top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Physics of Classical Novae [[electronic resource] ] : Proceedings of Colloquium No. 122 of the International Astronomical Union. Held in Madrid, Spain, on 27–30 June 1989 / / edited by Angelo Cassatella, Roberto Viotti
Physics of Classical Novae [[electronic resource] ] : Proceedings of Colloquium No. 122 of the International Astronomical Union. Held in Madrid, Spain, on 27–30 June 1989 / / edited by Angelo Cassatella, Roberto Viotti
Edizione [1st ed. 1990.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 1990
Descrizione fisica 1 online resource (XII, 464 p. 11 illus.)
Disciplina 523.8
Collana Lecture Notes in Physics
Soggetto topico Observations, Astronomical
Astronomy—Observations
Astrophysics
Geophysics
Astronomy, Observations and Techniques
Astrophysics and Astroparticles
Geophysics/Geodesy
ISBN 3-540-46638-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Welcome address -- Cataclysmic variables as binary stars: Then and now -- The long term behaviour of classical old novae -- Classical novae: Properties between outbursts -- Galactic distribution and outburst frequency of classical novae -- Novae in clusters and galaxies -- Strong magnetic fields in nova systems -- Quasi-periodic outburst activity of novae at minimum -- Spin period variations of the white dwarf in FO AQR/H2215-086 -- The galactic nova rate -- A possible nova from the IRAS point source catalogue -- Where is nova 1437? — Surprises in the space density of cataclysmic variables -- On the postoutburst far ultraviolet declines of WZ sagittae and V1500 CYGNI -- Spectroscopic observations of the southern old novae CP PUP and V841 OPH -- CP puppis: Another V1500 Cyg? -- The uv luminosity of old novae -- V 1500 Cyg: Slow variability in post-nova stage -- Maximum magnitude vs. rate of decline for novae of the LMC -- On V603 Aql and magnetic novae -- Optical studies of classical novae in outburst -- Chemistry of nova envelopes -- Ultraviolet observations of classical novae in outburst -- Multi-wavelength observations of novae in outburst -- New infrared results for classical novae -- Recent and future x-ray observations of classical novae during the outburst stage -- New results about post optical maximum oscillations of novae -- Simultaneous optical and UV spectra of the two LMC novae 1988 -- Optical spectrophotometry of nova PW vulpeculae -- The early outburst spectra of nova V1506 CYGNI -- Mass of the, ejected envelope of LV vulpeculae -- The peculiar slow nova X serpentis -- Images and light curves of the radio remnants of novae -- Optical imagery of nova remnants -- Physical properties and abundances of novae in the nebular phase -- An H? image of nova V1500 cygni twelve years after outburst -- PAH'S and silicate emission in nova cen 1986 -- Mm CO observation of the old nova NQ Vul -- Nova Ophiuchi 1988: 0.9–1.35 ?m spectroscopy -- Measurements of outburst characteristics, temperatures, densities and abundances in the ejecta of Nova Muscae 1983 -- Element abundances of nova PW vulpeculae -- Chemical composition of Nova Centauri 1986 -- Ultraviolet spectroscopy of the shell of RR pic -- Infrared spectra of recent novae -- The ionization of novae ejecta -- Winds from disks -- Physics of mass ejection during nova outbursts -- Effects of the presence of supercritical winds -- Formation and evolution of dust in novae -- Model atmospheres for novae during the early stages -- The continuum spectra of accretion discs in novalike objects -- Infra-red emission from classical novae -- Cool envelopes of post-novae constraints on the decline of the white dwarf -- Chemical routes to dust formation in the ejecta of novae -- Modelling the common envelope phase in classical novae -- Ionization and temperature structure in nova shells -- Formation of the balmer line in the optically thick nova envelope -- HeI emission line formation in symbiotic stars and novae -- Soft x-ray emission from classical novae in outburst -- Classical novae in the context of the evolution of cataclysmic binaries -- The origin and evolution of novae -- Novae between outbursts -- The cyclic evolution of classical novae -- Thermonuclear runaway model -- Theoretical implications of nova abundances -- The theoretical frequency of classical nova outbursts as a function of white dwarf mass -- Accretion on CO white dwarfs. influence of the external burning shells on the evolution -- Effective growth rate of white dwarf mass in nova outbursts -- The white dwarf mass and orbital period distributions in zero-age cataclysmic variables -- Diffusion in novae at high accretion rates -- On the nature of the outflow from nova stars occurring immediately after ejection of an envelope -- Novae as local thermonuclear runaways -- Recurrent novae -- The symbiotic novae -- Spectroscopic results of the recurrent nova RS Ophiuchi -- A spectroscopic survey of recurrent novae at minimum -- Possible x-ray flares in a recurrent nova -- The 1989 outburst of V404 cygni: A very unusual x-ray nova -- The structure of the envelopes of symbiotic novae -- HM Sge still evolving -- IR observations of the symbiotic nova HM sagittae -- The light curve of the symbiotic nova HM sagittae -- The nova type outburst of the symbiotic star AS 296 -- Co-ordinated optical and radio observations of symbiotic stars -- High resolution spectroscopy of symbiotic stars -- Some comments on classical novae and related systems.
Record Nr. UNISA-996466707003316
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 1990
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Planet Mercury [[electronic resource] ] : From Pale Pink Dot to Dynamic World / / by David A. Rothery
Planet Mercury [[electronic resource] ] : From Pale Pink Dot to Dynamic World / / by David A. Rothery
Autore Rothery David A
Edizione [1st ed. 2015.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
Descrizione fisica 1 online resource (191 p.)
Disciplina 500.5
520
523.4
530
Collana Springer Praxis Books
Soggetto topico Observations, Astronomical
Astronomy—Observations
Planetology
Space sciences
Astronomy, Observations and Techniques
Space Sciences (including Extraterrestrial Physics, Space Exploration and Astronautics)
ISBN 3-319-12117-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto A Pale Pink Dot -- Mariner 10 -- High time for another mission? -- The surface as seen by MESSENGER -- Magnetosphere and exosphere as seen by MESSENGER -- More questions than answers? -- Appendix.
Record Nr. UNINA-9910299443003321
Rothery David A  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Planets, Stars and Stellar Systems [[electronic resource] ] : Volume 2: Astronomical Techniques, Software, and Data / / edited by Howard E. Bond
Planets, Stars and Stellar Systems [[electronic resource] ] : Volume 2: Astronomical Techniques, Software, and Data / / edited by Howard E. Bond
Edizione [1st ed. 2013.]
Pubbl/distr/stampa Dordrecht : , : Springer Netherlands : , : Imprint : Springer, , 2013
Descrizione fisica 1 online resource (38 illus. in color. eReference.)
Disciplina 520
Soggetto topico Observations, Astronomical
Astronomy—Observations
Microwaves
Optical engineering
Statistics 
Data mining
Physics
Astronomy, Observations and Techniques
Microwaves, RF and Optical Engineering
Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences
Data Mining and Knowledge Discovery
Numerical and Computational Physics, Simulation
ISBN 94-007-5618-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Series Preface -- Preface to Volume 2 -- Editor-in-Chief -- Volume Editor -- Table of Contents -- List of Contributors -- 1 Astronomical Photometry -- 1 Introduction -- 2 General Properties of Photometric Detectors -- 2.1 Photographic Plates -- 2.2 Photomultipliers -- 2.3 CCDs -- 3 The General Photometric Problem -- 3.1 Atmospheric Extinction -- 3.2 Bandpass Mismatch -- 3.3 Zero Points -- 3.4 Methodology -- 3.5 Higher-Order Effects -- 3.6 General Comments -- 3.7 Differential Photometry -- Time-Domain Photometry -- 4 Measuring the Instrumental Magnitudes -- 4.1 Photoelectric Photometry -- 4.2 Aperture Photometry with CCDs -- 4.3 Concentric-Aperture Photometry with CCDs -- 4.4 Profile-Fitting Photometry -- References -- 2 Astronomical Spectroscopy -- 1 Introduction -- 2 An Introduction to Astronomical Spectrographs -- 2.1 The Basics -- 2.1.1 Selecting a Blocking Filter -- 2.1.2 Choosing a Grating -- 2.2 Conventional Long-Slit Spectrographs -- 2.2.1 An Example: The Kitt Peak RC Spectrograph -- 2.3 Echelle Spectrographs -- 2.3.1 An Example: MagE -- 2.3.2 Coude Spectrographs -- 2.4 Multi-object Spectrometers -- 2.4.1 Multi-slit Spectrographs -- Example: IMACS -- 2.4.2 Fiber-fed Bench-Mounted Spectrographs -- An Example: Hectospec -- 2.5 Extension to the UV and NIR -- 2.5.1 The Near Ultraviolet -- 2.5.2 Near-Infrared Spectroscopy and OSIRIS -- 2.6 Spatially Resolved Spectroscopy of Extended Sources:Fabry-Perots and Integral Field Spectroscopy -- 3 Observing and Reduction Techniques -- 3.1 Basic Optical Reductions -- 3.1.1 Multi-object Techniques -- 3.1.2 NIR Techniques -- 3.2 Further Details -- 3.2.1 Differential Refraction -- 3.2.2 Determining Isolation -- 3.2.3 Assigning Fibers and Designing Multi-slit Masks -- 3.2.4 Placing Two Stars on a Long Slit -- 3.2.5 Optimal Extraction -- 3.2.6 Long-Slit Flat-Fielding Issues -- Featureless Flats.
Illumination Correction Flats -- Summary -- 3.2.7 Radial Velocities and Velocity Dispersions -- Precision Radial Velocities -- Laboratory Wavelengths -- 3.2.8 Some Useful Spectral Atlases -- 3.3 Observing Techniques: What Happens at Night -- 3.3.1 Observing with a Long-Slit Spectrograph -- 3.3.2 Observing with a Multi-fiber Spectrometer -- 3.3.3 Observing with a NIR Spectrometer -- Wrap-Up and Acknowledgments -- References -- 3 Infrared AstronomyFundamentals -- 1 Introduction -- 1.1 Terminology and Units -- 1.2 Blackbody Radiation and Emissivity -- 2 Overview of Atmospheric Transmission from 1 to 1,000m -- 2.1 Atmospheric Extinction -- 2.2 Atmospheric Refraction -- 3 Background Emission from the Ground -- 3.1 Near-IR Airglow -- 3.2 Thermal Emission from Sky and Telescope -- 4 Background Emission from Space -- 5 Detectors Used in Infrared Astronomy -- 5.1 Thermal Detectors -- 5.2 Photon Detectors -- 5.3 Detector Arrays -- 5.4 Microwave Kinetic Induction Detectors -- 6 Optimizing the Signal-to-Noise Ratio -- 6.1 Signal-to-Noise Equation -- 6.2 Ground-Based Observations in the Infrared -- 6.3 IR-Optimized Telescopes -- 6.4 Data Taking in the Presence of High Background Emission -- 6.4.1 Near-infrared Imaging -- 6.4.2 Mid-infrared Imaging -- 6.4.3 Reducing the OH Background -- 6.5 Airborne and Space Infrared Missions -- 6.5.1 Airborne Astronomy -- 6.5.2 Space Infrared Missions -- IRAS -- Spitzer Space Telescope -- Herschel Space Telescope -- Wide Field Infrared Survey Experiment -- James Webb Space Telescope -- 7 Infrared Standards and Absolute Calibration -- 7.1 Ground-Based Photometry -- 7.2 Near-IR Sky Surveys -- 7.3 Space Infrared Calibration -- IRAS -- MSX -- Spitzer -- WISE -- Hubble Space Telescope and JWST -- Herschel Space Observatory -- 7.4 Absolute Calibration -- 7.5 Definition of a Filter Wavelength.
7.6 Correction to a Monochromatic Wavelength -- 8 Infrared Spectroscopy -- 8.1 Spectroscopic Standards (Spectral Libraries) -- 8.2 Taking Near-IR Spectra: An Example -- 8.3 Telluric Correction -- Acknowledgments -- References -- 4 Astronomical Polarimetry:Polarized Views of Stars andPlanets -- 1 Introduction -- 2 What is Polarization? -- 2.1 Jones Formalism -- 2.2 Stokes Formalism -- 2.3 Mueller Matrices -- 2.4 The Poincaré sphere -- 3 Polarizing Mechanisms -- 3.1 Broadband Polarization -- 3.1.1 Scattering and Reflection -- 3.1.2 Polarization-Dependent Absorption and Emission -- 3.1.3 Synchrotron and Cyclotron Radiation -- 3.2 Spectral Line Polarization -- 3.2.1 The Zeeman Effect -- 3.2.2 The Hanle Effect and Other Line Polarization Effects -- 4 The Polarimetrist's Toolkit -- 4.1 Polarizers -- 4.1.1 Sheet or Plate Polarizers -- 4.1.2 Polarizing Beam-Splitters -- 4.2 Retarders -- 4.2.1 Fixed Linear Retarders -- 4.2.2 Variable Retarders -- 4.3 Novel Components -- 4.4 Detectors -- 5 Polarimeter Implementation: How to Deal with Systematic Effects -- 5.1 Some Definitions -- 5.2 Modulation and Demodulation -- 5.3 Boosting Polarimetric Sensitivity -- 5.4 Spectral Modulation -- 5.5 Instrumental Polarization Effects -- 5.6 Calibration -- 5.7 Performance Prediction -- 6 Modern Polarimeters -- 6.1 Requirements -- 6.2 Dual-Beam Polarimeters -- 6.3 Polarizer-Only Polarimeters -- 6.4 Solar Polarimetry -- 6.5 Exoplanet Detection and Characterization -- Acknowledgments -- References -- 5 Sky Surveys -- 1 Introduction -- 1.1 Definitions and Caveats -- 1.2 The Types and Goals of Sky Surveys -- 1.3 The Data Explosion -- 2 A (Very) Brief History of Sky Surveys -- 3 A Systematic Exploration of the Sky -- 3.1 The Role of Technology -- 3.2 Data Parameter Spaces -- 3.3 Exploring the Parameter Spaces -- 4 Characteristics and Examples of Sky Surveys.
4.1 A Sampler of Panoramic Sky Surveys and Catalogs -- 4.1.1 Surveys and Catalogs in the Visible Regime -- 4.1.2 Surveys in the Infrared -- 4.1.3 Surveys and Catalogs in the Radio -- 4.1.4 Surveys at Higher Energies -- 4.2 Synoptic Sky Surveys and Exploration of the Time Domain -- 4.2.1 General Synoptic Surveys in the Visible Regime -- 4.2.2 Supernova Surveys -- 4.2.3 Synoptic Surveys for Minor Bodies in the Solar System -- 4.2.4 Microlensing Surveys -- 4.2.5 Radio Synoptic Surveys -- 4.2.6 Other Wavelength Regimes -- 4.3 Toward the Petascale Data Streams and Beyond -- 4.4 Deep Field Surveys -- 4.5 Spectroscopic Surveys -- 4.6 Figures of Merit -- 5 From the Raw Data to Science-Ready Archives -- 5.1 Data Processing Pipelines -- 5.2 Source and Event Classification -- 5.3 Data Archives, Analysis, and Exploration -- 6 Concluding Comments -- Acknowledgments -- Appendix: A Partial List of Sky Surveys, Facilities, and Archives as of 2011 -- References -- 6 Techniques of RadioAstronomy -- 1 Introduction -- 1.1 A Selected List of Radio Astronomy Facilities -- 2 Radiative Transfer and Black Body Radiation -- 2.1 The Nyquist Theorem and Noise Temperature -- 2.2 Overview of Intensity, Flux Density, and Main Beam Brightness Temperature -- 2.3 Interstellar Dispersion and Polarization -- 3 Receiver Systems -- 3.1 Coherent and Incoherent Receivers -- 3.1.1 Receiver Calibration -- 3.1.2 Noise Uncertainties Due to Random Processes -- 3.1.3 Receiver Stability -- 4 Practical Aspects of Receivers -- 4.1 Bolometer Radiometers -- 4.2 Coherent Receivers -- 4.2.1 Noise Contributions in Coherent Receivers -- 4.2.2 Mixers -- 4.2.3 Square-Law Detectors -- 4.2.4 The Minimum Noise in a Coherent System -- 4.3 Back Ends -- 4.3.1 Polarimeters -- 4.3.2 Spectrometers -- 5 Antennas -- 5.1 The Hertz Dipole -- 5.2 Filled Apertures -- 5.2.1 Angular Resolution and Efficiencies.
5.2.2 Efficiencies for Compact Sources -- 5.2.3 Foci, Blockage, and Surface Accuracy -- 5.3 Single Dish Observational Techniques -- 5.3.1 The Earth's Atmosphere -- 5.3.2 Meter and Centimeter Calibration Procedures -- 5.3.3 Millimeter and Submillimeter Calibration Procedures -- 5.3.4 Bolometer Calibrations -- 5.3.5 Continuum Observing Strategies -- 5.3.6 Additional Requirements for Spectral Line Observations -- 5.3.7 Spectral Line Observing Strategies -- 6 Interferometers and Aperture Synthesis -- 6.1 Calibration -- 6.2 Responses of Interferometers -- 6.2.1 Time Delays and Bandwidth -- 6.2.2 Beam Narrowing -- 6.2.3 Source Size -- 6.3 Aperture Synthesis -- 6.3.1 Interferometric Observations -- 6.4 Interferometer Sensitivity -- 6.5 Corrections of Visibility Functions -- 6.5.1 Amplitude and Phase Closure -- 6.5.2 Calibrations, Gridding, FFTs, Weighting, and Self-Calibration -- 6.5.3 More Elaborate Improvements of Visibility Functions: The CLEANingProcedure -- 6.5.4 More Elaborate Improvements of Visibility Functions: The Maximum EntropyProcedure -- Acknowledgments -- References -- 7 Radio and OpticalInterferometry: BasicObserving Techniquesand Data Analysis -- 1 Interferometry in Astronomy -- 1.1 Introduction -- 1.2 Scientific Impact -- 2 Interferometry in Theory and Practice -- 2.1 Introduction -- 2.2 Interferometry in Theory -- 2.3 Interferometry in Practice -- 2.3.1 Quantum Limits of Amplifiers -- 2.4 Atmospheric Turbulence -- 2.4.1 Phase Fluctuations: Length Scale -- 2.4.2 Phase Fluctuations: Time Scale -- 2.4.3 Calibration: Isoplanatic Angle -- 3 Planning Interferometer Observations -- 3.1 Sensitivity -- 3.1.1 Radio Sensitivity -- 3.1.2 Visible and Infrared Sensitivity -- 3.1.3 Overcoming the Effects of the Atmosphere: Phase Referencing, AdaptiveOptics, and Fringe Tracking -- 3.2 (u,v) Coverage -- 3.3 Field-of-View.
3.4 Spectroscopic Capabilities.
Record Nr. UNINA-9910438119903321
Dordrecht : , : Springer Netherlands : , : Imprint : Springer, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Planets, Stars and Stellar Systems [[electronic resource] ] : Volume 6: Extragalactic Astronomy and Cosmology / / edited by William C. Keel
Planets, Stars and Stellar Systems [[electronic resource] ] : Volume 6: Extragalactic Astronomy and Cosmology / / edited by William C. Keel
Edizione [1st ed. 2013.]
Pubbl/distr/stampa Dordrecht : , : Springer Netherlands : , : Imprint : Springer, , 2013
Descrizione fisica 1 online resource (314 illus. eReference.)
Disciplina 523.1
Soggetto topico Cosmology
Astrophysics
Observations, Astronomical
Astronomy - Observations
Space sciences
Astrophysics and Astroparticles
Astronomy, Observations and Techniques
Space Sciences (including Extraterrestrial Physics, Space Exploration and Astronautics)
ISBN 94-007-5609-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Planets, Stars and Stellar Systems -- Extragalactic Astronomy and Cosmology -- Series Preface -- Preface to Volume 6 -- Editor-in-Chief -- Volume Editor -- Table of Contents -- List of Contributors -- 1 GalaxyMorphology -- 1 Introduction -- 2 Overview -- 3 Galaxy Classification -- 4 A Continuum of Galactic Forms -- 5 Galaxy Types: Stage, Family, and Variety -- 5.1 Elliptical and Spheroidal Galaxies -- 5.2 S0 and Spiral Galaxies -- 5.3 Irregular Galaxies -- 6 Other Dimensions to Galaxy Morphology -- 6.1 Outer Rings and Pseudorings -- 6.2 Inner and Outer Lenses -- 6.3 Nuclear Rings and Bars -- 6.4 Spiral Arm Morphologies -- 6.5 Luminosity Effects -- 7 The Morphology of Galactic Bars and Ovals -- 8 Dust Morphologies -- 9 The Morphologies of Galactic Bulges -- 10 Effects of Interactions and Mergers -- 10.1 Normal Versus Catastrophic Rings -- 10.2 Environmental Effects on Star-Forming Disks -- 10.3 Interacting and Peculiar Galaxies -- 10.3.1 Tidal Tails, Arms, Bridges, and Streams -- 10.3.2 Dust-Lane Ellipticals -- 10.3.3 Shell/Ripple Galaxies -- 10.3.4 Ultraluminous Infrared Galaxies -- 10.4 Warps -- 10.5 The Morphology of Active Galaxies -- 10.6 The Morphology of Brightest Cluster Members -- 11 Star Formation Morphologies -- 11.1 Halpha Imaging -- 11.2 Ultraviolet Imaging -- 11.3 Atomic and Molecular Gas Morphology -- 12 Infrared Observations: Galactic Stellar Mass Morphology -- 13 Intermediate and High Redshift Galaxy Morphology -- 14 Giant Low-Surface-Brightness Galaxies -- 15 Galaxy Morphology in Color -- 15.1 Normal Galaxies -- 15.2 Dwarf Galaxies -- 15.2.1 dE, dS0, BCD, and cE Galaxies -- 15.2.2 Local Group Dwarf Spheroidals and Irregulars -- 15.2.3 Dwarf Spirals -- 15.3 Galaxy Zoo Project -- 15.4 Isolated Galaxies -- 15.5 Deep Field Color Imaging -- 16 Large-Scale Automated Galaxy Classification.
17 The Status and Future of Morphological Studies -- References -- 2 Elliptical and Disk Galaxy Structure and Modern Scaling Laws -- 1 Introduction -- 1.1 Early Beginnings -- 1.2 The Modern Galaxy -- 2 Elliptical Galaxy Light Profiles -- 2.1 Sérsic's Model -- 2.1.1 Dark Matter Halos -- 2.2 The Core-Seacutersic Model -- 2.2.1 Central Mass Deficits -- 2.3 Excess Nuclear Light -- 2.4 Excess Halo Light -- 3 Structure-Related Scaling Relations -- 3.1 Linear Relations -- 3.1.1 Luminosity-(Central Surface Brightness) Relation -- 3.1.2 Luminosity-Concentration Relation -- 3.1.3 Concentration-(Central Surface Brightness) Relation -- 3.2 Curved Relations -- 3.2.1 Luminosity-(Effective Surface Brightness) Relation -- 3.2.2 Size-Luminosity Relation -- 3.2.3 Size-Concentration Relation -- 3.2.4 Size-(Effective Surface Brightness) Relation -- 3.3 Broken Relations -- 3.3.1 Luminosity-(Central Surface Brightness) Relation -- An Alternate View -- 3.3.2 Luminosity-Color Relation -- 3.3.3 Dynamics -- 4 Disk Galaxy Light Profiles -- 4.1 The Bulge-Disk Decomposition -- 4.2 Dust and Inclination Corrections -- 4.3 Pseudobulges -- 4.3.1 Sacutersic Index -- 4.3.2 Rotation -- 4.3.3 Ages -- 4.3.4 Scaling Relations -- 4.4 Bulgeless Galaxies -- 4.5 Barred Galaxies -- 5 Summary -- Acknowledgments -- References -- 3 Star Formation in Galaxies -- 1 Introduction -- 2 Theoretical Background -- 2.1 Formalism -- 2.2 Conditions for Star Formation -- 2.2.1 Gravitational Instability -- 2.2.2 Shear Criterion -- 2.2.3 Formation of a Cold Phase -- 2.3 Galactic Influences on the Star Formation Rates -- 2.3.1 Free Fall -- 2.3.2 Hydrostatic Equilibrium -- 2.3.3 Gravitation Versus Dispersion -- 2.3.4 Self-regulated Star Formation -- 2.3.5 Cloud Collapse Versus Stellar Disruption -- 2.3.6 Cloud-Cloud Collisions -- 2.3.7 Physics of the ISM -- 2.3.8 Influence of the Spiral Arms?.
2.3.9 Galactic Influences on the SFR: A Tentative Summary -- 2.4 Starbursts and Peculiar Star Formation Regimes -- 3 Measuring Star Formation Rates -- 3.1 Proto-Stars, Young Stars and Stellar Remnants -- 3.2 Stellar Continuum -- 3.3 Recombination Emission Lines -- 3.3.1 Motivation and General Approach -- 3.3.2 Application to H alpha -- 3.3.3 Lyman alpha -- 3.4 The Role of Dust -- 3.4.1 Extinction Corrections from Recombination Lines -- 3.4.2 Extinction Corrections in the UV -- 3.4.3 Other Considerations on the Dust Attenuation -- 3.4.4 Far-Infrared Star Formation Rates -- 3.4.5 The Mixed Tracers -- 3.5 Other Spectral Diagnostics -- 3.5.1 [OII] 3,727aring Forbidden Line -- 3.5.2 [CII] 158 mu m Fine structure line -- 3.6 Radio Emission -- 3.7 X-Ray Luminosity -- 3.8 Additional Factors -- 3.8.1 The Effect of the Metallicity -- 3.8.2 Choice of the IMF -- 3.8.3 Effect of the Star Formation Micro-History -- 4 Star Formation Observed in Galaxies -- 4.1 Star Formation in the Local Galaxies -- 4.2 The Schmidt Laws -- 4.2.1 Preliminary Considerations: Many "Laws -- 4.2.2 Which Law Is Right? -- 4.2.3 Which Scale Is Right? -- 4.2.4 Schmidt Laws: Current Observational Status -- 4.2.5 Starbursts and the Schmidt Law -- 4.3 Observed Thresholds -- 4.4 Relations to the Stellar Content: The Specific Star Formation Rate -- 4.5 Star Formation History -- Acknowledgments -- References -- 4 The Cool ISM in Galaxies -- 1 Introduction -- 2 The Neutral Hydrogen (HI) in Galaxies -- 2.1 The HI Physics and Observables -- 2.2 The Distribution of HI in Galaxies -- 2.3 The Warm and Cold ISM in Galaxies -- 3 Star Formation and the ISM -- 4 Accretion, Feedback and the Environment -- References -- 5 The Influence of Environment on Galaxy Evolution -- 1 Introduction -- 2 Galaxy Populations in Groups and Clusters -- 3 Interaction Types -- 3.1 Gravitational Interactions.
3.2 Hydrodynamical Interactions -- 4 Simulations -- 4.1 Spherical Galaxies -- 4.2 Disk Galaxies -- 5 The Multiphase ISM -- 5.1 Atomic Hydrogen -- 5.2 Molecular Hydrogen -- 5.3 Dust and Metallicity -- 5.4 Cosmic Ray Gas -- 6 Star Formation -- 7 The Global Picture -- 8 Resolved Multiwavelength Interaction Diagnostics -- 8.1 Environmental Effects in Nearby Galaxy Groups -- 8.2 Environmental Effects in Nearby Galaxy Clusters -- 8.2.1 Early Type Galaxies -- 8.2.2 Late Type Galaxies -- Coma Cluster -- Norma Cluster -- Abell 1367 -- Virgo Cluster -- 8.2.3 Dwarf Galaxies -- 8.3 A Holistic View on Ram Pressure Stripping -- 8.3.1 The Response of the Multiphase ISM and Star Formation to Ram Pressure -- 9 The Detailed Picture -- 10 A Local View on the Butcher-Oemler Effect -- 11 Conclusions and Outlook -- Acknowledgments -- References -- 6 Clusters of Galaxies -- 1 Introduction -- 1.1 What Is a Cluster? -- 1.2 Historical Perspective -- 1.3 Overview -- 2 The Optical Properties of Clusters -- 2.1 The Density-Morphology Relation -- 2.2 The Color-Magnitude Relation -- 2.3 Spectroscopic Properties of Cluster Galaxies -- 2.4 The Fundamental Plane of Early-Type Galaxies -- 2.5 Galaxy Ecology -- 2.5.1 Galaxy Collisions -- 2.5.2 Dynamical Friction -- 2.5.3 Ram-Pressure Stripping -- 2.5.4 Strangulation -- 2.6 Evolution of Galaxy Clusters -- 2.6.1 Color Evolution -- 2.6.2 E+A Galaxies -- 2.6.3 Cluster Archaeology -- 2.6.4 The Luminosity Function -- 2.6.5 Morphology -- 2.6.6 Other Wavebands -- 2.7 The Relation of Clusters to Galaxy Groups -- 2.8 Intra-cluster Light -- 3 X-Ray Emission -- 3.1 The Physics of X-Ray Emission -- 3.1.1 Thermal Bremsstrahlung Emission -- 3.1.2 Bound-Bound Electron Transitions -- 3.1.3 Total Emissivity -- 3.2 The Baryon Content of Galaxy Clusters -- 3.2.1 Temperature and Density Profiles -- 3.2.2 The Entropy Distribution.
3.3 The Cooling Instability -- 3.3.1 Cooling Flows: Comparison to Observations -- 3.3.2 Resolution -- 3.4 The Sunyaev-Zeldovich Effect -- 4 Dark Matter -- 4.1 Galaxy Dynamics -- 4.2 Hydrostatic Equilibrium -- 4.3 Gravitational Lensing -- 4.4 Implications for Cosmology -- 5 The Formation of Clusters -- 6 Summary and the Future -- 6.1 Summary -- References -- 7 Active Galactic Nuclei -- 1 A Little History -- 2 Fundamental Properties of AGN -- 2.1 Overall Continuum Shape -- 2.2 Emission and Absorption Lines in the Optical - UV -- 2.3 Radio Emission and the Radio-Loud/Radio-Quiet Divide -- 2.3.1 Radio-Loud Versus Radio-Quiet: A True Bimodality? -- 2.3.2 Radio Morphology -- 2.4 Infrared Emission -- 2.5 X-Ray and Higher-Energy Emission -- 2.6 Variability -- 3 The Overall Structure: Unified Models -- 3.1 The Basic Scheme -- 3.2 Evidence for Type 1/Type 2 Unification -- 3.3 Blazars, Jets, and Unified Schemes for Radio-Loud AGN -- 4 Nuclear Black Holes and Accretion -- 4.1 Bondi Accretion -- 4.2 Disk Accretion -- 4.3 Disk Coronae and the 6.4keV Iron Line -- 5 Emission Line Regions -- 5.1 Reverberation Mapping -- 5.2 Physical Conditions in the BLR -- 5.3 Physical Conditions in the Narrow-Line Region -- 5.4 Photoionization -- 6 Nuclear Obscuration: Tori, Broad, and Narrow Absorption Lines -- 6.1 The Torus -- 6.2 Line Absorption -- 7 Jets and Lobes in Radio Loud AGN -- 7.1 Acceleration of Jets -- 7.2 Propagation and Dynamics of Jets at Larger Scales -- 7.3 Emission Mechanisms in Jets -- 8 Final Remarks -- References -- 8 The Large-Scale Structure of the Universe -- 1 Historical Background -- 2 The Two-Point Correlation Function -- 3 Angular Clustering -- 4 Real and Redshift Space Clustering -- 5 Galaxy Bias -- 6 The Dependence of Clustering on Galaxy Properties -- 6.1 Luminosity Dependence -- 6.2 Color and Spectral-Type Dependence.
6.3 Redshift Space Distortions.
Record Nr. UNINA-9910438113303321
Dordrecht : , : Springer Netherlands : , : Imprint : Springer, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Planets, Stars and Stellar Systems [[electronic resource] ] : Volume 1: Telescopes and Instrumentation / / edited by Ian S. McLean
Planets, Stars and Stellar Systems [[electronic resource] ] : Volume 1: Telescopes and Instrumentation / / edited by Ian S. McLean
Edizione [1st ed. 2013.]
Pubbl/distr/stampa Dordrecht : , : Springer Netherlands : , : Imprint : Springer, , 2013
Descrizione fisica 1 online resource (111 illus. in color. eReference.)
Disciplina 520
Collana Springer reference
Soggetto topico Observations, Astronomical
Astronomy—Observations
Space sciences
Astronomy, Observations and Techniques
Space Sciences (including Extraterrestrial Physics, Space Exploration and Astronautics)
ISBN 94-007-5621-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910438120203321
Dordrecht : , : Springer Netherlands : , : Imprint : Springer, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Planets, Stars and Stellar Systems [[electronic resource] ] : Volume 3: Solar and Stellar Planetary Systems / / edited by Linda M. French, Paul Kalas
Planets, Stars and Stellar Systems [[electronic resource] ] : Volume 3: Solar and Stellar Planetary Systems / / edited by Linda M. French, Paul Kalas
Edizione [1st ed. 2013.]
Pubbl/distr/stampa Dordrecht : , : Springer Netherlands : , : Imprint : Springer, , 2013
Descrizione fisica 1 online resource (238 illus., 132 illus. in color. eReference.)
Disciplina 523.01
Soggetto topico Astrophysics
Planetology
Astrobiology
Observations, Astronomical
Astronomy—Observations
Astrophysics and Astroparticles
Astronomy, Observations and Techniques
ISBN 94-007-5606-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Planets, Stars and Stellar Systems -- Series Preface -- Preface to Volume 3 -- Editor-in-Chief -- Volume Editors -- Table of Contents -- List of Contributors -- 1 FromDisks to Planets -- 1 Introduction -- 2 Observational Constraints on Planet Formation Theories -- 2.1 Lessons from the Solar System -- 2.1.1 The Solar Nebula -- 2.1.2 Isotopic Timescales -- 2.1.3 Water -- 2.2 Disks Surrounding the Youngest Stars -- 2.3 The Exoplanet Revolution -- 3 Disk Properties and Evolution -- 3.1 Basic Disk Dynamics -- 3.2 Transport Mechanisms and the Disk Model -- 3.3 Viscously Heated Disks -- 3.4 Steady Irradiated Disks -- 3.5 Time Dependence -- 3.6 Disk Instabilities and Fragmentation -- 4 From Dust to Planetesimals -- 4.1 The ``Meter-Sized'' Barrier -- 4.1.1 Radial Drift and the Basics of Disk Aerodynamics -- 4.1.2 Early Collisional Growth -- 4.2 Gravitational Collapse of Solids into Planetesimals -- 4.3 Aerodynamic Particle Concentration -- 4.4 Observational Constraints on Planetesimal Formation -- 5 Planetesimals to Planets -- 5.1 Growth of Solid Protoplanets -- 5.1.1 Basic Length and Velocity Scales -- 5.1.2 Gravitationally Focused Collisions -- 5.1.3 Planetesimal Velocity Evolution -- 5.1.4 Fragmentation -- 5.1.5 Planetesimal Accretion with Gas Damping -- 5.1.6 Numerical Simulations of Low-Mass Planet Formation -- 5.2 Accretion of Atmospheres -- 5.2.1 Static Protoplanet Atmospheres -- 5.2.2 Enhanced Planetesimal Accretion -- 5.2.3 The Core Accretion Instability -- 5.2.4 Direct Accretion of Disk Gas (and How it Stops) -- 5.2.5 Numerical Simulations of Gas Giant Planet Formation -- 5.3 Direct Formation of Brown Dwarfs and Gas Giants -- 6 Summary -- Acknowledgments -- References -- 2 Dynamical Evolution ofPlanetary Systems -- 1 Introduction -- 2 The Gas-Disk Era -- 2.1 The Formation of the Giant Planets.
2.2 Once Giant Planets are Formed: Type IIMigration and ItsConsequences -- 2.3 Planet-Planet Scattering as the Dominant Orbital ExcitationProcess -- 2.4 A Plausible Evolution of the Four Giant Planets of the SolarSystem -- 3 The Planetesimal-Disk Era -- 3.1 Brief Tutorial of Planetesimal-DrivenMigration -- 3.2 Multi-resonant Planet Configurations and PlanetesimalScattering: The Solar System Case -- 3.3 The Late Heavy Bombardment as a Smoking Gun for a LateInstability of the Giant Planets -- 3.4 The Solar SystemDebris Disk: Are LHBs Common? -- 4 Terrestrial Planets -- 4.1 Linking Giant PlanetMigration to Terrestrial Planet Accretion:The Grand Tack Scenario -- 4.2 Terrestrial Planets in Extrasolar Systems -- 4.3 Terrestrial-Planets Evolution During Giant Planets Instabilities -- 5 Conclusions -- Acknowledgments -- References -- 3 Terrestrial Planets -- 1 Introduction -- 2 Earth -- 3 Venus -- 4 Mars -- 5 Mercury -- 6 Moon -- 7 Summary -- References -- 4 Gas and Ice Giant Interiors -- 1 Introduction -- 2 What Are These Planets Made Of? -- 3 What Kinds of Materials Exist in Planets? -- 4 What Are the Temperatures in Planets? -- 5 How Does One Explain the Heat Flows? -- 5.1 Radioactivity -- 5.2 Secular Cooling -- 5.3 Differentiation -- 6 The Gravity Field -- 7 Magnetic Fields -- 8 Detailed Models -- 9 The Challenges -- References -- 5 Atmospheres of JovianPlanets -- 1 Introduction -- 2 Atmospheric Composition and Structure -- 2.1 Cloud Locations -- 2.1.1 Limitations of Remote Sensing -- 2.2 In Situ Measurements -- 3 Atmospheric Dynamics -- 3.1 Winds -- 3.1.1 Observational Evidence for Seasonal Changes on Uranus and Neptune -- 3.2 Storm Features -- 3.2.1 Jupiter -- 3.2.2 Saturn -- 3.2.3 Uranus and Neptune -- 4 Atmospheric Chemistry -- 4.1 Energy Balance -- 4.2 Case Study: Shoemaker-Levy 9 Impacts on Jupiter -- 5 Future Directions -- 5.1 Unanswered Questions.
5.2 Future Missions to the Outer Solar System -- 5.3 Links to Exoplanets -- Acknowledgments -- References -- 6 Planetary Magnetospheres -- 1 Introduction -- 2 Magnetospheric Principles -- 2.1 Planetary Magnetic Fields -- 2.2 Scales of Planetary Magnetospheres -- 2.3 Plasma Sources -- 2.4 Plasma Dynamics -- 2.4.1 Energetic Particles and Radiation Belts -- 2.4.2 Rotational Flows -- 2.4.3 Global Solar-Wind-Driven Convection -- 2.4.4 Plasmoid Ejection -- 3 Magnetospheres of the Outer Planets -- 3.1 Jupiter -- 3.2 Saturn -- 3.3 Uranus and Neptune -- 4 Small Magnetospheres -- 4.1 Mercury -- 4.2 Ganymede -- 5 Induced Magnetospheres -- 5.1 Venus -- 5.2 Mars -- 5.3 Titan -- 5.4 Io -- 5.5 Pluto and Comets -- 6 Outstanding Questions -- References -- 7 Planetary Rings -- 1 Introduction -- 1.1 Orbital Elements -- 1.2 Roche Limits, Roche Lobes, and Roche Critical Densities -- 1.3 Optical Depth -- 2 Rings by Planetary System -- 2.1 The Rings of Jupiter -- 2.2 The Rings of Saturn -- 2.3 The Rings of Uranus -- 2.4 The Rings of Neptune -- 2.5 Unconfirmed Ring Systems -- 2.5.1 Mars -- 2.5.2 Pluto -- 2.5.3 Rhea and Other Moons -- 2.5.4 Exoplanets -- 3 Rings by Type -- 3.1 Dense Broad Disks -- 3.1.1 Spiral Waves -- 3.1.2 Gap Edges and Moonlet Wakes -- 3.1.3 Radial Structure -- 3.1.4 Self-Gravity Wakes -- 3.1.5 Propellers -- 3.1.6 Spokes and Impacts -- 3.2 Dense Narrow Rings -- 3.3 Narrow Dusty Rings -- 3.4 Diffuse Dusty Rings -- 3.5 Ring Arcs and Azimuthal Clumps -- 3.5.1 Neptune's Adams Ring -- 3.5.2 Jupiter's Main Ring and Other Azimuthal Clumps -- 3.5.3 Saturn's G Ring and Other Moon-Embedded Arcs -- 3.6 Rings as Detectors -- 4 Experimental Rings Science -- 4.1 Numerical Simulations -- 4.2 Physical Experiments and the Coefficient of Restitution -- 4.3 Spectroscopic Ground Truth -- 5 Age and Origin of Ring Systems -- 6 Rings and Other Disks -- Acknowledgments.
References -- 8 An Overviewof theAsteroids andMeteorites -- 1 Introduction -- 2 Dynamics of Asteroids -- 2.1 Gravitational and Nongravitational Forces -- 2.2 Orbital Stability and Lifetime of NEOs -- 2.3 Collisional Evolution and Families -- 2.4 Binary and Multiple Objects -- 2.5 The NEO Hazard -- 2.6 The Nice Model -- 3 Geology and Surfaces of Asteroids -- 3.1 Cratering -- 3.2 Regolith -- 3.3 Processes -- 3.4 Regolith Movement and Mass Wasting -- 3.5 Outgassing -- 3.6 Cohesive Forces -- 4 Asteroidal Interiors and Geophysics -- 4.1 Asteroid Sizes and Densities -- 4.2 Monoliths and Rubble Piles -- 4.3 Rotation Rates and Interior Structure -- 4.4 Strength -- 4.5 Meteoritical Data -- 5 Asteroid and Meteorite Compositions -- 5.1 Isotopic Studies -- 5.2 Asteroidal Compositions from Remote Sensing -- 5.3 Compositions of Specific Objects and Classes: Current Interpretations -- References -- 9 Dusty Planetary Systems -- 1 Part I: Solar and Extrasolar Debris Disks -- 1.1 Debris Disks Are Evidence of the Presence of Extrasolar Planetesimals -- 1.2 The Solar System Debris Disk -- 1.2.1 Debris Dust in the Inner Solar System -- Zodiacal Dust -- Dust Particles Falling on Earth -- In Situ Dust Detections in the Inner Solar System -- 1.2.2 Debris Dust in the Outer Solar System -- 1.2.3 Evolution of the Dust Production Rate in the Solar System -- 1.3 Extrasolar Debris Disks -- 1.3.1 Debris Disk Frequency -- 1.3.2 Debris Disk Evolution -- 1.3.3 Debris Disk Structure and Inferred Planetesimal Location -- Inner Gaps -- Degeneracy of the SED Analysis -- Other Structural Features Revealed by Spatially Resolved Observations -- Debris Disk Structure Can Unveil the Presence of Planets -- 1.3.4 Planet-Debris Disk Relation -- 1.3.5 Debris Disk Composition -- 1.4 Future Prospects in Debris Disks Studies -- 2 Part II: Physical Processes Acting on Dust.
2.1 Radiation and Stellar Wind Forces -- 2.1.1 Radiation Pressure -- 2.1.2 Poynting-Robertson Drag -- 2.1.3 Stellar Wind Forces -- 2.1.4 Effect of Radiation Forces on the Dust Dynamics -- 2.1.5 Effect of Radiation Forces on the Dust Spatial Distribution -- 2.2 Gravitational Forces in the Presence of Planets -- 2.2.1 Resonant Perturbations -- 2.2.2 Gravitational Scattering -- 2.2.3 Secular Perturbations -- 2.2.4 Effect of Gravitational Forces on the Dust Spatial Distribution -- Resonant Perturbations -- Gravitational Scattering -- Secular Perturbations -- Debris Disk Structure Can Unveil the Presence of Planets -- 2.3 Collisions -- 2.3.1 Collisional Lifetimes -- 2.3.2 Effect of Collisions on the Dust Size Distribution -- 2.3.3 Effect of Collisions on the Dust Spatial Distribution -- 2.3.4 Effect of Collisions on the Dust Disk Evolution -- 2.4 Other Physical Processes -- 2.4.1 Dust Sublimation -- 2.4.2 Lorentz Force -- 2.4.3 Sputtering -- 2.5 Open Questions -- References -- 10 Exoplanet DetectionMethods -- 1 Basic Principles of Planet Detection -- 1.1 Spectroscopic Binaries and Orbital Elements -- 1.2 Radial Velocities -- 1.3 Astrometry -- 1.4 Imaging -- 1.5 Transits -- 1.6 Gravitational Microlensing -- 1.7 Timing -- 2 The Magnitude of the Problem -- 2.1 Radial Velocities -- 2.2 Astrometry -- 2.3 Imaging -- 2.4 Transits -- 2.5 Microlensing -- 2.6 Timing -- 3 Comparisons of the Methods -- 3.1 Sensitivities of the Methods -- 3.2 Habitable Planets -- 4 Early Milestones in the Detection of Exoplanets -- 4.1 Van de Kamp and Barnard's Star -- 4.2 PSR 1257+12 and the Pulsar Planets -- 4.3 Early Radial Velocity Work -- 4.3.1 Campbell and Walker's Survey and gamma Cep Ab -- 4.3.2 Latham's Survey and HD 114762 b -- 4.3.3 Marcy and Butler's Iodine Survey -- 4.3.4 Hatzes and Cochran's Survey and beta Gem b -- 4.3.5 Mayor and Queloz and 51 Pegasi b.
4.4 The First Planetary Transit: HD 209458b.
Record Nr. UNINA-9910438113103321
Dordrecht : , : Springer Netherlands : , : Imprint : Springer, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Planets, Stars and Stellar Systems [[electronic resource] ] : Volume 4: Stellar Structure and Evolution / / edited by Martin A. Barstow
Planets, Stars and Stellar Systems [[electronic resource] ] : Volume 4: Stellar Structure and Evolution / / edited by Martin A. Barstow
Edizione [1st ed. 2013.]
Pubbl/distr/stampa Dordrecht : , : Springer Netherlands : , : Imprint : Springer, , 2013
Descrizione fisica 1 online resource (315 illus., 143 illus. in color. eReference.)
Disciplina 523.01
Soggetto topico Astrophysics
Observations, Astronomical
Astronomy—Observations
Space sciences
Astrophysics and Astroparticles
Astronomy, Observations and Techniques
Space Sciences (including Extraterrestrial Physics, Space Exploration and Astronautics)
ISBN 94-007-5615-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Planets, Stars and Stellar Systems -- Stellar Structure and Evolution -- Series Preface -- Preface to Volume 4 -- Editor-in-Chief -- Volume Editor -- Table of Contents -- List of Contributors -- 1 Stellar Structure -- 1 Introduction -- 2 Hydrostatic Equilibrium -- 3 Energy Conservation -- 4 Energy Transport -- 4.1 Radiative Transport -- 4.2 Conductive Transport -- 4.3 Convective Transport -- 5 The Virial Theorem -- 6 Physical Inputs -- 6.1 Equation of State -- 6.1.1 Ions -- 6.1.2 Electrons -- 6.1.3 Nonideal Effects -- 6.2 Nuclear Reactions -- 6.2.1 General Concepts -- 6.2.2 Thermonuclear Reaction Rates -- 6.2.3 Electron Screening -- 6.2.4 Nuclear Networks -- 6.2.5 Hydrogen Burning Reactions -- 6.2.6 Helium Burning Reactions -- 6.2.7 Carbon Burning Reactions -- 6.2.8 Other Nuclear Reactions of Interest -- 6.3 Opacities and Conductivities -- 6.3.1 Radiative Opacities -- 6.3.2 Conduction -- 6.4 Neutrino Losses -- 7 Other Physical Processes -- 8 Boundary Conditions and Stellar Atmospheres -- 9 Numerical Techniques: Modern Implementations -- 10 State-of-the-Art Modeling -- 11 Summary -- Acknowledgments -- References -- 2 Stellar Atmospheres -- 1 Introduction -- 2 Basic Physics of Stellar Atmospheres -- 2.1 Overview of Basic Equilibrium Conditions: Atmospheric Layers -- 2.2 Interaction of Radiation with Matter -- 2.3 LTE Versus Non-LTE -- 3 Model Atmospheres -- 3.1 Hierarchy of Approximations -- 3.1.1 Approximations of the Geometry -- 3.1.2 Approximations of the Presence of External Forces -- 3.1.3 Approximations of the Dynamical State of the Atmosphere -- 3.1.4 Approximations of the Opacity Sources -- 3.1.5 Approximations Concerning the Thermodynamic Equilibria -- 3.2 Basic Equations of Classical Stellar Atmospheres -- 3.2.1 Radiative Transfer Equation -- 3.2.2 Hydrostatic Equilibrium Equation -- 3.2.3 Radiative Equilibrium Equation.
3.2.4 Statistical Equilibrium Equations -- 3.2.5 Charge Conservation Equation -- 3.3 Numerical Methods -- 3.3.1 Complete Linearization -- 3.3.2 Accelerated Lambda Iteration -- 3.3.3 Hybrid CL/ALI Method -- 3.4 Available Modeling Codes -- 3.5 Existing Model Atmosphere Grids -- 3.5.1 LTE Models -- 3.5.2 NLTE Models -- 4 Using Model Stellar Atmospheres to Determine the Fundamental Stellar Parameters -- 5 Summary and Outlook -- References -- 3 The Sun as a Star -- 1 Introduction -- 2 Historic Perspective -- 3 Observing the Solar Atmosphere from Space -- 3.1 Early Space Missions -- 3.2 Yohkoh -- 3.3 Ulysses -- 3.4 The Solar and Heliospheric Observatory - SoHO -- 3.5 Transition Region and Coronal Explorer (TRACE) -- 3.6 Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) -- 3.7 CORONAS Missions -- 3.8 Hinode -- 3.9 STEREO -- 3.10 Solar Dynamics Observatory (SDO) -- 3.11 Imaging Versus Spectroscopic Instruments -- 4 The Lower Solar Atmosphere -- 4.1 The Photosphere and the Sun's Magnetic Field -- 4.2 The Chromosphere -- 4.3 The Transition Region -- 5 The Interior of the Sun -- 5.1 The Standard Model and the Solar Neutrinos -- 5.2 Solar Oscillations -- 5.3 Some Results from Helioseismology Inversions -- 5.4 Abundances and Helioseismic Models -- 5.5 Local Helioseismology -- 5.6 The Solar Dynamo -- 6 Radiation from the Solar Corona: Atomic Processes and Plasma Diagnostics -- 6.1 Line Flux and Intensity -- 6.2 Differential Emission Measure and Emission Measure -- 6.3 Atomic Processes Affecting the Ion Excitation -- 6.4 Atomic Processes Affecting the Ion State -- 6.5 Coronal Model Approximation: Two-Level Ion -- 6.6 Emission Measure Approximations -- 6.7 A Word of Warning: Problems with Emission Measures -- 6.8 Electron Density Determination -- 6.9 Spectroscopic Filling Factors -- 6.10 Electron Temperature Determination -- 6.11 Continuum.
6.12 Line Widths, Ion Temperatures, and Doppler Motions -- 6.13 The CHIANTI Atomic Package -- 6.14 Benchmarking the Atomic Data -- 7 Chemical Abundances -- 7.1 Photospheric Abundances -- 7.2 Coronal Abundances -- 7.3 Abundances from In Situ Measurements -- 7.4 Depletion, Enhancement or Both? -- 7.5 Helium, Neon, and Argon -- 7.6 Modeling -- 7.7 Stellar and Galactic Abundances -- 8 The Solar Corona -- 8.1 Solar Features as Seen in X-rays and EUV -- 8.2 Solar Active Regions -- 8.2.1 Active Regions Observed with SoHO CDS -- 8.2.2 Active Regions Observed with Hinode EIS -- 8.3 Coronal Heating -- 8.3.1 Coronal Heating in Loops -- 8.3.2 Hydrostatic Models and the RTV Scaling Laws -- 8.3.3 Hydrodynamic Models of Active Region Loops -- 8.3.4 Microflares and Nanoflares -- 9 Solar Flares and Coronal Mass Ejections -- 9.1 Solar Flares -- 9.2 Coronal Mass Ejections (CMEs) -- 9.3 Theoretical Concepts of CME Initiation -- 9.4 Flares on Other Stars -- 10 Solar Wind -- 10.1 The Heliosphere -- 10.2 Physical Characteristics of the Solar Wind and Models -- 10.3 The Sources of the Solar Wind -- 10.4 Ulysses -- 11 Solar Irradiance -- 11.1 Introduction -- 11.2 Total Solar Irradiance, TSI, and Surface Temperature -- 11.3 Irradiance in the UV -- 11.3.1 Irradiance in the EUV and X-rays -- 12 Future Prospects -- 12.1 Solar Orbiter -- 12.2 Solar Probe+ -- References -- 4 Asteroseismology -- 1 Introduction: Variable and Pulsating Stars -- 2 Astrophysical Background -- 2.1 Driving Mechanisms -- 2.2 Asteroseismology -- 3 From the Telescope to a Seismic Model -- 3.1 Basic Methods for Analyzing Asteroseismic Data -- 3.2 Methods for Mode Identification -- 3.3 Asteroseismic Modeling -- 4 Applications -- 4.1 Pulsating White and Pre-white Dwarf Stars -- 4.2 Delta Scuti Stars -- 4.3 Slowly Pulsating B and Gamma Doradus Stars -- 4.4 Beta Cephei Stars -- 4.5 Pulsating Subdwarf Stars.
4.6 Rapidly Oscillating Ap Stars -- 4.7 Solar-Like Oscillators -- 4.8 Hybrid Pulsators -- 4.9 Pulsation in Eclipsing Binaries and Open Clusters -- 4.10 A New Era in Precision -- 4.11 Prospects and Problems -- Acknowledgments -- References -- 5 Star Formation -- 1 Introduction -- 1.1 The Basic Model of Star Formation -- 1.2 What Is a Star? -- 1.3 Open Questions -- 2 From Gas to Stars -- 2.1 Star Forming Regions -- 2.2 Molecular Clouds -- 2.2.1 Observations of MCs -- 2.2.2 Molecular Tracers -- 2.2.3 Dust as a Tracer -- 2.2.4 The Appearance of Star Forming Regions -- 2.2.5 The Structure and Kinematics of MCs -- 2.2.6 The Formation of Cores in Molecular Clouds -- 2.2.7 The Formation of Molecular Clouds -- 2.3 Low-Mass Star Formation -- 2.3.1 The Physics of Core Collapse -- 2.3.2 The Stages of Star Formation -- 2.3.3 Different Types of Young Stars -- 2.4 The Initial Mass Function -- 2.4.1 The Origin of the IMF -- 2.4.2 The IMF from Cores -- 2.4.3 Competitive Accretion -- 2.4.4 The CMF Verus Competitive Accretion -- 2.5 The Formation of Massive Stars -- 2.6 The Formation of Brown Dwarfs -- 2.7 Star Formation Efficiency -- 3 Multiple Stars, Star Clusters, and the End of Star Formation -- 3.1 Binary and Multiple Systems -- 3.1.1 Binary Formation -- 3.1.2 Binary Destruction -- 3.2 Binaries or Singles? -- 3.3 Star Clusters -- 3.4 The End of Star Formation -- 3.4.1 Gas Expulsion -- 3.4.2 Dynamical Evolution -- 3.5 Is Star Formation Universal? -- 4 Conclusions -- References -- 6 Young Stellar Objects and Protostellar Disks -- 1 Introduction -- 2 PMS Evolution: The Star -- 3 PMS Evolution: The Disk -- 3.1 Morphology of Protostellar Disks -- 3.1.1 The Inner Cavity Filled in with Hot Gas -- 3.1.2 Disks Are Flared -- 3.1.3 Dusty Atmospheres and Warps -- 3.2 Disk Mass -- 3.3 Composition of Protostellar Disks -- 3.3.1 Dust -- 3.3.2 Molecular Gas.
3.3.3 Disk Chemistry -- 3.4 Disk Formation -- 3.5 Protostellar Disks and the -Prescription Paradigm -- 3.5.1 The alpha-Prescription and Angular Momentum Transport by Gravitational Waves -- 3.6 Disk Structure: The Effect of Stellar Irradiation -- 3.6.1 YSOs' X-ray and UV Radiation Field -- 3.6.2 The Vertical Structure of Disks -- 3.7 Disk Stability -- 3.8 Disk Evolution -- 4 PMS Evolution: The Outflow -- 4.1 First Steps to a Mechanism for Outflow Generation: Disk Winds -- 4.2 The Star-Disk Interface: The Jet Engine -- 4.3 The Stellar Magnetosphere -- 4.3.1 Accretion Shocks and Funnels -- 4.3.2 General Magnetospheric Properties -- 5 Some Final Thoughts and Conclusions -- Acknowledgments -- Appendix A: The Gould's Belt -- References -- 7 Brown Dwarfs -- 1 Introduction -- 2 Formation and Evolution -- 2.1 The Hydrogen-Burning Mass Limit -- 2.2 Formation Mechanisms -- 2.3 Brown Dwarf Evolution -- 2.4 Brown Dwarfs and the Mass Function -- 3 Observational Properties of Brown Dwarfs -- 3.1 Spectroscopic Properties -- 3.2 Photometric Properties -- 3.3 Observations of Young Brown Dwarfs -- 3.4 Lithium Absorption and Other Mass-Dependent Spectroscopic Phenomena -- 3.5 Metallicity and Ultracool Subdwarfs -- 3.6 Brown Dwarf Kinematics and Brown Dwarf Rotation -- 3.7 Chromospheric and Coronal Activity in Brown Dwarfs -- 4 Brown Dwarf Atmospheres -- 4.1 Atmosphere Structure -- 4.2 Dust and Clouds in Brown Dwarf Atmospheres -- 4.3 Y Dwarfs -- 5 Brown Dwarfs as Companions -- 5.1 Brown Dwarf Companions to Main-Sequence Stars -- 5.2 Brown Dwarf Binaries -- 5.3 Ultracool Binaries in Context -- 6 Summary and Conclusions -- 7 Further Reading -- Acknowledgments -- References -- 8 Evolution of Solar andIntermediate-Mass Stars -- 1 Introduction -- 2 The Physics for Stellar Evolution -- 3 The Evolution of a 3 M Star -- 3.1 Pre-main Sequence to the End of He-Core Burning.
3.2 Asymptotic Giant Branch Evolution.
Record Nr. UNINA-9910438119603321
Dordrecht : , : Springer Netherlands : , : Imprint : Springer, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Planets, Stars and Stellar Systems [[electronic resource] ] : Volume 5: Galactic Structure and Stellar Populations / / edited by Gerard Gilmore
Planets, Stars and Stellar Systems [[electronic resource] ] : Volume 5: Galactic Structure and Stellar Populations / / edited by Gerard Gilmore
Edizione [1st ed. 2013.]
Pubbl/distr/stampa Dordrecht : , : Springer Netherlands : , : Imprint : Springer, , 2013
Descrizione fisica 1 online resource (452 illus., 231 illus. in color. eReference.)
Disciplina 523.112
Collana Springer reference
Soggetto topico Astrophysics
Observations, Astronomical
Astronomy—Observations
Space sciences
Astrobiology
Astrophysics and Astroparticles
Astronomy, Observations and Techniques
Space Sciences (including Extraterrestrial Physics, Space Exploration and Astronautics)
ISBN 94-007-5612-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Planets, Stars and Stellar Systems -- Galactic Structure and Stellar Populations -- Series Preface -- Preface to Volume 5 -- Editor-in-Chief -- Volume Editor -- Table of Contents -- List of Contributors -- 1 Stellar Populations -- 1 Introduction: Definitions of Populations I and II -- 2 Early Understanding of Populations I and II -- 3 Some Complexities: What Is Population II? -- 3.1 Thick Disks -- 3.2 Bulges -- 3.2.1 Milky Way Galaxy -- 3.2.2 M31 -- 3.3 Stellar Halo -- 3.3.1 Field Stars -- 3.4 Satellite Galaxies -- 3.4.1 Globular Clusters -- 4 Cosmological Implications of the Properties of (Galactic) Stellar Populations -- Acknowledgments -- Cross-References -- References -- 2 Chemical Abundances as Population Tracers -- 1 Introduction -- 2 Determination of Stellar Abundance Ratios -- 2.1 Observation and Reduction of Stellar Spectra -- 2.2 Model Atmospheres -- 2.3 Abundance Analysis -- 2.4 Determination of Atmospheric Parameters for F, G, and K Stars -- 2.5 Diffusion and Dust-Gas Separation of Elements -- 3 Elements Used as Stellar Population Tracers -- 3.1 Carbon and Oxygen -- 3.2 Intermediate-Mass Elements -- 3.3 The Iron-Peak Elements -- 3.4 The Neutron Capture Elements -- 4 The Galactic Disk -- 4.1 The Thick and The Thin Disk -- 4.2 The [/Fe] Distribution of Disk Stars -- 4.3 Abundance Gradients in the Disk -- 5 The Galactic Bulge -- 6 The Galactic Halo -- 6.1 Evidence of Two Distinct Halo Populations -- 6.2 Kinematics and Origin of the Two Halo Populations -- 6.3 Globular Clusters and Dwarf Galaxies -- 7 Conclusions -- Cross-References -- References -- 3 Metal-Poor Stars and the Chemical Enrichment of the Universe -- 1 Introduction -- 1.1 The Role of Metal-Poor Stars -- 1.2 Background Matters -- 1.2.1 Essential Reading -- 1.2.2 Abundance Definitions -- 1.2.3 Nomenclature -- 1.3 Plan of Attack.
2 Discovery: The Search for Needles in the Haystack -- 2.1 Historical Perspective -- 2.2 Search Techniques -- 2.3 High-Resolution and High S/N Follow-Up Spectroscopy -- 2.4 Census of the Most Metal-Poor Stars -- 2.5 The Lowest Observable Metallicity -- 3 Derived Chemical Abundances -- 3.1 Abundance Determination -- 3.1.1 One-Dimensional Model Atmosphere Analyses -- 3.1.2 Three-Dimensional Model Atmospheres -- 3.1.3 Departures from Thermodynamic Equilibrium (Non-LTE) -- 3.1.4 Caveat Emptor -- 3.1.5 Post-Astration Abundance Modification -- 3.2 Abundance Patterns -- 3.2.1 Metallicity Distribution Functions (MDF) -- The Galactic Globular Cluster System -- Field Stars -- Dwarf Spheroidal Galaxies (dSph) -- 3.2.2 Relative Abundances -- 4 The Chemical Evolution of the Universe -- 4.1 Relics of the Big Bang -- 4.1.1 Helium -- 4.1.2 Lithium -- 4.2 The Milky Way Halo -- 4.2.1 The Evolution of Carbon Through Zinc -- Carbon, Nitrogen, and Oxygen -- -Elements -- Iron-Peak Elements -- 4.2.2 The Evolution of Neutron-Capture Elements -- s-process -- r-process -- 4.3 The Milky Way Globular Clusters and Dwarf Galaxies -- 4.3.1 Globular Clusters -- 4.3.2 Dwarf Galaxies -- 5 Cosmo-Chronometry -- 5.1 Nucleo-chronometry of Metal-Poor Field Stars -- 6 Cosmogony -- 6.1 The Early Universe -- 6.2 The Milky Way -- 7 Conclusions and Future Prospects -- Acknowledgements -- Cross-References -- References -- 4 The Stellar and Sub-Stellar Initial Mass Function of Simple and Composite Populations -- 1 Introduction and Historical Overview -- 1.1 Solar Neighborhood -- 1.2 Star Clusters -- 1.3 Intermediate-Mass and Massive Stars -- 1.4 The Invariant IMF and Its Conflict with Theory -- 1.5 Philosophical Note -- 1.6 Hypothesis Testing -- 1.7 About This Text -- 1.8 Other IMF Reviews -- 2 Some Essentials -- 2.1 Unavoidable Biases Affecting IMF Studies.
2.2 Discretizing an IMF: Optimal Sampling and the mmax-Mecl Relation -- 2.3 Discretizing an IMF: Random Sampling and the Mass-Generating Function -- 2.4 A Practical Numerical Formulation of the IMF -- 2.5 Statistical Treatment of the Data -- 2.6 Binary Systems -- 3 The Maximum Stellar Mass -- 3.1 On the Existence of a Maximum Stellar Mass -- 3.2 The Upper Physical Stellar Mass Limit -- 3.3 The Maximal Stellar Mass in a Cluster, Optimal Sampling and Saturated Populations -- 3.3.1 Theory -- 3.3.2 Observational data -- 3.3.3 Interpretation -- 3.3.4 Stochastic or Regulated Star Formation? -- 3.3.5 A Historical Note -- 3.4 Caveats -- 4 The Isolated Formation of Massive Stars -- 5 The IMF of Massive Stars -- 6 The IMF of Intermediate-Mass Stars -- 7 The IMF of Low-Mass Stars (LMSs) -- 7.1 Galactic-Field Stars and the Stellar Luminosity Function -- 7.2 The Stellar Mass-Luminosity Relation -- 7.3 Unresolved Binary Stars and the Solar-Neighborhood IMF -- 7.4 Star Clusters -- 8 The IMF of Very Low-Mass Stars (VLMSs) and of Brown Dwarfs (BDs) -- 8.1 BD and VLMS Binaries -- 8.2 The Number of BDs per Star and BD Universality -- 8.3 BD Flavors -- 8.4 The Origin of BDs and Their IMF -- 9 The Shape of the IMF from Resolved Stellar Populations -- 9.1 The Canonical, Standard or Average IMF -- 9.2 The IMF of Systems and of Primaries -- 9.3 The Galactic-Field IMF -- 9.4 The Alpha Plot -- 9.5 The Distribution of Data Points in the Alpha-Plot -- 10 Comparisons and Some Numbers -- 10.1 The Solar-Neighborhood Mass Density and Some Other Numbers -- 10.2 Other IMF Forms and Cumulative Functions -- 11 The Origin of the IMF -- 11.1 Theoretical Notions -- 11.2 The IMF from the Cloud-Core Mass Function? -- 12 Variation of the IMF -- 12.1 Trivial IMF Variation Through the mmax-Mecl Relation -- 12.2 Variation with Metallicity -- 12.3 Cosmological Evidence for IMF Variation.
12.4 Top-Heavy IMF in Starbursting Gas -- 12.5 Top-Heavy IMF in the Galactic Center -- 12.6 Top-Heavy IMF in Some Star-Burst Clusters -- 12.7 Top-Heavy IMF in Some Globular Clusters (GCs) -- 12.8 Top-Heavy IMF in UCDs -- 12.9 The Current State of Affairs Concerning IMF Variation with Density and Metallicity and Concerning Theory -- 13 Composite Stellar Populations: The IGIMF -- 13.1 IGIMF Basics -- 13.2 IGIMF Applications, Predictions and Observational Verification -- 14 The Universal Mass Function -- 15 Concluding Comments -- Acknowledgments -- Cross-References -- References -- 5 The Galactic Nucleus -- 1 Introduction -- 2 Radio Morphology of the Galactic Nucleus -- 3 X-ray Morphology of the Central Region -- 4 The Supermassive Black Hole -- 5 The Central Star Cluster -- 6 The Environment Surrounding Sagittarius A -- 7 Strong Field Physics -- Cross-References -- References -- 6 The Galactic Bulge -- 1 Introduction -- 1.1 Overview, Scope, and Definition -- 1.2 A Brief History -- 2 The Age and Population of the Galactic Bulge -- 2.1 Evidence for Minority Populations of Intermediate and Younger Age -- 2.2 Microlensed Dwarfs: A Young, Metal-Rich Population? -- 2.3 The Luminosity Function -- 2.4 Globular Clusters -- 3 Composition -- 3.1 Optical Spectroscopy -- 3.2 Infrared Spectroscopy -- 3.3 Composition and Comparison with Other Populations -- 3.4 Na and Al -- 3.5 Heavy Elements -- 4 Kinematics -- 4.1 Stellar Radial Velocity Surveys -- 4.2 Proper-Motion Studies -- 5 Kinematics and Composition -- 5.1 Are There Subcomponents in the Bulge Abundance Distribution? -- 6 Structure -- 6.1 The X-Shaped Bulge -- 6.2 A Classical Bulge? -- 7 The Milky Way Bulge in an Extragalactic Context -- 8 Theories for the Formation of the Bulge -- 9 Future Surveys -- 9.1 Ground-Based Imaging Surveys -- 9.2 Spectroscopic Surveys -- 9.3 Radio Surveys -- 9.4 Space-Based Surveys.
10 Observational Challenges for the Future -- Cross-References -- References -- 7 Open Clusters and Their Role in the Galaxy -- 1 Introduction and Overview -- 1.1 Surveys and Catalogs -- 2 Open Clusters as Stellar Laboratories -- 2.1 Color-Magnitude Diagrams -- 2.2 Structural Properties and Dynamical Evolution -- 2.2.1 Structural Properties and Masses -- 2.2.2 Cluster Dynamical Evolution -- 2.3 Cluster Mass Functions -- 2.4 Stellar Evolution and Star Clusters -- 2.4.1 Convective Overshooting -- 2.4.2 White Dwarfs and the Initial-Final Mass Function -- 2.4.3 Binary Stars and Blue Stragglers -- 2.4.4 Stellar Nucleosynthesis and Evolution -- 3 Open Clusters as Galactic Tracers -- 3.1 Spatial Distribution of Clusters -- 3.2 Cluster Physical Parameters -- 3.3 Spiral Arms -- 3.4 Longevity of Open Clusters -- 3.5 The Oldest Open Clusters -- 4 Galactic Chemical Evolution -- 4.1 Disk Abundance Gradients -- 4.2 Evolution of the Abundance Gradient with Age -- 4.3 Elemental Abundance Ratios -- 4.4 Age-Metallicity Relationship -- 4.5 Comparison to the Disk Field Populations -- 4.6 Comparison to Theoretical Models -- 5 Clusters in the Context of Galaxy Formation and Evolution -- Cross-References -- References -- 8 Star Counts and Nature of the Galactic Thick Disk -- 1 Introduction: Historical Overview -- 2 The Star Count Galaxy Model -- 2.1 Fundamental Equation -- 2.2 Input Data -- 2.2.1 Solar Metallicity Inputs -- 2.2.2 Lower Metallicity Inputs -- 2.3 Functional Forms -- 2.3.1 Density Function -- 2.3.2 Metallicity Function -- 2.3.3 Model Parameters -- 2.4 Star Count Observations -- 3 Structural Constraints from Star Counts -- 3.1 Estimates of Structural Parameters -- 3.2 Implications of Recent Estimates -- 3.3 Vertical Scale Height of Thick Disk -- 3.4 Radial Scale Length of Thick Disk -- 3.5 Systematics in the Results -- 3.5.1 PPA or MFA -- 3.5.2 Binary Effect.
4 Interpretation of the Hess Diagram.
Record Nr. UNINA-9910438113503321
Dordrecht : , : Springer Netherlands : , : Imprint : Springer, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Plasma Astrophysics [[electronic resource] /] / edited by Claudio Chiuderi, Giorgio Einaudi
Plasma Astrophysics [[electronic resource] /] / edited by Claudio Chiuderi, Giorgio Einaudi
Edizione [1st ed. 1996.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 1996
Descrizione fisica 1 online resource (VII, 332 p. 53 illus.)
Disciplina 523.01
Collana Lecture Notes in Physics
Soggetto topico Atoms
Physics
Observations, Astronomical
Astronomy—Observations
Astrophysics
Geophysics
Elementary particles (Physics)
Quantum field theory
Statistical physics
Dynamical systems
Atomic, Molecular, Optical and Plasma Physics
Astronomy, Observations and Techniques
Astrophysics and Astroparticles
Geophysics/Geodesy
Elementary Particles, Quantum Field Theory
Complex Systems
ISBN 3-540-49789-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Resistive and collisionless magnetic reconnection -- Rotating MHD winds -- Particle acceleration -- Turbulence, statistics and structures: an introduction -- Radio astronomical diagnostics -- Spectroscopic diagnostics of astrophysical plasmas -- Hot plasmas in space: X-ray diagnostic instrumentation.
Record Nr. UNINA-9910257397703321
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 1996
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Plasma Astrophysics [[electronic resource] /] / edited by Claudio Chiuderi, Giorgio Einaudi
Plasma Astrophysics [[electronic resource] /] / edited by Claudio Chiuderi, Giorgio Einaudi
Edizione [1st ed. 1996.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 1996
Descrizione fisica 1 online resource (VII, 332 p. 53 illus.)
Disciplina 523.01
Collana Lecture Notes in Physics
Soggetto topico Atoms
Physics
Observations, Astronomical
Astronomy—Observations
Astrophysics
Geophysics
Elementary particles (Physics)
Quantum field theory
Statistical physics
Dynamical systems
Atomic, Molecular, Optical and Plasma Physics
Astronomy, Observations and Techniques
Astrophysics and Astroparticles
Geophysics/Geodesy
Elementary Particles, Quantum Field Theory
Complex Systems
ISBN 3-540-49789-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Resistive and collisionless magnetic reconnection -- Rotating MHD winds -- Particle acceleration -- Turbulence, statistics and structures: an introduction -- Radio astronomical diagnostics -- Spectroscopic diagnostics of astrophysical plasmas -- Hot plasmas in space: X-ray diagnostic instrumentation.
Record Nr. UNISA-996466804603316
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 1996
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui