top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
The supercontinuum laser source : the ultimate white light / / Robert R. Alfano, editor
The supercontinuum laser source : the ultimate white light / / Robert R. Alfano, editor
Edizione [4th ed.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (646 pages)
Disciplina 621.366
Soggetto topico Laser pulses, Ultrashort
Nonlinear optics
ISBN 9783031061974
9783031061967
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword -- Preface -- Supercontinuum Generated in Different Media -- Supercontinuum Light Vector Vortex Beams with OAM (L == 1,2,3) in Air -- Conical Emission and Self-Phase Modulation Light from Vector Vortex Beam with OAM (L == 2) in BK7 Glass -- Supercontinuum Light from Calcite -- Supercontinuum Light Generated from Methanol Liquid -- Supercontinuum Light Generated from Plasma Ablation in Air from Copper Foil -- Contents -- Contributors -- 1 Theory of Self-Phase Modulation and Spectral Broadening -- 1.1 Introduction -- 1.2 Optical-Field-Induced Refractive Indices -- 1.2.1 Electronic Mechanism -- 1.2.2 Vibrational Contribution -- 1.2.3 Rotation, Libration, and Reorientation of Molecules -- 1.2.4 Electrostriction, Molecular Redistribution, and Molecular Collisions -- 1.2.5 Other Mechanisms -- 1.3 Simple Theory of Self-Phase Modulation and Spectral Broadening -- 1.4 More Rigorous Theory of Self-Phase Modulation and Spectral Superbroadening -- 1.5 Self-Focusing and Self-Phase Modulation -- 1.5.1 Self-Phase Modulation with Quasisteady-State Self-Focusing -- 1.5.2 Spectral Superbroadening of Ultrashort Pulses in Gases -- 1.5.3 Self-Phase Modulation with Transient Self-Focusing -- 1.6 Conclusion -- References -- 2 Supercontinuum Generation in Condensed Matter -- 2.1 Introduction -- 2.2 Simplified Model -- 2.3 Experimental Arrangement for SPM Generation -- 2.4 Generation of Supercontinuum in Solids -- 2.4.1 Supercontinuum in Glasses -- 2.4.2 Supercontinuum in Quartz -- 2.4.3 Supercontinuum in NaCl -- 2.4.4 Supercontinuum in Calcite -- 2.4.5 Supercontinuum in KBr -- 2.4.6 Supercontinuum in Semiconductors -- 2.5 Generation of Supercontinuum in Liquids -- 2.5.1 Supercontinuum in H2O and D2O -- 2.5.2 Supercontinuum in CCl4 -- 2.5.3 Supercontinuum in Phosphoric Acid -- 2.5.4 Supercontinuum in Polyphosphoric Acid.
2.6 Supercontinuum Generated in Optical Fibers -- 2.7 Supercontinuum Generation in Rare-Gas Liquids and Solids -- 2.8 Supercontinuum Generation in Antiferromagnetic KNiF3 Crystals -- 2.9 Generation of Supercontinuum Near Electronic Resonances in Crystals -- 2.10 Enhancement of Supercontinuum in Water by Addition of Ions -- 2.11 Temporal Behavior of SPM -- 2.11.1 Temporal Distribution of SPM -- 2.11.2 Local Generation and Propagation -- 2.11.3 SPM Pulse Duration Reduction -- 2.12 Higher-Order Effects on Self-Phase Modulation -- 2.12.1 Self-Focusing -- 2.12.2 Dispersion -- 2.12.3 Self-Steepening -- 2.12.4 Initial Pulse Chirping -- 2.13 High-Resolution Spectra of Self-Phase Modulation in Optical Fibers -- 2.13.1 Reduced Wave Equation -- 2.13.2 Experiment -- 2.13.3 Discussion -- 2.13.4 UV Supercontinuum Lower Limit in Holey Fibers -- 2.14 High-Resolution Spectra of Cross-Phase Modulation in Optical Fibers -- 2.14.1 Reduced Wave Equation -- 2.14.2 Experiment -- 2.14.3 Discussion -- 2.15 Recent Developments of Supercontinuum Generation -- 2.15.1 Nonlinear Refractive Index of Materials Used in Supercontinuum Generation -- 2.15.2 Mid-Infrared Supercontinuum Generation Covering 1.4-13.3 m -- 2.15.3 Enhanced Bandwidth of Supercontinuum Generated in Microstructured Fibers -- 2.15.4 Deep-Ultraviolet to Mid-Infrared Supercontinuum Generation -- 2.15.5 Summary of Selected Supercontinuum Generation Since 2000 -- 2.16 Overview -- A.1 Appendix: Nonlinear Wave Equation with Group Velocity Dispersion -- References -- 3 Ultrashort Pulse Propagation in Nonlinear Dispersive Fibers -- 3.1 Introduction -- 3.2 Basic Propagation Equation -- 3.3 Different Propagation Regimes -- 3.3.1 Dispersion-Dominant Regime -- 3.3.2 Nonlinearity-Dominant Regime -- 3.3.3 Dispersive Nonlinear Regime -- 3.4 Normal Dispersion -- 3.5 Anomalous Dispersion -- 3.5.1 Fission of High-Order Solitons.
3.5.2 Intrapulse Raman Scattering -- 3.6 Supercontinuum Generation -- 3.6.1 Supercontinuum Generation Through Soliton Fission -- 3.6.2 Supercontinuum Generation Through Modulation Instability -- 3.6.3 Supercontinuum Pumping in the Normal-GVD Region -- 3.7 Mid-Infrared and Ultraviolet Regions -- 3.7.1 Supercontinuum in the Mid-Infrared Region -- 3.7.2 Sources of Ultraviolet Radiation -- 3.8 Summary -- References -- 4 Cross-Phase Modulation: A New Technique for Controlling the Spectral, Temporal, and Spatial Propertiesof Ultrashort Pulses -- 4.1 Introduction -- 4.2 Cross-Phase Modulation Theory -- 4.2.1 Coupled Nonlinear Equations of Copropagating Pulses -- 4.2.2 Spectral Broadening Enhancement -- 4.2.3 Optical Wave Breaking and Pulse Compression Due to Cross-Phase Modulation in Optical Fibers -- 4.3 Pump-Probe Cross-Phase Modulation Experiments -- 4.3.1 Spectral Broadening Enhancement by Cross-Phase Modulation in BK-7 Glass -- 4.3.2 Induced-Frequency Shift of Copropagating Pulses -- 4.3.3 XPM-Induced Spectral Broadening and Optical Amplification in Optical Fibers -- 4.4 Cross-Phase Modulation with Stimulated Raman Scattering -- 4.4.1 Theory of XPM with SRS -- 4.4.1.1 Influence of Walk-Off on the Symmetry Properties of the Pulse Spectra -- 4.4.1.2 Contributions from Self-Phase Modulation and Cross-Phase Modulation to the Chirp of Pulses -- 4.4.2 Experiments -- 4.4.2.1 XPM Measurements with the Fiber Raman Amplification Soliton Laser -- 4.4.2.2 Generation of Picosecond Raman Pulses in Optical Fibers -- 4.4.2.3 Generation of Femtosecond Raman Pulses in Ethanol -- 4.5 Harmonic Cross-Phase Modulation Generation in ZnSe -- 4.6 Cross-Phase Modulation and Stimulated Four-Photon Mixing in Optical Fibers -- 4.7 Induced Focusing by Cross-Phase Modulation in Optical Fibers -- 4.8 Modulation Instability Induced by Cross-Phase Modulation in Optical Fibers.
4.9 Applications of Cross-Phase Modulation for Ultrashort Pulse Technology -- 4.10 Conclusion -- 4.11 Addendum -- References -- 5 Fibre-Based Supercontinuum -- 5.1 Introduction -- 5.2 Non-linear Optics in Fibres -- 5.3 Solitons, Modulational Instability and Pulse Compression -- 5.4 Stimulated Raman Effect and Ultrashort Soliton Pulse Instabilities -- 5.5 Early Studies of Supercontinuum Generation in Fibres -- 5.6 Supercontinuum Applications in Telecommunications -- 5.7 Modelling Broadband Pulse Propagation in Optical Fibres -- 5.8 The New Generation of Supercontinuum Sources -- 5.9 Femtosecond Pulse-Pumped Supercontinua -- 5.10 Modelling of Femtosecond-Pumped Supercontinua -- 5.11 Picosecond Pulse-Pumped Supercontinua -- 5.12 Modelling of Picosecond-Pumped Supercontinua -- 5.13 CW-Pumped Supercontinua -- 5.14 Modelling of CW-Pumped Supercontinua -- 5.15 Extending Wavelength Operation -- 5.16 Infrared Supercontinuum Sources -- 5.17 Ultraviolet Supercontinuum Sources -- 5.18 Developments Since 2015 -- References -- New References Since 2015*12pt -- 6 All-Normal Dispersion Fiber Supercontinuum: Principles, Design, and Applications of a Unique White Light Source -- 6.1 Introduction -- 6.2 Brief Remarks About Numerical Modeling -- 6.3 Supercontinuum Generation: Conventional vs. ANDi PCF -- 6.3.1 Spectro-Temporal Characteristics -- 6.4 Nonlinear Dynamics in ANDi Fibers -- 6.4.1 Spectrogram Analysis -- 6.4.2 Influence of Fiber and Pump Pulse Parameters -- 6.5 Noise Properties of Fiber Supercontinuum Sources -- 6.5.1 Origin of Supercontinuum Noise -- 6.5.2 Supercontinuum Noise Control by Fiber Dispersion Engineering -- 6.5.3 Supercontinuum Noise Control by Designing Fiber Geometry and Birefringence -- 6.6 Experimental Results and Fiber Designs for Various Spectral Regions -- 6.6.1 Visible and Near-IR Spectral Region -- 6.6.1.1 Photonic Crystal Fibers (PCFs).
6.6.1.2 Suspended-Core Fibers (SCF) -- 6.6.2 Deep-UV Spectral Region -- 6.6.3 Mid-Infrared Spectral Region -- 6.7 Selected Application Examples -- 6.7.1 Ultrafast Photonics -- 6.7.2 Advanced Imaging and Spectroscopy -- 6.8 Conclusion -- References -- 7 Self-Focusing and Continuum Generation in Gases -- 7.1 Introduction -- 7.2 Experimental Aspects -- 7.3 Multiphoton Ionization -- 7.4 Self-Phase Modulation -- 7.5 Saturation of the Nonlinear Response in Gases -- 7.6 Self-Focusing: (3) Becomes Large -- 7.6.1 Spectral Characteristics of Gaseous Continua -- 7.6.2 Spatial Characteristics of Gaseous Continua -- 7.6.3 Discussion -- 7.7 Conclusions -- References -- 8 Attosecond Extreme Ultraviolet Supercontinuum -- 8.1 Introduction -- 8.2 High-Order Harmonic Generation -- 8.3 Isolated Attosecond Pulse Generation with Gating Techniques -- 8.3.1 Polarization Gating -- 8.3.2 Double Optical Gating -- 8.4 Temporal Characterization of Attosecond Pulses -- 8.4.1 Principle of Attosecond Streaking -- 8.4.2 Complete Reconstruction of Attosecond Bursts -- 8.4.3 Phase Retrieval by Omega Oscillation Filtering -- 8.5 Experimental Configuration and Results -- 8.5.1 Magnetic-Bottle Electron Energy Spectrometer for Attosecond Streaking -- 8.5.2 MBES Resolution -- 8.5.3 Generation of a Single 67 as Pulse -- 8.5.4 Broadband Supercontinuum Generation with Lens Focusing -- 8.6 Route to the Generation of Single 25 as Pulses -- 8.6.1 Characterizing the Contrast of 25 as Isolated Pulses -- 8.6.2 Driving Laser Suppression with Microchannel Plate Filters -- 8.7 Conclusion and Outlook -- References -- 9 Supercontinuum in Telecom Applications -- 9.1 Introduction -- 9.2 Basic Physics of Optical Spectral Broadening and SC Generation in Fibres -- 9.3 Application of Spectral Broadening and Continuum Generation in Telecom -- 9.3.1 Pulse Compression and Short Pulse Generation.
9.3.2 Pulse Train Generation at High Repetition Rates.
Record Nr. UNINA-9910639890203321
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The supercontinuum laser source : the ultimate white light / / Robert R. Alfano, editor
The supercontinuum laser source : the ultimate white light / / Robert R. Alfano, editor
Edizione [4th ed.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (646 pages)
Disciplina 621.366
Soggetto topico Laser pulses, Ultrashort
Nonlinear optics
ISBN 9783031061974
9783031061967
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword -- Preface -- Supercontinuum Generated in Different Media -- Supercontinuum Light Vector Vortex Beams with OAM (L == 1,2,3) in Air -- Conical Emission and Self-Phase Modulation Light from Vector Vortex Beam with OAM (L == 2) in BK7 Glass -- Supercontinuum Light from Calcite -- Supercontinuum Light Generated from Methanol Liquid -- Supercontinuum Light Generated from Plasma Ablation in Air from Copper Foil -- Contents -- Contributors -- 1 Theory of Self-Phase Modulation and Spectral Broadening -- 1.1 Introduction -- 1.2 Optical-Field-Induced Refractive Indices -- 1.2.1 Electronic Mechanism -- 1.2.2 Vibrational Contribution -- 1.2.3 Rotation, Libration, and Reorientation of Molecules -- 1.2.4 Electrostriction, Molecular Redistribution, and Molecular Collisions -- 1.2.5 Other Mechanisms -- 1.3 Simple Theory of Self-Phase Modulation and Spectral Broadening -- 1.4 More Rigorous Theory of Self-Phase Modulation and Spectral Superbroadening -- 1.5 Self-Focusing and Self-Phase Modulation -- 1.5.1 Self-Phase Modulation with Quasisteady-State Self-Focusing -- 1.5.2 Spectral Superbroadening of Ultrashort Pulses in Gases -- 1.5.3 Self-Phase Modulation with Transient Self-Focusing -- 1.6 Conclusion -- References -- 2 Supercontinuum Generation in Condensed Matter -- 2.1 Introduction -- 2.2 Simplified Model -- 2.3 Experimental Arrangement for SPM Generation -- 2.4 Generation of Supercontinuum in Solids -- 2.4.1 Supercontinuum in Glasses -- 2.4.2 Supercontinuum in Quartz -- 2.4.3 Supercontinuum in NaCl -- 2.4.4 Supercontinuum in Calcite -- 2.4.5 Supercontinuum in KBr -- 2.4.6 Supercontinuum in Semiconductors -- 2.5 Generation of Supercontinuum in Liquids -- 2.5.1 Supercontinuum in H2O and D2O -- 2.5.2 Supercontinuum in CCl4 -- 2.5.3 Supercontinuum in Phosphoric Acid -- 2.5.4 Supercontinuum in Polyphosphoric Acid.
2.6 Supercontinuum Generated in Optical Fibers -- 2.7 Supercontinuum Generation in Rare-Gas Liquids and Solids -- 2.8 Supercontinuum Generation in Antiferromagnetic KNiF3 Crystals -- 2.9 Generation of Supercontinuum Near Electronic Resonances in Crystals -- 2.10 Enhancement of Supercontinuum in Water by Addition of Ions -- 2.11 Temporal Behavior of SPM -- 2.11.1 Temporal Distribution of SPM -- 2.11.2 Local Generation and Propagation -- 2.11.3 SPM Pulse Duration Reduction -- 2.12 Higher-Order Effects on Self-Phase Modulation -- 2.12.1 Self-Focusing -- 2.12.2 Dispersion -- 2.12.3 Self-Steepening -- 2.12.4 Initial Pulse Chirping -- 2.13 High-Resolution Spectra of Self-Phase Modulation in Optical Fibers -- 2.13.1 Reduced Wave Equation -- 2.13.2 Experiment -- 2.13.3 Discussion -- 2.13.4 UV Supercontinuum Lower Limit in Holey Fibers -- 2.14 High-Resolution Spectra of Cross-Phase Modulation in Optical Fibers -- 2.14.1 Reduced Wave Equation -- 2.14.2 Experiment -- 2.14.3 Discussion -- 2.15 Recent Developments of Supercontinuum Generation -- 2.15.1 Nonlinear Refractive Index of Materials Used in Supercontinuum Generation -- 2.15.2 Mid-Infrared Supercontinuum Generation Covering 1.4-13.3 m -- 2.15.3 Enhanced Bandwidth of Supercontinuum Generated in Microstructured Fibers -- 2.15.4 Deep-Ultraviolet to Mid-Infrared Supercontinuum Generation -- 2.15.5 Summary of Selected Supercontinuum Generation Since 2000 -- 2.16 Overview -- A.1 Appendix: Nonlinear Wave Equation with Group Velocity Dispersion -- References -- 3 Ultrashort Pulse Propagation in Nonlinear Dispersive Fibers -- 3.1 Introduction -- 3.2 Basic Propagation Equation -- 3.3 Different Propagation Regimes -- 3.3.1 Dispersion-Dominant Regime -- 3.3.2 Nonlinearity-Dominant Regime -- 3.3.3 Dispersive Nonlinear Regime -- 3.4 Normal Dispersion -- 3.5 Anomalous Dispersion -- 3.5.1 Fission of High-Order Solitons.
3.5.2 Intrapulse Raman Scattering -- 3.6 Supercontinuum Generation -- 3.6.1 Supercontinuum Generation Through Soliton Fission -- 3.6.2 Supercontinuum Generation Through Modulation Instability -- 3.6.3 Supercontinuum Pumping in the Normal-GVD Region -- 3.7 Mid-Infrared and Ultraviolet Regions -- 3.7.1 Supercontinuum in the Mid-Infrared Region -- 3.7.2 Sources of Ultraviolet Radiation -- 3.8 Summary -- References -- 4 Cross-Phase Modulation: A New Technique for Controlling the Spectral, Temporal, and Spatial Propertiesof Ultrashort Pulses -- 4.1 Introduction -- 4.2 Cross-Phase Modulation Theory -- 4.2.1 Coupled Nonlinear Equations of Copropagating Pulses -- 4.2.2 Spectral Broadening Enhancement -- 4.2.3 Optical Wave Breaking and Pulse Compression Due to Cross-Phase Modulation in Optical Fibers -- 4.3 Pump-Probe Cross-Phase Modulation Experiments -- 4.3.1 Spectral Broadening Enhancement by Cross-Phase Modulation in BK-7 Glass -- 4.3.2 Induced-Frequency Shift of Copropagating Pulses -- 4.3.3 XPM-Induced Spectral Broadening and Optical Amplification in Optical Fibers -- 4.4 Cross-Phase Modulation with Stimulated Raman Scattering -- 4.4.1 Theory of XPM with SRS -- 4.4.1.1 Influence of Walk-Off on the Symmetry Properties of the Pulse Spectra -- 4.4.1.2 Contributions from Self-Phase Modulation and Cross-Phase Modulation to the Chirp of Pulses -- 4.4.2 Experiments -- 4.4.2.1 XPM Measurements with the Fiber Raman Amplification Soliton Laser -- 4.4.2.2 Generation of Picosecond Raman Pulses in Optical Fibers -- 4.4.2.3 Generation of Femtosecond Raman Pulses in Ethanol -- 4.5 Harmonic Cross-Phase Modulation Generation in ZnSe -- 4.6 Cross-Phase Modulation and Stimulated Four-Photon Mixing in Optical Fibers -- 4.7 Induced Focusing by Cross-Phase Modulation in Optical Fibers -- 4.8 Modulation Instability Induced by Cross-Phase Modulation in Optical Fibers.
4.9 Applications of Cross-Phase Modulation for Ultrashort Pulse Technology -- 4.10 Conclusion -- 4.11 Addendum -- References -- 5 Fibre-Based Supercontinuum -- 5.1 Introduction -- 5.2 Non-linear Optics in Fibres -- 5.3 Solitons, Modulational Instability and Pulse Compression -- 5.4 Stimulated Raman Effect and Ultrashort Soliton Pulse Instabilities -- 5.5 Early Studies of Supercontinuum Generation in Fibres -- 5.6 Supercontinuum Applications in Telecommunications -- 5.7 Modelling Broadband Pulse Propagation in Optical Fibres -- 5.8 The New Generation of Supercontinuum Sources -- 5.9 Femtosecond Pulse-Pumped Supercontinua -- 5.10 Modelling of Femtosecond-Pumped Supercontinua -- 5.11 Picosecond Pulse-Pumped Supercontinua -- 5.12 Modelling of Picosecond-Pumped Supercontinua -- 5.13 CW-Pumped Supercontinua -- 5.14 Modelling of CW-Pumped Supercontinua -- 5.15 Extending Wavelength Operation -- 5.16 Infrared Supercontinuum Sources -- 5.17 Ultraviolet Supercontinuum Sources -- 5.18 Developments Since 2015 -- References -- New References Since 2015*12pt -- 6 All-Normal Dispersion Fiber Supercontinuum: Principles, Design, and Applications of a Unique White Light Source -- 6.1 Introduction -- 6.2 Brief Remarks About Numerical Modeling -- 6.3 Supercontinuum Generation: Conventional vs. ANDi PCF -- 6.3.1 Spectro-Temporal Characteristics -- 6.4 Nonlinear Dynamics in ANDi Fibers -- 6.4.1 Spectrogram Analysis -- 6.4.2 Influence of Fiber and Pump Pulse Parameters -- 6.5 Noise Properties of Fiber Supercontinuum Sources -- 6.5.1 Origin of Supercontinuum Noise -- 6.5.2 Supercontinuum Noise Control by Fiber Dispersion Engineering -- 6.5.3 Supercontinuum Noise Control by Designing Fiber Geometry and Birefringence -- 6.6 Experimental Results and Fiber Designs for Various Spectral Regions -- 6.6.1 Visible and Near-IR Spectral Region -- 6.6.1.1 Photonic Crystal Fibers (PCFs).
6.6.1.2 Suspended-Core Fibers (SCF) -- 6.6.2 Deep-UV Spectral Region -- 6.6.3 Mid-Infrared Spectral Region -- 6.7 Selected Application Examples -- 6.7.1 Ultrafast Photonics -- 6.7.2 Advanced Imaging and Spectroscopy -- 6.8 Conclusion -- References -- 7 Self-Focusing and Continuum Generation in Gases -- 7.1 Introduction -- 7.2 Experimental Aspects -- 7.3 Multiphoton Ionization -- 7.4 Self-Phase Modulation -- 7.5 Saturation of the Nonlinear Response in Gases -- 7.6 Self-Focusing: (3) Becomes Large -- 7.6.1 Spectral Characteristics of Gaseous Continua -- 7.6.2 Spatial Characteristics of Gaseous Continua -- 7.6.3 Discussion -- 7.7 Conclusions -- References -- 8 Attosecond Extreme Ultraviolet Supercontinuum -- 8.1 Introduction -- 8.2 High-Order Harmonic Generation -- 8.3 Isolated Attosecond Pulse Generation with Gating Techniques -- 8.3.1 Polarization Gating -- 8.3.2 Double Optical Gating -- 8.4 Temporal Characterization of Attosecond Pulses -- 8.4.1 Principle of Attosecond Streaking -- 8.4.2 Complete Reconstruction of Attosecond Bursts -- 8.4.3 Phase Retrieval by Omega Oscillation Filtering -- 8.5 Experimental Configuration and Results -- 8.5.1 Magnetic-Bottle Electron Energy Spectrometer for Attosecond Streaking -- 8.5.2 MBES Resolution -- 8.5.3 Generation of a Single 67 as Pulse -- 8.5.4 Broadband Supercontinuum Generation with Lens Focusing -- 8.6 Route to the Generation of Single 25 as Pulses -- 8.6.1 Characterizing the Contrast of 25 as Isolated Pulses -- 8.6.2 Driving Laser Suppression with Microchannel Plate Filters -- 8.7 Conclusion and Outlook -- References -- 9 Supercontinuum in Telecom Applications -- 9.1 Introduction -- 9.2 Basic Physics of Optical Spectral Broadening and SC Generation in Fibres -- 9.3 Application of Spectral Broadening and Continuum Generation in Telecom -- 9.3.1 Pulse Compression and Short Pulse Generation.
9.3.2 Pulse Train Generation at High Repetition Rates.
Record Nr. UNISA-996503462103316
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Topics in nonlinear physics : proceedings of the physics session / edited by Norman J. Zabusky
Topics in nonlinear physics : proceedings of the physics session / edited by Norman J. Zabusky
Autore International school of Nonlinear mathematics and physics <1966 ; Munich>
Pubbl/distr/stampa Berlin : Springer-Verlag, 1968
Descrizione fisica xxx, 724 p. : ill. ; 29 cm
Disciplina 531
Altri autori (Persone) Zabusky, Norman J.
Altri autori (Enti) Max-Planck-Institut fur Physik und Astrophysik
Soggetto topico Mathematical physics
Mechanics of particles and systems - Congresses
Nonlinear mechanics
Nonlinear optics
Nonlinear physics - Congresses
Classificazione AMS 70-06
AMS 70-XX
AMS 70K
AMS 73B
53(082.2)
53.1.3
53.1.5
53.6.5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991001446009707536
International school of Nonlinear mathematics and physics <1966 ; Munich>  
Berlin : Springer-Verlag, 1968
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Ultrafast optics / / Andrew M. Weiner
Ultrafast optics / / Andrew M. Weiner
Autore Weiner Andrew Marc
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , c2009
Descrizione fisica 1 online resource (xvii, 580 p.) : ill
Disciplina 621.366
Collana Wiley series in pure and applied optics
Soggetto topico Laser pulses, Ultrashort
Laser pulses, Ultrashort - Industrial applications
Mode-locked lasers
Nonlinear optical spectroscopy
Nonlinear optics
ISBN 9786612188329
1-282-18832-1
0-470-47346-0
0-470-47345-2
1-118-21147-2
Classificazione UH 5618
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto -- Preface xiii -- 1 Introduction and Review 1 -- 1.1 Introduction to Ultrashort Laser Pulses 1 -- 1.2 Brief Review of Electromagnetics 4 -- 1.2.1 Maxwell's Equations 4 -- 1.2.2 The Wave Equation and Plane Waves 6 -- 1.2.3 Poynting's Vector and Power Flow 8 -- 1.3 Review of Laser Essentials 10 -- 1.3.1 Steady-State Laser Operation 10 -- 1.3.2 Gain and Gain Saturation in Four-Level Atoms 15 -- 1.3.3 Gaussian Beams and Transverse Laser Modes 17 -- 1.4 Introduction to Ultrashort Pulse Generation Through Mode-Locking 22 -- 1.5 Fourier Series and Fourier Transforms 25 -- 1.5.1 Analytical Aspects 25 -- 1.5.2 Computational Aspects 28 -- Problems 30 -- 2 Principles of Mode-Locking 32 -- 2.1 Processes Involved in Mode-Locking 32 -- 2.2 Active Mode-Locking 33 -- 2.2.1 Time-Domain Treatment 34 -- 2.2.2 Frequency-Domain Treatment 40 -- 2.2.3 Variations of Active Mode-Locking 43 -- 2.3 Passive Mode-Locking Using Saturable Absorbers 44 -- 2.3.1 Saturation Model 47 -- 2.3.2 Slow Saturable Absorber Mode-Locking 50 -- 2.3.3 Fast Saturable Absorber Mode-Locking 54 -- 2.4 Solid-State Laser Mode-Locking Using the Optical Kerr Effect 57 -- 2.4.1 Nonlinear Refractive Index Changes 57 -- 2.4.2 Self-Amplitude Modulation Self-Phase Modulation and Group Velocity Dispersion 58 -- 2.4.3 Additive Pulse Mode-Locking 60 -- 2.4.4 Kerr Lens Mode-Locking 64 -- 2.4.5 Mode-Locking Solutions 75 -- 2.4.6 Initiation of Mode-Locking 81 -- Problems 83 -- 3 Ultrafast-pulse Measurement Methods 85 -- 3.1 Terminology and Definitions 85 -- 3.2 Electric Field Autocorrelation Measurements and the Power Spectrum 88 -- 3.3 Electric Field Cross-Correlation Measurements and Spectral Interferometry 91 -- 3.3.1 Electric Field Cross-Correlation 92 -- 3.3.2 Spectral Interferometry 93 -- 3.3.3 Application: Optical Coherence Tomography 96 -- 3.4 Intensity Correlation Measurements 99 -- 3.4.1 Correlation Measurements Using Second-Harmonic Generation 99 -- 3.4.2 Experimental Procedures 108 -- 3.4.3 Correlation Measurements Using Two-Photon absorption 110.
3.4.4 Higher-Order Correlation Techniques 111 -- 3.5 Chirped Pulses and Measurements in the Time / Frequency Domain 112 -- 3.6 Frequency-Resolved Optical Gating 118 -- 3.6.1 Polarization-Gating FROG 119 -- 3.6.2 Self-Diffraction FROG 122 -- 3.6.3 Second-Harmonic-Generation FROG 124 -- 3.6.4 Frequency-Resolved Optical Gating Using Temporal Phase Modulation 125 -- 3.6.5 Signal Recovery from FROG Traces 126 -- 3.7 Pulse Measurements Based on Frequency Filtering 130 -- 3.7.1 Single-Slit Approaches 131 -- 3.7.2 Double-Slit Approach 134 -- 3.8 Self-Referencing Interferometry 135 -- 3.8.1 Time-Domain Interferometry of Chirped Pulses 135 -- 3.8.2 Self-Referencing Spectral Interferometry 137 -- 3.9 Characterization of Noise and Jitter 139 -- Problems 144 -- 4 Dispersion and Dispersion Compensation 147 -- 4.1 Group Velocity Dispersion 147 -- 4.1.1 Group Velocity Definition and General Dispersion Relations 147 -- 4.1.2 General Aspects of Material Dispersion 151 -- 4.2 Temporal Dispersion Based on Angular Dispersion 155 -- 4.2.1 Relation Between Angular and Temporal Dispersion 155 -- 4.2.2 Angular Dispersion and Tilted Intensity Fronts 159 -- 4.3 Dispersion of Grating Pairs 161 -- 4.4 Dispersion of Prism Pairs 166 -- 4.5 Dispersive Properties of Lenses 173 -- 4.6 Dispersion of Mirror Structures 177 -- 4.6.1 The Gires / Tournois Interferometer 178 -- 4.6.2 Quarter-Wave Stack High Reflectors 180 -- 4.6.3 Chirped Mirrors 182 -- 4.7 Measurements of Group Velocity Dispersion 186 -- 4.7.1 Interferometric Methods 187 -- 4.7.2 Frequency-Domain Intracavity Dispersion Measurements 190 -- 4.8 Appendix 191 -- 4.8.1 Frequency-Dependent Phase Due to Propagation Through a Slab: Alternative Derivation 191 -- 4.8.2 Impedance Method for Analysis of Dielectric Mirror Stacks 192 -- Problems 195 -- 5 Ultrafast Nonlinear Optics: Second Order 198 -- 5.1 Introduction to Nonlinear Optics 198 -- 5.2 The Forced Wave Equation 201 -- 5.2.1 Frequency-Domain Formulation 202 -- 5.2.2 Time-Domain Formulation 203.
5.3 Summary of Continuous-Wave Second-Harmonic Generation 204 -- 5.3.1 Effect of Phase Matching 207 -- 5.3.2 Phase Matching in Birefringent Media 209 -- 5.3.3 Focusing Effects in Continuous-Wave SHG 215 -- 5.4 Second-Harmonic Generation with Pulses 220 -- 5.4.1 SHG in the Quasi-Continuous-Wave Limit 220 -- 5.4.2 Ultrashort-Pulse SHG 221 -- 5.4.3 Quasi-Phase Matching 228 -- 5.4.4 Effect of Group Velocity Walk-off on SHG-Based Pulse Measurements 233 -- 5.5 Three-Wave Interactions 237 -- 5.5.1 Sum Frequency Generation 240 -- 5.5.2 Difference Frequency Generation 244 -- 5.5.3 Optical Parametric Amplification 245 -- 5.6 Appendix 253 -- 5.6.1 Spatial Walk-off and Pulse Fronts in Anisotropic Media 253 -- 5.6.2 Velocity Matching in Broadband Noncollinear Three-Wave -- Mixing 254 -- Problems 256 -- 6 Ultrafast Nonlinear Optics: Third Order 258 -- 6.1 Propagation Equation for Nonlinear Refractive Index Media 258 -- 6.1.1 Plane Waves in Uniform Media 260 -- 6.1.2 Nonlinear Propagation in Waveguides 261 -- 6.1.3 Optical Fiber Types 264 -- 6.2 The Nonlinear SchrŠ odinger Equation 266 -- 6.3 Self-Phase Modulation 270 -- 6.3.1 Dispersionless Self-Phase Modulation 270 -- 6.3.2 Dispersionless Self-Phase Modulation with Loss 273 -- 6.3.3 Self-Phase Modulation with Normal Dispersion 274 -- 6.3.4 Cross-Phase Modulation 275 -- 6.4 Pulse Compression 276 -- 6.5 Modulational Instability 283 -- 6.6 Solitons 286 -- 6.7 Higher-Order Propagation Effects 291 -- 6.7.1 Nonlinear Envelope Equation in Uniform Media 292 -- 6.7.2 Nonlinear Envelope Equation in Waveguides 295 -- 6.7.3 Delayed Nonlinear Response and the Raman Effect 296 -- 6.7.4 Self-Steepening 306 -- 6.7.5 Space / Time Focusing 308 -- 6.8 Continuum Generation 310 -- Problems 313 -- 7 Mode-Locking: Selected Advanced Topics 316 -- 7.1 Soliton Fiber Lasers: Artificial Fast Saturable Absorbers 316 -- 7.1.1 The Figure-Eight Laser 317 -- 7.1.2 Energy Quantization 322 -- 7.1.3 Soliton Sidebands 324 -- 7.2 Soliton Mode-Locking: Active Modulation and Slow Saturable Absorbers 328.
7.2.1 Harmonically Mode-Locked Soliton Fiber Lasers 328 -- 7.2.2 The Net Gain Window in Soliton Mode-Locking 330 -- 7.3 Stretched Pulse Mode-Locking 337 -- 7.3.1 Stretched Pulse Mode-Locked Fiber Laser 337 -- 7.3.2 Dispersion-Managed Solitons 340 -- 7.3.3 Theoretical Issues 342 -- 7.4 Mode-Locked Lasers in the Few-Cycle Regime 344 -- 7.5 Mode-Locked Frequency Combs 347 -- 7.5.1 Comb Basics 347 -- 7.5.2 Measurement Techniques 350 -- 7.5.3 Stabilization of Frequency Combs 354 -- 7.5.4 Applications 356 -- Problems 360 -- 8 Manipulation of Ultrashort Pulses 362 -- 8.1 Fourier Transform Pulse Shaping 362 -- 8.1.1 Examples of Pulse Shaping Using Fixed Masks 364 -- 8.1.2 Programmable Pulse Shaping 369 -- 8.1.3 Pulse-Shaping Theory 376 -- 8.2 Other Pulse-Shaping Techniques 386 -- 8.2.1 Direct Space-to-Time Pulse Shaping 386 -- 8.2.2 Acousto-optic Dispersive Filters 390 -- 8.3 Chirp Processing and Time Lenses 394 -- 8.3.1 Space / Time Duality 394 -- 8.3.2 Chirp Processing 397 -- 8.3.3 Time Lens Processing 399 -- 8.4 Ultrashort-Pulse Amplification 405 -- 8.4.1 Amplification Basics 406 -- 8.4.2 Special Issues in Femtosecond Amplifiers 411 -- 8.5 Appendix 416 -- 8.5.1 Fresnel Diffraction and Fourier Transform Property of a Lens 416 -- 8.5.2 Wave Optics Model of a Grating 418 -- Problems 420 -- 9 Ultrafast Time-Resolved Spectroscopy 422 -- 9.1 Introduction to Ultrafast Spectroscopy 422 -- 9.2 Degenerate Pump / Probe Transmission Measurements 426 -- 9.2.1 Co-polarized Fields: Scalar Treatment 426 -- 9.2.2 Vector Fields and Orientational Effects 431 -- 9.3 Nondegenerate and Spectrally Resolved Pump / Probe: Case Studies 439 -- 9.3.1 Femtosecond Pump / Probe Studies of Dye Molecules 440 -- 9.3.2 Femtosecond Pump / Probe Studies of GaAs 444 -- 9.4 Basic Quantum Mechanics for Coherent Short-Pulse Spectroscopies 451 -- 9.4.1 Some Basic Quantum Mechanics 451 -- 9.4.2 The Density Matrix 456 -- 9.5 Wave Packets 460 -- 9.5.1 Example: Semiconductor Quantum Wells 461 -- 9.5.2 Molecules 462 -- 9.6 Dephasing Phenomena 469.
9.6.1 Linear Spectroscopies 469 -- 9.6.2 Models of Dephasing 475 -- 9.6.3 Measurement of Dephasing Using Transient Gratings 481 -- 9.6.4 Two-Dimensional Spectroscopy 494 -- 9.7 Impulsive Stimulated Raman Scattering 499 -- Problems 505 -- 10 Terahertz Time-Domain Electromagnetics 507 -- 10.1 Ultrafast Electromagnetics: Transmission Lines 507 -- 10.1.1 Photoconductive Generation and Sampling 507 -- 10.1.2 Electro-optic Sampling 513 -- 10.2 Ultrafast Electromagnetics: Terahertz Beams 516 -- 10.2.1 Generation and Measurement of Terahertz Pulses 517 -- 10.2.2 Terahertz Spectroscopy and Imaging 527 -- Problems 531 -- References 533 -- Index 563.
Record Nr. UNINA-9910208849403321
Weiner Andrew Marc  
Hoboken, New Jersey : , : Wiley, , c2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Ultrafast optics / / Andrew M. Weiner
Ultrafast optics / / Andrew M. Weiner
Autore Weiner Andrew Marc
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , c2009
Descrizione fisica 1 online resource (xvii, 580 p.) : ill
Disciplina 621.366
Collana Wiley series in pure and applied optics
Soggetto topico Laser pulses, Ultrashort
Laser pulses, Ultrashort - Industrial applications
Mode-locked lasers
Nonlinear optical spectroscopy
Nonlinear optics
ISBN 9786612188329
1-282-18832-1
0-470-47346-0
0-470-47345-2
1-118-21147-2
Classificazione UH 5618
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto -- Preface xiii -- 1 Introduction and Review 1 -- 1.1 Introduction to Ultrashort Laser Pulses 1 -- 1.2 Brief Review of Electromagnetics 4 -- 1.2.1 Maxwell's Equations 4 -- 1.2.2 The Wave Equation and Plane Waves 6 -- 1.2.3 Poynting's Vector and Power Flow 8 -- 1.3 Review of Laser Essentials 10 -- 1.3.1 Steady-State Laser Operation 10 -- 1.3.2 Gain and Gain Saturation in Four-Level Atoms 15 -- 1.3.3 Gaussian Beams and Transverse Laser Modes 17 -- 1.4 Introduction to Ultrashort Pulse Generation Through Mode-Locking 22 -- 1.5 Fourier Series and Fourier Transforms 25 -- 1.5.1 Analytical Aspects 25 -- 1.5.2 Computational Aspects 28 -- Problems 30 -- 2 Principles of Mode-Locking 32 -- 2.1 Processes Involved in Mode-Locking 32 -- 2.2 Active Mode-Locking 33 -- 2.2.1 Time-Domain Treatment 34 -- 2.2.2 Frequency-Domain Treatment 40 -- 2.2.3 Variations of Active Mode-Locking 43 -- 2.3 Passive Mode-Locking Using Saturable Absorbers 44 -- 2.3.1 Saturation Model 47 -- 2.3.2 Slow Saturable Absorber Mode-Locking 50 -- 2.3.3 Fast Saturable Absorber Mode-Locking 54 -- 2.4 Solid-State Laser Mode-Locking Using the Optical Kerr Effect 57 -- 2.4.1 Nonlinear Refractive Index Changes 57 -- 2.4.2 Self-Amplitude Modulation Self-Phase Modulation and Group Velocity Dispersion 58 -- 2.4.3 Additive Pulse Mode-Locking 60 -- 2.4.4 Kerr Lens Mode-Locking 64 -- 2.4.5 Mode-Locking Solutions 75 -- 2.4.6 Initiation of Mode-Locking 81 -- Problems 83 -- 3 Ultrafast-pulse Measurement Methods 85 -- 3.1 Terminology and Definitions 85 -- 3.2 Electric Field Autocorrelation Measurements and the Power Spectrum 88 -- 3.3 Electric Field Cross-Correlation Measurements and Spectral Interferometry 91 -- 3.3.1 Electric Field Cross-Correlation 92 -- 3.3.2 Spectral Interferometry 93 -- 3.3.3 Application: Optical Coherence Tomography 96 -- 3.4 Intensity Correlation Measurements 99 -- 3.4.1 Correlation Measurements Using Second-Harmonic Generation 99 -- 3.4.2 Experimental Procedures 108 -- 3.4.3 Correlation Measurements Using Two-Photon absorption 110.
3.4.4 Higher-Order Correlation Techniques 111 -- 3.5 Chirped Pulses and Measurements in the Time / Frequency Domain 112 -- 3.6 Frequency-Resolved Optical Gating 118 -- 3.6.1 Polarization-Gating FROG 119 -- 3.6.2 Self-Diffraction FROG 122 -- 3.6.3 Second-Harmonic-Generation FROG 124 -- 3.6.4 Frequency-Resolved Optical Gating Using Temporal Phase Modulation 125 -- 3.6.5 Signal Recovery from FROG Traces 126 -- 3.7 Pulse Measurements Based on Frequency Filtering 130 -- 3.7.1 Single-Slit Approaches 131 -- 3.7.2 Double-Slit Approach 134 -- 3.8 Self-Referencing Interferometry 135 -- 3.8.1 Time-Domain Interferometry of Chirped Pulses 135 -- 3.8.2 Self-Referencing Spectral Interferometry 137 -- 3.9 Characterization of Noise and Jitter 139 -- Problems 144 -- 4 Dispersion and Dispersion Compensation 147 -- 4.1 Group Velocity Dispersion 147 -- 4.1.1 Group Velocity Definition and General Dispersion Relations 147 -- 4.1.2 General Aspects of Material Dispersion 151 -- 4.2 Temporal Dispersion Based on Angular Dispersion 155 -- 4.2.1 Relation Between Angular and Temporal Dispersion 155 -- 4.2.2 Angular Dispersion and Tilted Intensity Fronts 159 -- 4.3 Dispersion of Grating Pairs 161 -- 4.4 Dispersion of Prism Pairs 166 -- 4.5 Dispersive Properties of Lenses 173 -- 4.6 Dispersion of Mirror Structures 177 -- 4.6.1 The Gires / Tournois Interferometer 178 -- 4.6.2 Quarter-Wave Stack High Reflectors 180 -- 4.6.3 Chirped Mirrors 182 -- 4.7 Measurements of Group Velocity Dispersion 186 -- 4.7.1 Interferometric Methods 187 -- 4.7.2 Frequency-Domain Intracavity Dispersion Measurements 190 -- 4.8 Appendix 191 -- 4.8.1 Frequency-Dependent Phase Due to Propagation Through a Slab: Alternative Derivation 191 -- 4.8.2 Impedance Method for Analysis of Dielectric Mirror Stacks 192 -- Problems 195 -- 5 Ultrafast Nonlinear Optics: Second Order 198 -- 5.1 Introduction to Nonlinear Optics 198 -- 5.2 The Forced Wave Equation 201 -- 5.2.1 Frequency-Domain Formulation 202 -- 5.2.2 Time-Domain Formulation 203.
5.3 Summary of Continuous-Wave Second-Harmonic Generation 204 -- 5.3.1 Effect of Phase Matching 207 -- 5.3.2 Phase Matching in Birefringent Media 209 -- 5.3.3 Focusing Effects in Continuous-Wave SHG 215 -- 5.4 Second-Harmonic Generation with Pulses 220 -- 5.4.1 SHG in the Quasi-Continuous-Wave Limit 220 -- 5.4.2 Ultrashort-Pulse SHG 221 -- 5.4.3 Quasi-Phase Matching 228 -- 5.4.4 Effect of Group Velocity Walk-off on SHG-Based Pulse Measurements 233 -- 5.5 Three-Wave Interactions 237 -- 5.5.1 Sum Frequency Generation 240 -- 5.5.2 Difference Frequency Generation 244 -- 5.5.3 Optical Parametric Amplification 245 -- 5.6 Appendix 253 -- 5.6.1 Spatial Walk-off and Pulse Fronts in Anisotropic Media 253 -- 5.6.2 Velocity Matching in Broadband Noncollinear Three-Wave -- Mixing 254 -- Problems 256 -- 6 Ultrafast Nonlinear Optics: Third Order 258 -- 6.1 Propagation Equation for Nonlinear Refractive Index Media 258 -- 6.1.1 Plane Waves in Uniform Media 260 -- 6.1.2 Nonlinear Propagation in Waveguides 261 -- 6.1.3 Optical Fiber Types 264 -- 6.2 The Nonlinear SchrŠ odinger Equation 266 -- 6.3 Self-Phase Modulation 270 -- 6.3.1 Dispersionless Self-Phase Modulation 270 -- 6.3.2 Dispersionless Self-Phase Modulation with Loss 273 -- 6.3.3 Self-Phase Modulation with Normal Dispersion 274 -- 6.3.4 Cross-Phase Modulation 275 -- 6.4 Pulse Compression 276 -- 6.5 Modulational Instability 283 -- 6.6 Solitons 286 -- 6.7 Higher-Order Propagation Effects 291 -- 6.7.1 Nonlinear Envelope Equation in Uniform Media 292 -- 6.7.2 Nonlinear Envelope Equation in Waveguides 295 -- 6.7.3 Delayed Nonlinear Response and the Raman Effect 296 -- 6.7.4 Self-Steepening 306 -- 6.7.5 Space / Time Focusing 308 -- 6.8 Continuum Generation 310 -- Problems 313 -- 7 Mode-Locking: Selected Advanced Topics 316 -- 7.1 Soliton Fiber Lasers: Artificial Fast Saturable Absorbers 316 -- 7.1.1 The Figure-Eight Laser 317 -- 7.1.2 Energy Quantization 322 -- 7.1.3 Soliton Sidebands 324 -- 7.2 Soliton Mode-Locking: Active Modulation and Slow Saturable Absorbers 328.
7.2.1 Harmonically Mode-Locked Soliton Fiber Lasers 328 -- 7.2.2 The Net Gain Window in Soliton Mode-Locking 330 -- 7.3 Stretched Pulse Mode-Locking 337 -- 7.3.1 Stretched Pulse Mode-Locked Fiber Laser 337 -- 7.3.2 Dispersion-Managed Solitons 340 -- 7.3.3 Theoretical Issues 342 -- 7.4 Mode-Locked Lasers in the Few-Cycle Regime 344 -- 7.5 Mode-Locked Frequency Combs 347 -- 7.5.1 Comb Basics 347 -- 7.5.2 Measurement Techniques 350 -- 7.5.3 Stabilization of Frequency Combs 354 -- 7.5.4 Applications 356 -- Problems 360 -- 8 Manipulation of Ultrashort Pulses 362 -- 8.1 Fourier Transform Pulse Shaping 362 -- 8.1.1 Examples of Pulse Shaping Using Fixed Masks 364 -- 8.1.2 Programmable Pulse Shaping 369 -- 8.1.3 Pulse-Shaping Theory 376 -- 8.2 Other Pulse-Shaping Techniques 386 -- 8.2.1 Direct Space-to-Time Pulse Shaping 386 -- 8.2.2 Acousto-optic Dispersive Filters 390 -- 8.3 Chirp Processing and Time Lenses 394 -- 8.3.1 Space / Time Duality 394 -- 8.3.2 Chirp Processing 397 -- 8.3.3 Time Lens Processing 399 -- 8.4 Ultrashort-Pulse Amplification 405 -- 8.4.1 Amplification Basics 406 -- 8.4.2 Special Issues in Femtosecond Amplifiers 411 -- 8.5 Appendix 416 -- 8.5.1 Fresnel Diffraction and Fourier Transform Property of a Lens 416 -- 8.5.2 Wave Optics Model of a Grating 418 -- Problems 420 -- 9 Ultrafast Time-Resolved Spectroscopy 422 -- 9.1 Introduction to Ultrafast Spectroscopy 422 -- 9.2 Degenerate Pump / Probe Transmission Measurements 426 -- 9.2.1 Co-polarized Fields: Scalar Treatment 426 -- 9.2.2 Vector Fields and Orientational Effects 431 -- 9.3 Nondegenerate and Spectrally Resolved Pump / Probe: Case Studies 439 -- 9.3.1 Femtosecond Pump / Probe Studies of Dye Molecules 440 -- 9.3.2 Femtosecond Pump / Probe Studies of GaAs 444 -- 9.4 Basic Quantum Mechanics for Coherent Short-Pulse Spectroscopies 451 -- 9.4.1 Some Basic Quantum Mechanics 451 -- 9.4.2 The Density Matrix 456 -- 9.5 Wave Packets 460 -- 9.5.1 Example: Semiconductor Quantum Wells 461 -- 9.5.2 Molecules 462 -- 9.6 Dephasing Phenomena 469.
9.6.1 Linear Spectroscopies 469 -- 9.6.2 Models of Dephasing 475 -- 9.6.3 Measurement of Dephasing Using Transient Gratings 481 -- 9.6.4 Two-Dimensional Spectroscopy 494 -- 9.7 Impulsive Stimulated Raman Scattering 499 -- Problems 505 -- 10 Terahertz Time-Domain Electromagnetics 507 -- 10.1 Ultrafast Electromagnetics: Transmission Lines 507 -- 10.1.1 Photoconductive Generation and Sampling 507 -- 10.1.2 Electro-optic Sampling 513 -- 10.2 Ultrafast Electromagnetics: Terahertz Beams 516 -- 10.2.1 Generation and Measurement of Terahertz Pulses 517 -- 10.2.2 Terahertz Spectroscopy and Imaging 527 -- Problems 531 -- References 533 -- Index 563.
Record Nr. UNINA-9910830398303321
Weiner Andrew Marc  
Hoboken, New Jersey : , : Wiley, , c2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Waveguide nonlinear-optic devices / T. Suhara, M. Fujimura
Waveguide nonlinear-optic devices / T. Suhara, M. Fujimura
Autore Suhara, Toshiaki, 1950-
Pubbl/distr/stampa Berlin ; New York : Springer, 2003
Descrizione fisica xiii, 321 p. : ill. ; 24 cm
Disciplina 621.369
Altri autori (Persone) Fujimura, M. (Masatoshi), 1965-
Collana Springer series in photonics, 1437-0379 ; v. 11
Soggetto topico Optoelectronic devices
Optical wave guides
Nonlinear optics
ISBN 3540015272
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991003119979707536
Suhara, Toshiaki, 1950-  
Berlin ; New York : Springer, 2003
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui