top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Fatigue of materials and structures [[electronic resource] ;] : application to design and damage / / edited by Claude Bathias, André Pineau
Fatigue of materials and structures [[electronic resource] ;] : application to design and damage / / edited by Claude Bathias, André Pineau
Pubbl/distr/stampa London, : ISTE
Descrizione fisica 1 online resource (360 p.)
Disciplina 620.1126
Altri autori (Persone) BathiasClaude
PineauA (André)
Collana ISTE
Soggetto topico Materials - Fatigue
Materials - Mechanical properties
Microstructure
ISBN 1-118-61699-5
1-299-31515-1
1-118-61651-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Machine generated contents note: ch. 1 Multiaxial Fatigue / Marc Blétry and Georges Cailletaud -- 1.1.Introduction -- 1.1.1.Variables in a plane -- 1.1.2.Invariants -- 1.1.3.Classification of the cracking modes -- 1.2.Experimental aspects -- 1.2.1.Multiaxial fatigue experiments -- 1.2.2.Main results -- 1.2.3.Notations -- 1.3.Criteria specific to the unlimited endurance domain -- 1.3.1.Background -- 1.3.2.Global criteria -- 1.3.3.Critical plane criteria -- 1.3.4.Relationship between energetic and mesoscopic criteria -- 1.4.Low cycle fatigue criteria -- 1.4.1.Brown-Miller -- 1.4.2.SWT criteria -- 1.4.3.Jacquelin criterion -- 1.4.4.Additive criteria under sliding and stress amplitude -- 1.4.5.Onera model -- 1.5.Calculating methods of the lifetime under multiaxial conditions -- 1.5.1.Lifetime at N cycles for a periodic loading -- 1.5.2.Damage cumulation -- 1.5.3.Calculation methods -- 1.6.Conclusion -- 1.7.Bibliography -- ch. 2 Cumulative Damage / Jean-Louis Chaboche -- 2.1.Introduction -- 2.2.Nonlinear fatigue cumulative damage -- 2.2.1.Main observations -- 2.2.2.Various types of nonlinear cumulative damage models -- 2.2.3.Possible definitions of the damage variable -- 2.3.A nonlinear cumulative fatigue damage model -- 2.3.1.General form -- 2.3.2.Special forms of functions F and G -- 2.3.3.Application under complex loadings -- 2.4.Damage law of incremental type -- 2.4.1.Damage accumulation in strain or energy -- 2.4.2.Lemaitre's formulation -- 2.4.3.Other incremental models -- 2.5.Cumulative damage under fatigue-creep conditions -- 2.5.1.Rabotnov-Kachanov creep damage law -- 2.5.2.Fatigue damage -- 2.5.3.Creep-fatigue interaction -- 2.5.4.Practical application -- 2.5.5.Fatigue-oxidation-creep interaction -- 2.6.Conclusion -- 2.7.Bibliography -- ch. 3 Damage Tolerance Design / Raphael Cazes -- 3.1.Background -- 3.2.Evolution of the design concept of "fatigue" phenomenon -- 3.2.1.First approach to fatigue resistance -- 3.2.2.The "damage tolerance" concept -- 3.2.3.Consideration of "damage tolerance" -- 3.3.Impact of damage tolerance on design -- 3.3.1."Structural" impact -- 3.3.2."Material" impact -- 3.4.Calculation of a "stress intensity factor" -- 3.4.1.Use of the "handbook" (simple cases) -- 3.4.2.Use of the finite element method: simple and complex cases -- 3.4.3.A simple method to get new configurations -- 3.4.4."Superposition" method -- 3.4.5.Superposition method: applicable examples -- 3.4.6.Numerical application exercise -- 3.5.Performing some "damage tolerance" calculations -- 3.5.1.Complementarity of fatigue and damage tolerance -- 3.5.2.Safety coefficients to understand curve a = f(N) -- 3.5.3.Acquisition of the material parameters -- 3.5.4.Negative parameter: corrosion -- "corrosion fatigue" -- 3.6.Application to the residual strength of thin sheets -- 3.6.1.Planar panels: Feddersen diagram -- 3.6.2.Case of stiffened panels -- 3.7.Propagation of cracks subjected to random loading in the aeronautic industry -- 3.7.1.Modeling of the interactions of loading cycles -- 3.7.2.Comparison of predictions with experimental results -- 3.7.3.Rainflow treatment of random loadings -- 3.8.Conclusion -- 3.8.1.Organization of the evolution of "damage tolerance" -- 3.8.2.Structural maintenance program -- 3.8.3.Inspection of structures being used -- 3.9.Damage tolerance within the gigacyclic domain -- 3.9.1.Observations on crack propagation -- 3.9.2.Propagation of a fish-eye with regards to damage tolerance -- 3.9.3.Example of a turbine disk subjected to vibration -- 3.10.Bibliography -- ch. 4 Defect Influence on the Fatigue Behavior of Metallic Materials / Gilles Baudry -- 4.1.Introduction -- 4.2.Some facts -- 4.2.1.Failure observation -- 4.2.2.Endurance limit level -- 4.2.3.Influence of the rolling reduction ratio and the effect of rolling direction -- 4.2.4.Low cycle fatigue: SN curves -- 4.2.5.Wohler curve: existence of an endurance limit -- 4.2.6.Summary -- 4.3.Approaches -- 4.3.1.First models -- 4.3.2.Kitagawa diagram -- 4.3.3.Murakami model -- 4.4.A few examples -- 4.4.1.Medium-loaded components: example of as-forged parts: connecting rods -- effect of the forging skin -- 4.4.2.High-loaded components: relative importance of cleanliness and surface state -- example of the valve spring -- 4.4.3.High-loaded components: Bearings-Endurance cleanliness relationship -- 4.5.Prospects -- 4.5.1.Estimation of lifetimes and their dispersions -- 4.5.2.Fiber orientation -- 4.5.3.Prestressing -- 4.5.4.Corrosion -- 4.5.5.Complex loadings: spectra/over-loadings/multiaxial loadings -- 4.5.6.Gigacycle fatigue -- 4.6.Conclusion -- 4.7.Bibliography -- ch. 5 Fretting Fatigue: Modeling and Applications / Trevor Lindley -- 5.1.Introduction -- 5.2.Experimental methods -- 5.2.1.Fatigue specimens and contact pads -- 5.2.2.Fatigue S-N data with and without fretting -- 5.2.3.Frictional force measurement -- 5.2.4.Metallography and fractography -- 5.2.5.Mechanisms in fretting fatigue -- 5.3.Fretting fatigue analysis -- 5.3.1.The S-N approach -- 5.3.2.Fretting modeling -- 5.3.3.Two-body contact -- 5.3.4.Fatigue crack initiation -- 5.3.5.Analysis of cracks: the fracture mechanics approach -- 5.3.6.Propagation -- 5.4.Applications under fretting conditions -- 5.4.1.Metallic material: partial slip regime -- 5.4.2.Epoxy polymers: development of cracks under a total slip regime -- 5.5.Palliatives to combat fretting fatigue -- 5.6.Conclusions -- 5.7.Bibliography -- ch. 6 Contact Fatigue / Ky Dang Van -- 6.1.Introduction -- 6.2.Classification of the main types of contact damage -- 6.2.1.Background -- 6.2.2.Damage induced by rolling contacts with or without sliding effect -- 6.2.3.Fretting -- 6.3.A few results on contact mechanics -- 6.3.1.Hertz solution -- 6.3.2.Case of contact with friction under total sliding conditions -- 6.3.3.Case of contact with partial sliding -- 6.3.4.Elastic contact between two solids of different elastic modules -- 6.3.5.3D elastic contact -- 6.4.Elastic limit -- 6.5.Elastoplastic contact -- 6.5.1.Stationary methods -- 6.5.2.Direct cyclic method -- 6.6.Application to modeling of a few contact fatigue issues -- 6.6.1.General methodology -- 6.6.2.Initiation of fatigue cracks in rails -- 6.6.3.Propagation of initiated cracks -- 6.6.4.Application to fretting fatigue -- 6.7.Conclusion -- 6.8.Bibliography -- ch. 7 Thermal Fatigue / Luc Remy -- 7.1.Introduction -- 7.2.Characterization tests -- 7.2.1.Cyclic mechanical behavior -- 7.2.2.Damage -- 7.3.Constitutive and damage models at variable temperatures -- 7.3.1.Constitutive laws -- 7.3.2.Damage process modeling based on fatigue conditions -- 7.3.3.Modeling the damage process in complex cases: towards considering interactions with creep and oxidation phenomena -- 7.4.Applications -- 7.4.1.Exhaust manifolds in automotive industry -- 7.4.2.Cylinder heads made from aluminum alloys in the automotive industry -- 7.4.3.Brake disks in the rail and automotive industries -- 7.4.4.Nuclear industry pipes -- 7.4.5.Simple structures simulating turbine blades -- 7.5.Conclusion -- 7.6.Bibliography.
Record Nr. UNINA-9910139050903321
London, : ISTE
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fatigue of materials and structures : application to design and damage / / edited by Claude Bathias, André Pineau
Fatigue of materials and structures : application to design and damage / / edited by Claude Bathias, André Pineau
Edizione [1st ed.]
Pubbl/distr/stampa London, : ISTE
Descrizione fisica 1 online resource (360 p.)
Disciplina 620.1126
Altri autori (Persone) BathiasClaude
PineauA (André)
Collana ISTE
Soggetto topico Materials - Fatigue
Materials - Mechanical properties
Microstructure
ISBN 1-118-61699-5
1-299-31515-1
1-118-61651-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Machine generated contents note: ch. 1 Multiaxial Fatigue / Marc Blétry and Georges Cailletaud -- 1.1.Introduction -- 1.1.1.Variables in a plane -- 1.1.2.Invariants -- 1.1.3.Classification of the cracking modes -- 1.2.Experimental aspects -- 1.2.1.Multiaxial fatigue experiments -- 1.2.2.Main results -- 1.2.3.Notations -- 1.3.Criteria specific to the unlimited endurance domain -- 1.3.1.Background -- 1.3.2.Global criteria -- 1.3.3.Critical plane criteria -- 1.3.4.Relationship between energetic and mesoscopic criteria -- 1.4.Low cycle fatigue criteria -- 1.4.1.Brown-Miller -- 1.4.2.SWT criteria -- 1.4.3.Jacquelin criterion -- 1.4.4.Additive criteria under sliding and stress amplitude -- 1.4.5.Onera model -- 1.5.Calculating methods of the lifetime under multiaxial conditions -- 1.5.1.Lifetime at N cycles for a periodic loading -- 1.5.2.Damage cumulation -- 1.5.3.Calculation methods -- 1.6.Conclusion -- 1.7.Bibliography -- ch. 2 Cumulative Damage / Jean-Louis Chaboche -- 2.1.Introduction -- 2.2.Nonlinear fatigue cumulative damage -- 2.2.1.Main observations -- 2.2.2.Various types of nonlinear cumulative damage models -- 2.2.3.Possible definitions of the damage variable -- 2.3.A nonlinear cumulative fatigue damage model -- 2.3.1.General form -- 2.3.2.Special forms of functions F and G -- 2.3.3.Application under complex loadings -- 2.4.Damage law of incremental type -- 2.4.1.Damage accumulation in strain or energy -- 2.4.2.Lemaitre's formulation -- 2.4.3.Other incremental models -- 2.5.Cumulative damage under fatigue-creep conditions -- 2.5.1.Rabotnov-Kachanov creep damage law -- 2.5.2.Fatigue damage -- 2.5.3.Creep-fatigue interaction -- 2.5.4.Practical application -- 2.5.5.Fatigue-oxidation-creep interaction -- 2.6.Conclusion -- 2.7.Bibliography -- ch. 3 Damage Tolerance Design / Raphael Cazes -- 3.1.Background -- 3.2.Evolution of the design concept of "fatigue" phenomenon -- 3.2.1.First approach to fatigue resistance -- 3.2.2.The "damage tolerance" concept -- 3.2.3.Consideration of "damage tolerance" -- 3.3.Impact of damage tolerance on design -- 3.3.1."Structural" impact -- 3.3.2."Material" impact -- 3.4.Calculation of a "stress intensity factor" -- 3.4.1.Use of the "handbook" (simple cases) -- 3.4.2.Use of the finite element method: simple and complex cases -- 3.4.3.A simple method to get new configurations -- 3.4.4."Superposition" method -- 3.4.5.Superposition method: applicable examples -- 3.4.6.Numerical application exercise -- 3.5.Performing some "damage tolerance" calculations -- 3.5.1.Complementarity of fatigue and damage tolerance -- 3.5.2.Safety coefficients to understand curve a = f(N) -- 3.5.3.Acquisition of the material parameters -- 3.5.4.Negative parameter: corrosion -- "corrosion fatigue" -- 3.6.Application to the residual strength of thin sheets -- 3.6.1.Planar panels: Feddersen diagram -- 3.6.2.Case of stiffened panels -- 3.7.Propagation of cracks subjected to random loading in the aeronautic industry -- 3.7.1.Modeling of the interactions of loading cycles -- 3.7.2.Comparison of predictions with experimental results -- 3.7.3.Rainflow treatment of random loadings -- 3.8.Conclusion -- 3.8.1.Organization of the evolution of "damage tolerance" -- 3.8.2.Structural maintenance program -- 3.8.3.Inspection of structures being used -- 3.9.Damage tolerance within the gigacyclic domain -- 3.9.1.Observations on crack propagation -- 3.9.2.Propagation of a fish-eye with regards to damage tolerance -- 3.9.3.Example of a turbine disk subjected to vibration -- 3.10.Bibliography -- ch. 4 Defect Influence on the Fatigue Behavior of Metallic Materials / Gilles Baudry -- 4.1.Introduction -- 4.2.Some facts -- 4.2.1.Failure observation -- 4.2.2.Endurance limit level -- 4.2.3.Influence of the rolling reduction ratio and the effect of rolling direction -- 4.2.4.Low cycle fatigue: SN curves -- 4.2.5.Wohler curve: existence of an endurance limit -- 4.2.6.Summary -- 4.3.Approaches -- 4.3.1.First models -- 4.3.2.Kitagawa diagram -- 4.3.3.Murakami model -- 4.4.A few examples -- 4.4.1.Medium-loaded components: example of as-forged parts: connecting rods -- effect of the forging skin -- 4.4.2.High-loaded components: relative importance of cleanliness and surface state -- example of the valve spring -- 4.4.3.High-loaded components: Bearings-Endurance cleanliness relationship -- 4.5.Prospects -- 4.5.1.Estimation of lifetimes and their dispersions -- 4.5.2.Fiber orientation -- 4.5.3.Prestressing -- 4.5.4.Corrosion -- 4.5.5.Complex loadings: spectra/over-loadings/multiaxial loadings -- 4.5.6.Gigacycle fatigue -- 4.6.Conclusion -- 4.7.Bibliography -- ch. 5 Fretting Fatigue: Modeling and Applications / Trevor Lindley -- 5.1.Introduction -- 5.2.Experimental methods -- 5.2.1.Fatigue specimens and contact pads -- 5.2.2.Fatigue S-N data with and without fretting -- 5.2.3.Frictional force measurement -- 5.2.4.Metallography and fractography -- 5.2.5.Mechanisms in fretting fatigue -- 5.3.Fretting fatigue analysis -- 5.3.1.The S-N approach -- 5.3.2.Fretting modeling -- 5.3.3.Two-body contact -- 5.3.4.Fatigue crack initiation -- 5.3.5.Analysis of cracks: the fracture mechanics approach -- 5.3.6.Propagation -- 5.4.Applications under fretting conditions -- 5.4.1.Metallic material: partial slip regime -- 5.4.2.Epoxy polymers: development of cracks under a total slip regime -- 5.5.Palliatives to combat fretting fatigue -- 5.6.Conclusions -- 5.7.Bibliography -- ch. 6 Contact Fatigue / Ky Dang Van -- 6.1.Introduction -- 6.2.Classification of the main types of contact damage -- 6.2.1.Background -- 6.2.2.Damage induced by rolling contacts with or without sliding effect -- 6.2.3.Fretting -- 6.3.A few results on contact mechanics -- 6.3.1.Hertz solution -- 6.3.2.Case of contact with friction under total sliding conditions -- 6.3.3.Case of contact with partial sliding -- 6.3.4.Elastic contact between two solids of different elastic modules -- 6.3.5.3D elastic contact -- 6.4.Elastic limit -- 6.5.Elastoplastic contact -- 6.5.1.Stationary methods -- 6.5.2.Direct cyclic method -- 6.6.Application to modeling of a few contact fatigue issues -- 6.6.1.General methodology -- 6.6.2.Initiation of fatigue cracks in rails -- 6.6.3.Propagation of initiated cracks -- 6.6.4.Application to fretting fatigue -- 6.7.Conclusion -- 6.8.Bibliography -- ch. 7 Thermal Fatigue / Luc Remy -- 7.1.Introduction -- 7.2.Characterization tests -- 7.2.1.Cyclic mechanical behavior -- 7.2.2.Damage -- 7.3.Constitutive and damage models at variable temperatures -- 7.3.1.Constitutive laws -- 7.3.2.Damage process modeling based on fatigue conditions -- 7.3.3.Modeling the damage process in complex cases: towards considering interactions with creep and oxidation phenomena -- 7.4.Applications -- 7.4.1.Exhaust manifolds in automotive industry -- 7.4.2.Cylinder heads made from aluminum alloys in the automotive industry -- 7.4.3.Brake disks in the rail and automotive industries -- 7.4.4.Nuclear industry pipes -- 7.4.5.Simple structures simulating turbine blades -- 7.5.Conclusion -- 7.6.Bibliography.
Record Nr. UNINA-9910812839803321
London, : ISTE
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fatigue of materials and structures [[electronic resource] /] / edited by Claude Bathias, Andre Pineau
Fatigue of materials and structures [[electronic resource] /] / edited by Claude Bathias, Andre Pineau
Pubbl/distr/stampa London, : ISTE
Descrizione fisica 1 online resource (527 p.)
Disciplina 620.1126
Altri autori (Persone) BathiasClaude
PineauA (André)
Collana ISTE
Soggetto topico Materials - Fatigue
Materials - Mechanical properties
Microstructure
ISBN 1-118-62343-6
1-299-31512-7
0-470-39401-3
1-61344-816-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Fatigue of Materials and Structures; Title Page; Copyright Page; Table of Contents; Foreword; Chapter 1. Introduction to Fatigue: Fundamentals and Methodology; 1.1. Introduction to the fatigue of materials; 1.1.1. Brief history of fatigue: its technical and scientific importance; 1.1.2. Definitions; 1.1.3. Endurance diagrams; 1.2. Mechanisms of fatigue damage; 1.2.1. Introduction/background; 1.2.2. Initiation of fatigue cracks; 1.2.3. Propagation of fatigue cracks; 1.3. Test systems; 1.4. Structural design and fatigue; 1.5. Fatigue of polymers, elastomers and composite materials
1.6. Conclusion1.7. Bibliography; Chapter 2. Modeling of Fatigue Strength and Endurance Curve; 2.1. Introduction; 2.2. Nature and aspect of the scatter of fatigue test results; 2.3. Determination of the endurance limit; 2.4. Estimation methods of fatigue resistance and standard deviation with N cycles; 2.4.1. Probit method; 2.4.2. Staircase method; 2.4.3. Iteration method; 2.4.4. Non-failed specimen method; 2.4.5. Choice of test method; 2.5. Mathematical representations and plotting methods of the Wöhler curve; 2.5.1. Introduction; 2.5.2. Mathematical representation of the Wöhler curve
2.5.3. Adjustment methods of a Wöhler curve to test results2.6. Estimation of the cycle number N for a given level of stress amplitude; 2.6.1. Principle; 2.6.2. Set-up; 2.6.3. Application; 2.7. Influence of mechanical parameters on endurance; 2.7.1. Influence of the mean stress; 2.7.2. Influence of the nature of forces; 2.8. Relationship between endurance and mechanical characteristics (of steels); 2.8.1. Estimations of σD; 2.8.2. Estimation of standard deviations; 2.8.3. Conclusion; 2.9. Bibliography; Chapter 3. Fatigue Crack Initiation; 3.1. Introduction
3.2. Physical mechanisms of crack initiation3.2.1. Three stages of fatigue failure: a reminder; 3.2.2. Influence of stress amplitude; 3.3. Methods of evaluating crack initiation; 3.3.1. Smooth specimens; 3.3.2. Notch effect; 3.4. Practical method of structure calculation; 3.4.1. Preliminary; 3.4.2. The problem to be solved; 3.4.3. Initiation parameters; 3.4.4. The master Wöhler curve (kt = 1); 3.4.5. Cumulative damage (kt = 1); 3.4.6. Specimens with kt > 1: correspondence curve; 3.4.7. Use of correspondence curves; 3.4.8. Plotting the correspondence curves; 3.4.9. Comments and conclusion
3.5. BibliographyChapter 4. Low-cycle Fatigue; 4.1. Introduction; 4.1.1. Application domain of low cycle plastic fatigue; 4.1.2. General description of the test methods: main issues; 4.2. Phenomenological description of low-cycle fatigue; 4.2.1. Background; 4.2.2. Cyclic work hardening; 4.2.3. Cyclic stress-strain relationships; 4.2.4. Fatigue strength; 4.2.5. Mathematical equations; 4.2.6. General behavior: sequence effects and control mode; 4.3. Adaptation mechanism and cracking during low-cycle fatigue; 4.3.1. Introduction; 4.3.2. Adaptation of the material
4.3.3. Description and elementary interpretation of the adaptation stage within structural alloys: steels
Record Nr. UNINA-9910137619403321
London, : ISTE
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fatigue of materials and structures [[electronic resource] /] / edited by Claude Bathias, Andre Pineau
Fatigue of materials and structures [[electronic resource] /] / edited by Claude Bathias, Andre Pineau
Pubbl/distr/stampa London, : ISTE
Descrizione fisica 1 online resource (527 p.)
Disciplina 620.1126
Altri autori (Persone) BathiasClaude
PineauA (André)
Collana ISTE
Soggetto topico Materials - Fatigue
Materials - Mechanical properties
Microstructure
ISBN 1-118-62343-6
1-299-31512-7
0-470-39401-3
1-61344-816-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Fatigue of Materials and Structures; Title Page; Copyright Page; Table of Contents; Foreword; Chapter 1. Introduction to Fatigue: Fundamentals and Methodology; 1.1. Introduction to the fatigue of materials; 1.1.1. Brief history of fatigue: its technical and scientific importance; 1.1.2. Definitions; 1.1.3. Endurance diagrams; 1.2. Mechanisms of fatigue damage; 1.2.1. Introduction/background; 1.2.2. Initiation of fatigue cracks; 1.2.3. Propagation of fatigue cracks; 1.3. Test systems; 1.4. Structural design and fatigue; 1.5. Fatigue of polymers, elastomers and composite materials
1.6. Conclusion1.7. Bibliography; Chapter 2. Modeling of Fatigue Strength and Endurance Curve; 2.1. Introduction; 2.2. Nature and aspect of the scatter of fatigue test results; 2.3. Determination of the endurance limit; 2.4. Estimation methods of fatigue resistance and standard deviation with N cycles; 2.4.1. Probit method; 2.4.2. Staircase method; 2.4.3. Iteration method; 2.4.4. Non-failed specimen method; 2.4.5. Choice of test method; 2.5. Mathematical representations and plotting methods of the Wöhler curve; 2.5.1. Introduction; 2.5.2. Mathematical representation of the Wöhler curve
2.5.3. Adjustment methods of a Wöhler curve to test results2.6. Estimation of the cycle number N for a given level of stress amplitude; 2.6.1. Principle; 2.6.2. Set-up; 2.6.3. Application; 2.7. Influence of mechanical parameters on endurance; 2.7.1. Influence of the mean stress; 2.7.2. Influence of the nature of forces; 2.8. Relationship between endurance and mechanical characteristics (of steels); 2.8.1. Estimations of σD; 2.8.2. Estimation of standard deviations; 2.8.3. Conclusion; 2.9. Bibliography; Chapter 3. Fatigue Crack Initiation; 3.1. Introduction
3.2. Physical mechanisms of crack initiation3.2.1. Three stages of fatigue failure: a reminder; 3.2.2. Influence of stress amplitude; 3.3. Methods of evaluating crack initiation; 3.3.1. Smooth specimens; 3.3.2. Notch effect; 3.4. Practical method of structure calculation; 3.4.1. Preliminary; 3.4.2. The problem to be solved; 3.4.3. Initiation parameters; 3.4.4. The master Wöhler curve (kt = 1); 3.4.5. Cumulative damage (kt = 1); 3.4.6. Specimens with kt > 1: correspondence curve; 3.4.7. Use of correspondence curves; 3.4.8. Plotting the correspondence curves; 3.4.9. Comments and conclusion
3.5. BibliographyChapter 4. Low-cycle Fatigue; 4.1. Introduction; 4.1.1. Application domain of low cycle plastic fatigue; 4.1.2. General description of the test methods: main issues; 4.2. Phenomenological description of low-cycle fatigue; 4.2.1. Background; 4.2.2. Cyclic work hardening; 4.2.3. Cyclic stress-strain relationships; 4.2.4. Fatigue strength; 4.2.5. Mathematical equations; 4.2.6. General behavior: sequence effects and control mode; 4.3. Adaptation mechanism and cracking during low-cycle fatigue; 4.3.1. Introduction; 4.3.2. Adaptation of the material
4.3.3. Description and elementary interpretation of the adaptation stage within structural alloys: steels
Record Nr. UNINA-9910829943403321
London, : ISTE
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Flow/damage surfaces for fiber-reinforced metals having different periodic microstructures / / Cliff J. Lissenden, Steven M. Arnold, Saiganesh K. Iyer
Flow/damage surfaces for fiber-reinforced metals having different periodic microstructures / / Cliff J. Lissenden, Steven M. Arnold, Saiganesh K. Iyer
Autore Lissenden Cliff Jesse
Pubbl/distr/stampa Cleveland, Ohio : , : National Aeronautics and Space Administration, Lewis Research Center, , November 1998
Descrizione fisica 1 online resource (28 pages) : illustrations
Collana NASA/TM
Soggetto topico Fiber composites
Metal matrix composites
Micromechanics
Finite element method
Microstructure
Damage
Shear stress
Strain rate
Transverse loads
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910705808803321
Lissenden Cliff Jesse  
Cleveland, Ohio : , : National Aeronautics and Space Administration, Lewis Research Center, , November 1998
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Grain boundary engineering the mechanical properties of Allvac 718Plus[trademark symbol] superalloy [[electronic resource] /] / Timothy P. Gabb ... [and others]
Grain boundary engineering the mechanical properties of Allvac 718Plus[trademark symbol] superalloy [[electronic resource] /] / Timothy P. Gabb ... [and others]
Pubbl/distr/stampa Cleveland, Ohio : , : National Aeronautics and Space Administration, Glenn Research Center, , [2010]
Descrizione fisica 1 online resource (19 pages) : illustrations (some color)
Altri autori (Persone) GabbTimothy Paul <1958->
Collana NASA/TM
Soggetto topico Heat resistant alloys
Mechanical properties
Microstructure
Grain boundaries
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Grain boundary engineering the mechanical properties of Allvac 718Plus superalloy
Record Nr. UNINA-9910701403103321
Cleveland, Ohio : , : National Aeronautics and Space Administration, Glenn Research Center, , [2010]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Hierarchical structures in biology as a guide for new materials technology [[electronic resource] /] / Committee on Synthetic Hierarchical Structures, National Materials Advisory Board, Commission on Engineering and Technical Systems, National Research Council
Hierarchical structures in biology as a guide for new materials technology [[electronic resource] /] / Committee on Synthetic Hierarchical Structures, National Materials Advisory Board, Commission on Engineering and Technical Systems, National Research Council
Pubbl/distr/stampa Washington, D.C., : National Academy Press, 1994
Descrizione fisica 1 online resource (144 p.)
Disciplina 620.1/1
Collana NMAB
Soggetto topico Materials - Research
Synthetic products
Microstructure
Morphology
Soggetto genere / forma Electronic books.
ISBN 1-280-20346-3
9786610203468
0-309-56213-9
0-585-00970-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Executive summary -- Introduction -- Natural hierarchical materials -- Synthetic hierarchical systems -- Fabrication of hierarchical systems -- Conclusions and recommendations: scientific and technological opportunities -- References -- Appendix A: Glossary of term -- Appendix B: Biographical sketches of committee members.
Record Nr. UNINA-9910455970603321
Washington, D.C., : National Academy Press, 1994
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Hierarchical structures in biology as a guide for new materials technology [[electronic resource] /] / Committee on Synthetic Hierarchical Structures, National Materials Advisory Board, Commission on Engineering and Technical Systems, National Research Council
Hierarchical structures in biology as a guide for new materials technology [[electronic resource] /] / Committee on Synthetic Hierarchical Structures, National Materials Advisory Board, Commission on Engineering and Technical Systems, National Research Council
Pubbl/distr/stampa Washington, D.C., : National Academy Press, 1994
Descrizione fisica 1 online resource (144 p.)
Disciplina 620.1/1
Collana NMAB
Soggetto topico Materials - Research
Synthetic products
Microstructure
Morphology
ISBN 1-280-20346-3
9786610203468
0-309-56213-9
0-585-00970-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Executive summary -- Introduction -- Natural hierarchical materials -- Synthetic hierarchical systems -- Fabrication of hierarchical systems -- Conclusions and recommendations: scientific and technological opportunities -- References -- Appendix A: Glossary of term -- Appendix B: Biographical sketches of committee members.
Record Nr. UNINA-9910778508803321
Washington, D.C., : National Academy Press, 1994
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Hierarchical structures in biology as a guide for new materials technology / / Committee on Synthetic Hierarchical Structures, National Materials Advisory Board, Commission on Engineering and Technical Systems, National Research Council
Hierarchical structures in biology as a guide for new materials technology / / Committee on Synthetic Hierarchical Structures, National Materials Advisory Board, Commission on Engineering and Technical Systems, National Research Council
Edizione [1st ed.]
Pubbl/distr/stampa Washington, D.C., : National Academy Press, 1994
Descrizione fisica 1 online resource (144 p.)
Disciplina 620.1/1
Collana NMAB
Soggetto topico Materials - Research
Synthetic products
Microstructure
Morphology
ISBN 1-280-20346-3
9786610203468
0-309-56213-9
0-585-00970-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Executive summary -- Introduction -- Natural hierarchical materials -- Synthetic hierarchical systems -- Fabrication of hierarchical systems -- Conclusions and recommendations: scientific and technological opportunities -- References -- Appendix A: Glossary of term -- Appendix B: Biographical sketches of committee members.
Record Nr. UNINA-9910828540403321
Washington, D.C., : National Academy Press, 1994
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
High-strain-rate compression testing of ice [[electronic resource] /] / Mostafa Shazly and Vikas Prakash, Bradley A. Lerch
High-strain-rate compression testing of ice [[electronic resource] /] / Mostafa Shazly and Vikas Prakash, Bradley A. Lerch
Autore Shazly Mostafa
Pubbl/distr/stampa Cleveland, Ohio : , : National Aeronautics and Space Administration, Glenn Research Center, , [2006]
Descrizione fisica 1 online resource (91 pages) : illustrations
Altri autori (Persone) PrakashVikas
LerchBradley A
Collana NASA TM-
Soggetto topico Dynamic response
Strain rate
Ice
Compression tests
Microstructure
Space Transportation System flights
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910697162303321
Shazly Mostafa  
Cleveland, Ohio : , : National Aeronautics and Space Administration, Glenn Research Center, , [2006]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui