nuclear reactors
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910711892203321
Sitney L. R.  
Los Alamos, New Mexico : , : Los Alamos Scientific Laboratory of the University of California, , 1956
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Progress in the development of a multiphase turbulent model of the gas/particle flow in a small-caliber ammunition primer [[electronic resource] /] / John R. Schmidt and Michael J. Nusca
Progress in the development of a multiphase turbulent model of the gas/particle flow in a small-caliber ammunition primer [[electronic resource] /] / John R. Schmidt and Michael J. Nusca
Autore Schmidt John R
Pubbl/distr/stampa Aberdeen Proving Ground, MD : , : U.S. Army Research Laboratory, , [2006]
Descrizione fisica 1 online resource (vi, 36 pages) : illustrations
Altri autori (Persone) NuscaMichael J
Collana ARL-TR
Soggetto topico Ballistics, Interior
Propellants
Ordnance
Projectiles
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910696965303321
Schmidt John R  
Aberdeen Proving Ground, MD : , : U.S. Army Research Laboratory, , [2006]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Propellants and explosives : thermochemical aspects of combustion / / Naminosuke Kubota
Propellants and explosives : thermochemical aspects of combustion / / Naminosuke Kubota
Autore Kubota Naminosuke
Edizione [Third, revised and updated edition.]
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH, , 2015
Descrizione fisica 1 online resource (561 p.)
Disciplina 541.361
Soggetto topico Combustion
Explosives
Propellants
ISBN 1-5231-1044-9
3-527-69350-5
3-527-69348-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright; Contents; Preface; Preface to the Second Edition; Preface to the First Edition; Chapter 1 Foundations of Pyrodynamics; 1.1 Heat and Pressure; 1.1.1 First Law of Thermodynamics; 1.1.2 Specific Heat; 1.1.3 Entropy Change; 1.2 Thermodynamics in a Flow Field; 1.2.1 One-Dimensional Steady-State Flow; 1.2.1.1 Sonic Velocity and Mach Number; 1.2.1.2 Conservation Equations in a Flow Field; 1.2.1.3 Stagnation Point; 1.2.2 Formation of Shock Waves; 1.2.3 Supersonic Nozzle Flow; 1.3 Formation of Propulsive Forces; 1.3.1 Momentum Change and Thrust; 1.3.2 Rocket Propulsion
1.3.2.1 Thrust Coefficient1.3.2.2 Characteristic Velocity; 1.3.2.3 Specific Impulse; 1.3.3 Gun Propulsion; 1.3.3.1 Thermochemical Process of Gun Propulsion; 1.3.3.2 Internal Ballistics; 1.4 Formation of Destructive Forces; 1.4.1 Pressure and Shock Wave; 1.4.2 Shock Wave Propagation and Reflection in Solid Materials; References; Chapter 2 Thermochemistry of Combustion; 2.1 Generation of Heat Energy; 2.1.1 Chemical Bond Energy; 2.1.2 Heat of Formation and Heat of Explosion; 2.1.3 Thermal Equilibrium; 2.2 Adiabatic Flame Temperature; 2.3 Chemical Reaction; 2.3.1 Thermal Dissociation
2.3.2 Reaction Rate2.4 Evaluation of Chemical Energy; 2.4.1 Heats of Formation of Reactants and Products; 2.4.2 Oxygen Balance; 2.4.3 Thermodynamic Energy; References; Chapter 3 Combustion Wave Propagation; 3.1 Combustion Reactions; 3.1.1 Ignition and Combustion; 3.1.2 Premixed and Diffusion Flames; 3.1.3 Laminar and Turbulent Flames; 3.2 Combustion Wave of a Premixed Gas; 3.2.1 Governing Equations for the Combustion Wave; 3.2.2 Rankine-Hugoniot Relationships; 3.2.3 Chapman-Jouguet Points; 3.3 Structures of Combustion Waves; 3.3.1 Detonation Wave; 3.3.2 Deflagration Wave
3.4 Ignition Reactions3.4.1 The Ignition Process; 3.4.2 Thermal Theory of Ignition; 3.4.3 Flammability Limit; 3.5 Combustion Waves of Energetic Materials; 3.5.1 Thermal Theory of Burning Rate; 3.5.1.1 Thermal Model of Combustion Wave Structure; 3.5.1.2 Thermal Structure in the Condensed Phase; 3.5.1.3 Thermal Structure in the Gas Phase; 3.5.1.4 Burning Rate Model; 3.5.2 Flame Stand-Off Distance; 3.5.3 Burning Rate Characteristics of Energetic Materials; 3.5.3.1 Pressure Exponent of Burning Rate; 3.5.3.2 Temperature Sensitivity of Burning Rate
3.5.4 Analysis of Temperature Sensitivity of Burning Rate3.5.5 Chemical Reaction Rate in Combustion Wave; References; Chapter 4 Energetics of Propellants and Explosives; 4.1 Crystalline Materials; 4.1.1 Physicochemical Properties of Crystalline Materials; 4.1.2 Perchlorates; 4.1.2.1 Ammonium Perchlorate; 4.1.2.2 Nitronium Perchlorate; 4.1.2.3 Potassium Perchlorate; 4.1.3 Nitrates; 4.1.3.1 Ammonium Nitrate; 4.1.3.2 Potassium Nitrate and Sodium Nitrate; 4.1.3.3 Pentaerythrol Tetranitrate; 4.1.3.4 Triaminoguanidine Nitrate; 4.1.4 Nitro Compounds; 4.1.5 Nitramines; 4.2 Polymeric Materials
4.2.1 Physicochemical Properties of Polymeric Materials
Record Nr. UNINA-9910131337503321
Kubota Naminosuke  
Weinheim, Germany : , : Wiley-VCH, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Propellants, explosives, pyrotechnics
Propellants, explosives, pyrotechnics
Pubbl/distr/stampa Weinheim, : Verlag & Co. KGaA, : [Verlag Chemie], c1982-
Soggetto topico Propellants
Explosives
Propergols
Explosifs
ISSN 1521-4087
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Record Nr. UNISA-996214992803316
Weinheim, : Verlag & Co. KGaA, : [Verlag Chemie], c1982-
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Propellants, explosives, pyrotechnics
Propellants, explosives, pyrotechnics
Pubbl/distr/stampa Weinheim, : Verlag & Co. KGaA, : [Verlag Chemie], c1982-
Soggetto topico Propellants
Explosives
Propergols
Explosifs
ISSN 1521-4087
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Record Nr. UNINA-9910144609603321
Weinheim, : Verlag & Co. KGaA, : [Verlag Chemie], c1982-
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui