top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Smart materials for waste water applications / / edited by Ajay Kumar Mishra
Smart materials for waste water applications / / edited by Ajay Kumar Mishra
Pubbl/distr/stampa Salem, Massachusetts ; ; Hoboken, New Jersey : , : Scrivener Publishing : , : Wiley, , 2016
Descrizione fisica 1 online resource (427 p.)
Disciplina 628.1/680284
Soggetto topico Water - Purification - Materials
Smart materials
Nanostructured materials - Industrial applications
ISBN 1-5231-1479-7
1-119-04120-1
1-119-04121-X
1-119-04119-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Half Title page; Title page; Copyright page; Preface; Part 1: Carbon Nanomaterials; Chapter 1: Easy and Large-Scale Synthesis of Carbon Nanotube-Based Adsorbents for the Removal of Arsenic and Organic Pollutants from Aqueous Solutions; 1.1 Introduction; 1.2 Removal of Arsenic from Aqueous Solution; 1.3 Removal of Organic Pollutants from Aqueous Solution; 1.4 Summary and Outlook; Acknowledgment; References; Chapter 2: Potentialities of Graphene-Based Nanomaterials for Wastewater Treatment; 2.1 Introduction; 2.2 Graphene Synthesis Routes
2.3 Adsorption of Water Pollutants onto Graphene-Based Materials2.4 Comparison of the Adsorption Performance of Graphene-Based Nanomaterials; 2.5 Regeneration and Reutilization of the Graphene-Based Adsorbents; 2.6 Conclusion; Acknowledgements; Nomenclature; References; Chapter 3: Photocatalytic Activity of Nanocarbon-TiO2 Composites with Gold Nanoparticles for the Degradation of Water Pollutants; 3.1 Introduction; 3.2 Experimental; 3.3 Results and Discussion; 3.4 Conclusions; Acknowledgements; References; Chapter 4: Carbon Nanomaterials for Chromium (VI) Removal from Aqueous Solution
4.1 Introduction4.2 Carbon Nanomaterials for Heavy Metal Removal; 4.3 Latest Progress in Nanocarbon Materials for Cr(VI) Treatment; 4.4 Summary; Acknowledgement; References; Chapter 5: Nano-Carbons from Pollutant Soot: A Cleaner Approach toward Clean Environment; 5.1 Introduction; 5.2 Separation of Nano-carbon from Pollutant BC; 5.3 Functionalization of Nano-Carbons Isolated from Pollutant BC; 5.4 Nano-Carbons from Pollutant Soot for Wastewater Treatment; 5.5 Conclusion; Acknowledgments; References; Chapter 6: First-Principles Computational Design of Graphene for Gas Detection
6.1 Introduction6.2 Computational Methodology; 6.3 Nitrogen Doping and Nitrogen Vacancy Complexes in Graphene; 6.4 Molecular Gas Adsorptions; 6.5 Summary; Acknowledgments; References; Part 2: Synthetic Nanomaterials; Chapter 7: Advanced Material for Pharmaceutical Removal from Wastewater; 7.1 Introduction; 7.2 Advanced Materials in the Removal of Pharmaceuticals from Wastewater; 7.3 Activated Carbon (AC); 7.4 Modified Carbon Nanotubes (CNTs); 7.5 Modified Polysaccharide Matrices; 7.6 Metal Organic Framework (MOF); 7.7 Reactive Composites; 7.8 TiO2-Coated Adsorbents
7.9 Adsorption by Zeolite and Polymer Composites7.10 Adsorption by Clay; 7.11 Conventional Technologies for the Removal of PPCPs in WWTP; 7.12 Membrane Filtration; 7.13 Ozonation and Advanced Oxidation Process (AOP); 7.14 Electro-oxidation; 7.15 Adsorption by Coagulation and Sedimentation; 7.16 Conclusion; References; Chapter 8: Flocculation Performances of Polymers and Nanomaterials for the Treatment of Industrial Wastewaters; 8.1 General Introduction; 8.2 Conventional Treatment of Water with Inorganic Coagulants
8.3 Development of Polymer-Based Coagulants and Mechanisms of Turbidity Removal
Record Nr. UNINA-9910810144403321
Salem, Massachusetts ; ; Hoboken, New Jersey : , : Scrivener Publishing : , : Wiley, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui