top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Active plasmonics and tuneable plasmonic materials [[electronic resource] /] / edited by Anatoly V. Zayats, Stefan Maier
Active plasmonics and tuneable plasmonic materials [[electronic resource] /] / edited by Anatoly V. Zayats, Stefan Maier
Edizione [1st ed.]
Pubbl/distr/stampa Hoboken, N.J., : Wiley ; Science Wise Publishing, c2013
Descrizione fisica 1 online resource (336 pages)
Disciplina 530.4/4
Altri autori (Persone) ZayatsA. V (Anatoly V.)
MaierStefan A
Collana A Wiley-Science Wise Co-Publication
Soggetto topico Plasmons (Physics)
Metamaterials
ISBN 1-118-63439-X
1-118-63442-X
1-118-63445-4
Classificazione SCI074000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Active Plasmonics and Tuneable Plasmonic Metamaterials; Contents; Preface; Contributors; 1 Spaser, Plasmonic Amplification, and Loss Compensation; 1.1 Introduction to Spasers and Spasing; 1.2 Spaser Fundamentals; 1.2.1 Brief Overview of the Latest Progress in Spasers; 1.3 Quantum Theory of Spaser; 1.3.1 Surface Plasmon Eigenmodes and Their Quantization; 1.3.2 Quantum Density Matrix Equations (Optical Bloch Equations) for Spaser; 1.3.3 Equations for CW Regime; 1.3.4 Spaser operation in CW Mode; 1.3.5 Spaser as Ultrafast Quantum Nanoamplifier
1.3.6 Monostable Spaser as a Nanoamplifier in Transient Regime1.4 Compensation of Loss by Gain and Spasing; 1.4.1 Introduction to Loss Compensation by Gain; 1.4.2 Permittivity of Nanoplasmonic Metamaterial; 1.4.3 Plasmonic Eigenmodes and Effective Resonant Permittivity of Metamaterials; 1.4.4 Conditions of Loss Compensation by Gain and Spasing; 1.4.5 Discussion of Spasing and Loss Compensation by Gain; 1.4.6 Discussion of Published Research on Spasing and Loss Compensations; Acknowledgments; References; 2 Nonlinear Effects in Plasmonic Systems; 2.1 Introduction
2.2 Metallic Nonlinearities-Basic Effects and Models2.2.1 Local Nonlinearity-Transients by Carrier Heating; 2.2.2 Plasma Nonlinearity-The Ponderomotive Force; 2.2.3 Parametric Process in Metals; 2.2.4 Metal Damage and Ablation; 2.3 Nonlinear Propagation of Surface Plasmon Polaritons; 2.3.1 Nonlinear SPP Modes; 2.3.2 Plasmon Solitons; 2.3.3 Nonlinear Plasmonic Waveguide Couplers; 2.4 Localized Surface Plasmon Nonlinearity; 2.4.1 Cavities and Nonlinear Interactions Enhancement; 2.4.2 Enhancement of Nonlinear Vacuum Effects; 2.4.3 High Harmonic Generation
2.4.4 Localized Field Enhancement Limitations2.5 Summary; Acknowledgments; References; 3 Plasmonic Nanorod Metamaterials as a Platform for Active Nanophotonics; 3.1 Introduction; 3.2 Nanorod Metamaterial Geometry; 3.3 Optical Properties; 3.3.1 Microscopic Description of the Metamaterial Electromagnetic Modes; 3.3.2 Effective Medium Theory of the Nanorod Metamaterial; 3.3.3 Epsilon-Near-Zero Metamaterials and Spatial Dispersion Effects; 3.3.4 Guided Modes in the Anisotropic Metamaterial Slab; 3.4 Nonlinear Effects in Nanorod Metamaterials
3.4.1 Nanorod Metamaterial Hybridized with Nonlinear Dielectric3.4.2 Intrinsic Metal Nonlinearity of Nanorod Metamaterials; 3.5 Molecular Plasmonics in Metamaterials; 3.6 Electro-Optical Effects in Plasmonic Nanorod Metamaterial Hybridized with Liquid Crystals; 3.7 Conclusion; References; 4 Transformation Optics for Plasmonics; 4.1 Introduction; 4.2 The Conformal Transformation Approach; 4.2.1 A Set of Canonic Plasmonic Structures; 4.2.2 Perfect Singular Structures; 4.2.3 Singular Plasmonic Structures; 4.2.3.1 Conformal Mapping of Singular Structures
4.2.3.2 Conformal Mapping of Blunt-Ended Singular Structures
Record Nr. UNINA-9910813110903321
Hoboken, N.J., : Wiley ; Science Wise Publishing, c2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in condensed matter optics / / Liangyao Chen [and five others] ; edited by Liangyao Chen
Advances in condensed matter optics / / Liangyao Chen [and five others] ; edited by Liangyao Chen
Autore Chen Liangyao
Pubbl/distr/stampa Berlin, Germany : , : De Gruyter : , : Shanghai Jiao Tong University Press, , 2015
Descrizione fisica 1 online resource (290 p.)
Disciplina 530.4/12
Collana Advances in Optical Physics
Soggetto topico Condensed matter - Optical properties
Optics
Metamaterials
Soggetto genere / forma Electronic books.
ISBN 1-5231-0446-5
3-11-030702-2
3-11-038818-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front matter -- The series: Advances in Optical Physics -- Preface -- Contents -- 1. Optoelectronic properties of narrow band gap semiconductors -- 2. The group velocity picture: the dynamic study of metamaterial systems -- 3. Study of the characteristics of light propagating at the metal-based interface -- 4. Photo-induced spin dynamics in spintronic materials -- 5. Research on the photoelectric effect in perovskite oxide heterostructures -- 6. Magnetic resonance and coupling effects in metallic metamaterials -- Index -- Backmatter
Record Nr. UNINA-9910464644603321
Chen Liangyao  
Berlin, Germany : , : De Gruyter : , : Shanghai Jiao Tong University Press, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in condensed matter optics / / Liangyao Chen [and five others] ; edited by Liangyao Chen
Advances in condensed matter optics / / Liangyao Chen [and five others] ; edited by Liangyao Chen
Autore Chen Liangyao
Pubbl/distr/stampa Berlin, Germany : , : De Gruyter : , : Shanghai Jiao Tong University Press, , 2015
Descrizione fisica 1 online resource (290 p.)
Disciplina 530.4/12
Collana Advances in Optical Physics
Soggetto topico Condensed matter - Optical properties
Optics
Metamaterials
Soggetto non controllato Enhanced Field Laser Physics
Optical Physics
ISBN 1-5231-0446-5
3-11-030702-2
3-11-038818-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front matter -- The series: Advances in Optical Physics -- Preface -- Contents -- 1. Optoelectronic properties of narrow band gap semiconductors -- 2. The group velocity picture: the dynamic study of metamaterial systems -- 3. Study of the characteristics of light propagating at the metal-based interface -- 4. Photo-induced spin dynamics in spintronic materials -- 5. Research on the photoelectric effect in perovskite oxide heterostructures -- 6. Magnetic resonance and coupling effects in metallic metamaterials -- Index -- Backmatter
Record Nr. UNINA-9910788813403321
Chen Liangyao  
Berlin, Germany : , : De Gruyter : , : Shanghai Jiao Tong University Press, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in condensed matter optics / / Liangyao Chen [and five others] ; edited by Liangyao Chen
Advances in condensed matter optics / / Liangyao Chen [and five others] ; edited by Liangyao Chen
Autore Chen Liangyao
Pubbl/distr/stampa Berlin, Germany : , : De Gruyter : , : Shanghai Jiao Tong University Press, , 2015
Descrizione fisica 1 online resource (290 p.)
Disciplina 530.4/12
Collana Advances in Optical Physics
Soggetto topico Condensed matter - Optical properties
Optics
Metamaterials
Soggetto non controllato Enhanced Field Laser Physics
Optical Physics
ISBN 1-5231-0446-5
3-11-030702-2
3-11-038818-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front matter -- The series: Advances in Optical Physics -- Preface -- Contents -- 1. Optoelectronic properties of narrow band gap semiconductors -- 2. The group velocity picture: the dynamic study of metamaterial systems -- 3. Study of the characteristics of light propagating at the metal-based interface -- 4. Photo-induced spin dynamics in spintronic materials -- 5. Research on the photoelectric effect in perovskite oxide heterostructures -- 6. Magnetic resonance and coupling effects in metallic metamaterials -- Index -- Backmatter
Record Nr. UNINA-9910822173903321
Chen Liangyao  
Berlin, Germany : , : De Gruyter : , : Shanghai Jiao Tong University Press, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Adventures in Contemporary Electromagnetic Theory [[electronic resource] /] / edited by Tom G. Mackay, Akhlesh Lakhtakia
Adventures in Contemporary Electromagnetic Theory [[electronic resource] /] / edited by Tom G. Mackay, Akhlesh Lakhtakia
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (548 pages)
Disciplina 929.374
Soggetto topico Electronic circuits
Nanoelectromechanical systems
Metamaterials
Electronic Circuits and Systems
Nanoscale Devices
ISBN 3-031-24617-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- 1. Our Werner always brought us joy -- 2. Scalar potentials and applications -- 3. A novel approach to electromagnetic constitutive relations -- 4. On the anatomy of Voigt plane waves -- 5. Electromagnetic radiation by finite-sized electric and magnetic dipoles embedded in homogeneous uniaxial dielectric materials -- 6. Near-field microwave imaging employing measured point-spread functions -- 7. Electromagnetic wave propagation inside rectangular chirowaveguides using the coupled mode method -- 8. On a Steklov spectrum in electromagnetics -- 9. Using boundary conditions with the Ewald–Oseen extinction theorem -- 10. Spatial sampling and interpolation techniques in computational electromagnetics and beyond -- 11. Light-matter interaction at the sub-wavelength scale: Pathways to design nanophotonic devices -- 12. Integrated photonics with near-zero index materials -- 13. Correlated disorder in broadband dielectric multilayered reflectors -- 14. Scattering from reconfigurable metasurfaces and their applications -- 15. Specular reflection and transmission of electromagnetic waves by disordered metasurfaces -- 16. Continuity of field patterns for exceptional surface waves and exceptional compound waves -- 17. Cavity modes and surface plasmon waves coupling on nanostructured surfaces for enhanced sensing and energy applications -- 18. Analysis of diffraction from all-dielectric gratings using entire-domain integralequation techniques -- 19. Rigorous coupled-wave approach and transformation optics -- 20. Mind the gap between theory and experiment -- 21. Theoretical future — Vision 2030.
Record Nr. UNINA-9910736002303321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Chirality, magnetism and magnetoelectricity : separate phenomena and joint effects in metamaterial structures / / Eugene Kamenetskii, editor
Chirality, magnetism and magnetoelectricity : separate phenomena and joint effects in metamaterial structures / / Eugene Kamenetskii, editor
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (587 pages)
Disciplina 620.11
Collana Topics in Applied Physics
Soggetto topico Metamaterials
Electronics - Materials
Magnetic materials
ISBN 3-030-62844-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Contributors -- 1 Chiral Coupling to Magnetodipolar Radiation -- 1.1 Introduction -- 1.2 Chiral Excitation of Spin Waves by Metallic Stripline -- 1.2.1 Oersted Magnetic Fields -- 1.2.2 Chiral Excitation of Spin Waves -- 1.3 Chiral Spin Wave Excitation and Absorption by a Magnetic Transducer -- 1.3.1 Chiral Magnetodipolar Field -- 1.3.2 Non-local Detection -- 1.3.3 Coherent Chiral Spin Wave Transmission -- 1.3.4 Incoherent Chiral Pumping -- 1.4 Conclusion and Outlook -- References -- 2 Surface Plasmons for Chiral Sensing -- 2.1 Introduction -- 2.1.1 Chirality and Optical Activity -- 2.1.2 Chiral Sensing Techniques -- 2.2 Surface Plasmon Resonance (SPR) -- 2.2.1 SPPs at a Metal-Dielectric Interface -- 2.2.2 SPPs at a Metal-Chiral Interface -- 2.3 CHISPR -- 2.3.1 Mechanism of Chiral-Dependent SPR-Reflectance Angular Split -- 2.3.2 Sensitivity of Chiral-Dependent SPR-reflectance Angular Split -- 2.3.3 Differential Measurements -- 2.4 Complete Measurement of Chirality -- 2.5 Optical Chirality Conservation -- 2.6 Discussion and Conclusions -- References -- 3 Spin-Polarized Plasmonics: Fresh View on Magnetic Nanoparticles -- 3.1 Introduction -- 3.2 Spin Polarization in Co Nanoparticles -- 3.3 Methods -- 3.4 Structural Properties -- 3.5 Magnetic Response -- 3.6 Optical Resonance in Spin-Polarized Co Nanoparticles -- 3.7 Effect of Dimers -- 3.8 Conclusions -- References -- 4 Chirality and Antiferromagnetism in Optical Metasurfaces -- 4.1 Introduction -- 4.1.1 Optical Elements -- 4.1.2 History of Optical Metasurfaces -- 4.2 Chirality of Light -- 4.2.1 Spin of a Photon and Spin Angular Momentum -- 4.2.2 Optical Vortices and Orbital Angular Momentum -- 4.3 Optical Chiral Metasurfaces -- 4.3.1 Plasmonic Chiral Metasurfaces -- 4.3.2 Chiral Nanosieves -- 4.3.3 Dielectric Chiral Metasurfaces and Anti-ferromagnetic Resonances.
4.4 Applications of Chiral Light and Metasurfaces -- 4.4.1 Circular Dichroism and Helical Dichroism -- 4.4.2 Chiral Meta-Optics -- 4.5 Conclusions -- References -- 5 Light-Nanomatter Chiral Interaction in Optical-Force Effects -- 5.1 Introduction -- 5.2 3D Near-Field CD by Optical-Force Measurement -- 5.2.1 Model and Method -- 5.2.2 CD Spectra and NF-CD Maps -- 5.2.3 CD of Optical Force -- 5.3 Optical Force to Rotate Nano-Particles in Nanoscale Area -- 5.3.1 Model and Method -- 5.3.2 Optical Force to Rotate the NP -- 5.3.3 Optical Current -- 5.4 Summary -- References -- 6 Magnetoelectricity of Chiral Micromagnetic Structures -- 6.1 Introduction. Chiral Structures of an Order Parameter -- 6.2 Microscopic Mechanisms of Spin Flexoelectricity -- 6.3 Chirality Dependent Domain Wall Motion -- 6.4 Chirality Dependent Bubble Domain Generation -- 6.5 Spin Flexoelectricity of Bloch Lines, Vortexes and Skyrmions -- 6.6 Conclusion -- Appendix: Experimental and Calculation Details -- References -- 7 Current-Induced Dynamics of Chiral Magnetic Structures: Creation, Motion, and Applications -- 7.1 Introduction -- 7.2 Continuum Model for the Magnetization -- 7.2.1 Magnetization Statics -- 7.2.2 Magnetization Dynamics in the Presence of Spin-Torques -- 7.3 Magnetic Solitons -- 7.4 Creation of Magnetic Solitons -- 7.4.1 Creation of One-Dimensional Solitons -- 7.4.2 Creation of Two-Dimensional Solitons -- 7.5 Motion of Magnetic Solitons -- 7.5.1 A Collective Coordinate Approximation: Thiele Equations of Motion -- 7.5.2 Magnetization Dynamics of Domain Walls in Nanowires -- 7.5.3 Magnetization Dynamics of Two-Dimensional Solitons -- 7.5.4 Magnetization Dynamics of Three-Dimensional Hopfions -- 7.6 Potential Applications -- 7.6.1 Storage and Logic Technologies -- 7.6.2 Unconventional Spintronics-Based Computing Schemes -- 7.7 Conclusion -- References.
8 Microwave-Driven Dynamics of Magnetic Skyrmions Under a Tilted Magnetic Field: Magnetic Resonances, Translational Motions, and Spin-Motive Forces -- 8.1 Introduction -- 8.2 Spin Model of the Skyrmion-Hosting Magnets -- 8.3 Microwave-Active Spin-Wave Modes -- 8.4 Microwave-Magnetic-Field-Driven Translational Motion of Skyrmion Crystal -- 8.5 Microwave-Electric-Field-Driven Translational Motion of Isolated Skyrmions -- 8.6 Electrically Driven Spin Torque and Dynamical Dzyaloshinskii-Moriya Interaction -- 8.7 Microwave-Induced DC Spin-Motive Force -- 8.8 Concluding Remarks -- References -- 9 Symmetry Approach to Chiral Optomagnonics in Antiferromagnetic Insulators -- 9.1 Introduction -- 9.2 Optical Chirality and Nongeometric Symmetries of the Maxwell's Equations -- 9.2.1 Symmetry Analysis of the Maxwell's Equations -- 9.2.2 Optical Chirality in Gyrotropic Media -- 9.3 Spin-Wave Chirality in Antiferromagnetic Insulators -- 9.3.1 Equations of Motion for Antiferromagnetic Spin Waves -- 9.3.2 Nongeometric Symmetries for Spin-Wave Dynamics -- 9.3.3 Conserving Chirality of Spin Waves -- 9.3.4 Spin-Wave Chirality in Dissipative Media -- 9.4 Excitation of Magnon Spin Photocurrents with Polarized Fields -- 9.4.1 Magnon Spin Currents in Antiferromagnets -- 9.4.2 Photo-Excitation of Magnon Spin Currents -- 9.4.3 Microscopic Theory of Magnon Spin Photocurrents -- 9.4.4 Magnon Spin Photocurrents in Antiferromagnetic Insulators and Low Dimensional Materials -- 9.5 Conclusions -- References -- 10 Realization of Artificial Chirality in Micro-/Nano-Scale Three-Dimensional Plasmonic Structures -- 10.1 Introduction -- 10.2 Chirality at the Micrometer-Scale or Higher: Top-Down Approach -- 10.2.1 Direct Laser Writing -- 10.2.2 Buckling Process Using Focused Ion Beam -- 10.3 Chirality at the Nanometer to Micrometer Scale -- 10.3.1 Electron Beam Lithography Overlay.
10.3.2 Glancing Angle Deposition -- 10.3.3 Unconventional Approaches -- 10.4 Chirality at a Nanometer Scale: Bottom-Up Approach -- 10.4.1 Molecular Self-assembly -- 10.4.2 DNA Self-assembly -- 10.4.3 Block Copolymer Self-assembly -- 10.5 Conclusion -- References -- 11 Floquet Theory and Ultrafast Control of Magnetism -- 11.1 Introduction -- 11.2 Floquet Engineering -- 11.2.1 Floquet Theorem -- 11.2.2 Discretized Fourier Transformation and Matrix Form of Schrødinger Equation -- 11.2.3 Floquet-Magnus Expansion and Floquet Hamiltonian -- 11.2.4 Physical Meaning of Floquet Hamiltonian -- 11.3 Laser and Typical Excitations in Solids -- 11.4 Floquet Engineering in Magnets -- 11.4.1 Inverse Faraday Effect by THz Laser -- 11.4.2 Ultrafast Control of Spin Chirality and Spin Current in Multiferroic Magnets -- 11.5 Summary and Outlook -- References -- 12 Magnetoelastic Waves in Thin Films -- 12.1 Introduction -- 12.2 Spin Waves -- 12.2.1 Magnetic Interactions and Magnetization Dynamics -- 12.2.2 Spin Waves in the Bulk Ferromagnets -- 12.2.3 Spin Waves in Ferromagnetic Thin Films -- 12.3 Elastic Waves -- 12.3.1 Elastodynamic Equations of Motion -- 12.3.2 Elastic Waves in Thin Films -- 12.4 Magnetoelastic Waves -- 12.4.1 Magnetoelastic Interactions -- 12.4.2 Magnetoelastic Waves in Thin Films -- 12.4.3 Damping of Magnetoelastic Waves -- 12.5 Conclusion -- References -- 13 Theoretical Generalization of the Optical Chirality to Arbitrary Optical Media -- 13.1 Introduction -- 13.2 Electromagnetic Energy Density in Dispersive and Lossy Media: A General Approach from the Continuity Equation -- 13.2.1 Poynting's Theorem and Energy Density in Non-Dispersive Media -- 13.2.2 Electromagnetic Energy Density in Dispersive Media: Lossless (Brillouin's Approach) and Lossy (Loudon's Approach) Cases -- 13.3 Generalizing the Conservation Law for the Optical Chirality.
13.4 Optical Chirality Density in Linear Dispersive Media -- 13.4.1 Optical Chirality Density in Dispersive and Lossless Media: Brillouin's Approach -- 13.4.2 Optical Chirality Density in Dispersive and Lossy Media: Loudon's Approach -- 13.4.3 Brillouin's Approach Vs Loudon's Approach -- 13.5 Conclusions and Outlook -- References -- 14 Topology in Magnetism -- 14.1 Introduction -- 14.2 Topological Spin Textures -- 14.2.1 Domain Walls -- 14.2.2 Vortices and Skyrmions -- 14.2.3 Hopfions -- 14.3 Topological Spin Waves -- 14.3.1 Topologically Protected Edge Spin Waves -- 14.3.2 3D Topological Spin Waves -- 14.4 Conclusion -- References -- 15 Topological Dynamics of Spin Texture Based Metamaterials -- 15.1 Introduction -- 15.2 Topological Structures, Properties, and Applications of Magnetic Solitons -- 15.3 The Topological Properties of Skyrmion Lattice -- 15.3.1 Large-Scale Micromagnetic Simulations -- 15.3.2 Theoretical Model -- 15.4 Corner States in a Breathing Kagome Lattice of Vortices -- 15.4.1 The Theoretical Results and Discussions -- 15.4.2 Micromagnetic Simulations -- 15.5 Corner States in a Breathing Honeycomb Lattice of Vortices -- 15.5.1 Theoretical Model -- 15.5.2 Corner States and Phase Diagram -- 15.5.3 Micromagnetic Simulations -- 15.6 Conclusion and Outlook -- References -- 16 Antiferromagnetic Skyrmions and Bimerons -- 16.1 Introduction -- 16.2 Current-Driven Creation, Motion, and Chaos of Antiferromagnetic Skyrmions and Bimerons -- 16.3 Spin Torque Nano-oscillators Based on Antiferromagnetic Skyrmions -- 16.4 Synthetic Antiferromagnetic Skyrmions Driven by the Spin Current -- 16.5 Antiferromagnetic Skyrmions Driven by the Magnetic Anisotropy Gradient -- 16.6 Pinning and Depinning of Antiferromagnetic Skyrmions -- 16.7 Summary -- References -- 17 Axion Electrodynamics in Magnetoelectric Media -- 17.1 Introduction.
17.2 Nondynamical Axion Electrodynamics.
Record Nr. UNISA-996466749703316
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Chirality, magnetism and magnetoelectricity : separate phenomena and joint effects in metamaterial structures / / Eugene Kamenetskii, editor
Chirality, magnetism and magnetoelectricity : separate phenomena and joint effects in metamaterial structures / / Eugene Kamenetskii, editor
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (587 pages)
Disciplina 620.11
Collana Topics in Applied Physics
Soggetto topico Metamaterials
Electronics - Materials
Magnetic materials
ISBN 3-030-62844-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Contributors -- 1 Chiral Coupling to Magnetodipolar Radiation -- 1.1 Introduction -- 1.2 Chiral Excitation of Spin Waves by Metallic Stripline -- 1.2.1 Oersted Magnetic Fields -- 1.2.2 Chiral Excitation of Spin Waves -- 1.3 Chiral Spin Wave Excitation and Absorption by a Magnetic Transducer -- 1.3.1 Chiral Magnetodipolar Field -- 1.3.2 Non-local Detection -- 1.3.3 Coherent Chiral Spin Wave Transmission -- 1.3.4 Incoherent Chiral Pumping -- 1.4 Conclusion and Outlook -- References -- 2 Surface Plasmons for Chiral Sensing -- 2.1 Introduction -- 2.1.1 Chirality and Optical Activity -- 2.1.2 Chiral Sensing Techniques -- 2.2 Surface Plasmon Resonance (SPR) -- 2.2.1 SPPs at a Metal-Dielectric Interface -- 2.2.2 SPPs at a Metal-Chiral Interface -- 2.3 CHISPR -- 2.3.1 Mechanism of Chiral-Dependent SPR-Reflectance Angular Split -- 2.3.2 Sensitivity of Chiral-Dependent SPR-reflectance Angular Split -- 2.3.3 Differential Measurements -- 2.4 Complete Measurement of Chirality -- 2.5 Optical Chirality Conservation -- 2.6 Discussion and Conclusions -- References -- 3 Spin-Polarized Plasmonics: Fresh View on Magnetic Nanoparticles -- 3.1 Introduction -- 3.2 Spin Polarization in Co Nanoparticles -- 3.3 Methods -- 3.4 Structural Properties -- 3.5 Magnetic Response -- 3.6 Optical Resonance in Spin-Polarized Co Nanoparticles -- 3.7 Effect of Dimers -- 3.8 Conclusions -- References -- 4 Chirality and Antiferromagnetism in Optical Metasurfaces -- 4.1 Introduction -- 4.1.1 Optical Elements -- 4.1.2 History of Optical Metasurfaces -- 4.2 Chirality of Light -- 4.2.1 Spin of a Photon and Spin Angular Momentum -- 4.2.2 Optical Vortices and Orbital Angular Momentum -- 4.3 Optical Chiral Metasurfaces -- 4.3.1 Plasmonic Chiral Metasurfaces -- 4.3.2 Chiral Nanosieves -- 4.3.3 Dielectric Chiral Metasurfaces and Anti-ferromagnetic Resonances.
4.4 Applications of Chiral Light and Metasurfaces -- 4.4.1 Circular Dichroism and Helical Dichroism -- 4.4.2 Chiral Meta-Optics -- 4.5 Conclusions -- References -- 5 Light-Nanomatter Chiral Interaction in Optical-Force Effects -- 5.1 Introduction -- 5.2 3D Near-Field CD by Optical-Force Measurement -- 5.2.1 Model and Method -- 5.2.2 CD Spectra and NF-CD Maps -- 5.2.3 CD of Optical Force -- 5.3 Optical Force to Rotate Nano-Particles in Nanoscale Area -- 5.3.1 Model and Method -- 5.3.2 Optical Force to Rotate the NP -- 5.3.3 Optical Current -- 5.4 Summary -- References -- 6 Magnetoelectricity of Chiral Micromagnetic Structures -- 6.1 Introduction. Chiral Structures of an Order Parameter -- 6.2 Microscopic Mechanisms of Spin Flexoelectricity -- 6.3 Chirality Dependent Domain Wall Motion -- 6.4 Chirality Dependent Bubble Domain Generation -- 6.5 Spin Flexoelectricity of Bloch Lines, Vortexes and Skyrmions -- 6.6 Conclusion -- Appendix: Experimental and Calculation Details -- References -- 7 Current-Induced Dynamics of Chiral Magnetic Structures: Creation, Motion, and Applications -- 7.1 Introduction -- 7.2 Continuum Model for the Magnetization -- 7.2.1 Magnetization Statics -- 7.2.2 Magnetization Dynamics in the Presence of Spin-Torques -- 7.3 Magnetic Solitons -- 7.4 Creation of Magnetic Solitons -- 7.4.1 Creation of One-Dimensional Solitons -- 7.4.2 Creation of Two-Dimensional Solitons -- 7.5 Motion of Magnetic Solitons -- 7.5.1 A Collective Coordinate Approximation: Thiele Equations of Motion -- 7.5.2 Magnetization Dynamics of Domain Walls in Nanowires -- 7.5.3 Magnetization Dynamics of Two-Dimensional Solitons -- 7.5.4 Magnetization Dynamics of Three-Dimensional Hopfions -- 7.6 Potential Applications -- 7.6.1 Storage and Logic Technologies -- 7.6.2 Unconventional Spintronics-Based Computing Schemes -- 7.7 Conclusion -- References.
8 Microwave-Driven Dynamics of Magnetic Skyrmions Under a Tilted Magnetic Field: Magnetic Resonances, Translational Motions, and Spin-Motive Forces -- 8.1 Introduction -- 8.2 Spin Model of the Skyrmion-Hosting Magnets -- 8.3 Microwave-Active Spin-Wave Modes -- 8.4 Microwave-Magnetic-Field-Driven Translational Motion of Skyrmion Crystal -- 8.5 Microwave-Electric-Field-Driven Translational Motion of Isolated Skyrmions -- 8.6 Electrically Driven Spin Torque and Dynamical Dzyaloshinskii-Moriya Interaction -- 8.7 Microwave-Induced DC Spin-Motive Force -- 8.8 Concluding Remarks -- References -- 9 Symmetry Approach to Chiral Optomagnonics in Antiferromagnetic Insulators -- 9.1 Introduction -- 9.2 Optical Chirality and Nongeometric Symmetries of the Maxwell's Equations -- 9.2.1 Symmetry Analysis of the Maxwell's Equations -- 9.2.2 Optical Chirality in Gyrotropic Media -- 9.3 Spin-Wave Chirality in Antiferromagnetic Insulators -- 9.3.1 Equations of Motion for Antiferromagnetic Spin Waves -- 9.3.2 Nongeometric Symmetries for Spin-Wave Dynamics -- 9.3.3 Conserving Chirality of Spin Waves -- 9.3.4 Spin-Wave Chirality in Dissipative Media -- 9.4 Excitation of Magnon Spin Photocurrents with Polarized Fields -- 9.4.1 Magnon Spin Currents in Antiferromagnets -- 9.4.2 Photo-Excitation of Magnon Spin Currents -- 9.4.3 Microscopic Theory of Magnon Spin Photocurrents -- 9.4.4 Magnon Spin Photocurrents in Antiferromagnetic Insulators and Low Dimensional Materials -- 9.5 Conclusions -- References -- 10 Realization of Artificial Chirality in Micro-/Nano-Scale Three-Dimensional Plasmonic Structures -- 10.1 Introduction -- 10.2 Chirality at the Micrometer-Scale or Higher: Top-Down Approach -- 10.2.1 Direct Laser Writing -- 10.2.2 Buckling Process Using Focused Ion Beam -- 10.3 Chirality at the Nanometer to Micrometer Scale -- 10.3.1 Electron Beam Lithography Overlay.
10.3.2 Glancing Angle Deposition -- 10.3.3 Unconventional Approaches -- 10.4 Chirality at a Nanometer Scale: Bottom-Up Approach -- 10.4.1 Molecular Self-assembly -- 10.4.2 DNA Self-assembly -- 10.4.3 Block Copolymer Self-assembly -- 10.5 Conclusion -- References -- 11 Floquet Theory and Ultrafast Control of Magnetism -- 11.1 Introduction -- 11.2 Floquet Engineering -- 11.2.1 Floquet Theorem -- 11.2.2 Discretized Fourier Transformation and Matrix Form of Schrødinger Equation -- 11.2.3 Floquet-Magnus Expansion and Floquet Hamiltonian -- 11.2.4 Physical Meaning of Floquet Hamiltonian -- 11.3 Laser and Typical Excitations in Solids -- 11.4 Floquet Engineering in Magnets -- 11.4.1 Inverse Faraday Effect by THz Laser -- 11.4.2 Ultrafast Control of Spin Chirality and Spin Current in Multiferroic Magnets -- 11.5 Summary and Outlook -- References -- 12 Magnetoelastic Waves in Thin Films -- 12.1 Introduction -- 12.2 Spin Waves -- 12.2.1 Magnetic Interactions and Magnetization Dynamics -- 12.2.2 Spin Waves in the Bulk Ferromagnets -- 12.2.3 Spin Waves in Ferromagnetic Thin Films -- 12.3 Elastic Waves -- 12.3.1 Elastodynamic Equations of Motion -- 12.3.2 Elastic Waves in Thin Films -- 12.4 Magnetoelastic Waves -- 12.4.1 Magnetoelastic Interactions -- 12.4.2 Magnetoelastic Waves in Thin Films -- 12.4.3 Damping of Magnetoelastic Waves -- 12.5 Conclusion -- References -- 13 Theoretical Generalization of the Optical Chirality to Arbitrary Optical Media -- 13.1 Introduction -- 13.2 Electromagnetic Energy Density in Dispersive and Lossy Media: A General Approach from the Continuity Equation -- 13.2.1 Poynting's Theorem and Energy Density in Non-Dispersive Media -- 13.2.2 Electromagnetic Energy Density in Dispersive Media: Lossless (Brillouin's Approach) and Lossy (Loudon's Approach) Cases -- 13.3 Generalizing the Conservation Law for the Optical Chirality.
13.4 Optical Chirality Density in Linear Dispersive Media -- 13.4.1 Optical Chirality Density in Dispersive and Lossless Media: Brillouin's Approach -- 13.4.2 Optical Chirality Density in Dispersive and Lossy Media: Loudon's Approach -- 13.4.3 Brillouin's Approach Vs Loudon's Approach -- 13.5 Conclusions and Outlook -- References -- 14 Topology in Magnetism -- 14.1 Introduction -- 14.2 Topological Spin Textures -- 14.2.1 Domain Walls -- 14.2.2 Vortices and Skyrmions -- 14.2.3 Hopfions -- 14.3 Topological Spin Waves -- 14.3.1 Topologically Protected Edge Spin Waves -- 14.3.2 3D Topological Spin Waves -- 14.4 Conclusion -- References -- 15 Topological Dynamics of Spin Texture Based Metamaterials -- 15.1 Introduction -- 15.2 Topological Structures, Properties, and Applications of Magnetic Solitons -- 15.3 The Topological Properties of Skyrmion Lattice -- 15.3.1 Large-Scale Micromagnetic Simulations -- 15.3.2 Theoretical Model -- 15.4 Corner States in a Breathing Kagome Lattice of Vortices -- 15.4.1 The Theoretical Results and Discussions -- 15.4.2 Micromagnetic Simulations -- 15.5 Corner States in a Breathing Honeycomb Lattice of Vortices -- 15.5.1 Theoretical Model -- 15.5.2 Corner States and Phase Diagram -- 15.5.3 Micromagnetic Simulations -- 15.6 Conclusion and Outlook -- References -- 16 Antiferromagnetic Skyrmions and Bimerons -- 16.1 Introduction -- 16.2 Current-Driven Creation, Motion, and Chaos of Antiferromagnetic Skyrmions and Bimerons -- 16.3 Spin Torque Nano-oscillators Based on Antiferromagnetic Skyrmions -- 16.4 Synthetic Antiferromagnetic Skyrmions Driven by the Spin Current -- 16.5 Antiferromagnetic Skyrmions Driven by the Magnetic Anisotropy Gradient -- 16.6 Pinning and Depinning of Antiferromagnetic Skyrmions -- 16.7 Summary -- References -- 17 Axion Electrodynamics in Magnetoelectric Media -- 17.1 Introduction.
17.2 Nondynamical Axion Electrodynamics.
Record Nr. UNINA-9910483183403321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Elastic Waves and Metamaterials : the Fundamentals / / Yoon Young Kim
Elastic Waves and Metamaterials : the Fundamentals / / Yoon Young Kim
Autore Kim Yoon Young
Edizione [First edition.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore Pte Ltd, , [2023]
Descrizione fisica 1 online resource (IX, 391 p. 222 illus., 155 illus. in color.)
Disciplina 531.1133
Soggetto topico Elastic waves
Metamaterials
ISBN 981-9902-05-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1- Introduction -- Chapter 2 – Fundamentals -- Chapter 3 - Longitudinal waves in 1-D lattices -- Chapter 4 - Longitudinal waves in 1-D diatomic lattices -- Chapter 5 - Effective mass property manipulation in 1-D lattice systems -- Chapter 6. Metamaterials: effective property realization -- Chapter 7 - Longitudinal waves in 1-D continuum bars -- Chapter 8 - Flexural Waves in a Beam -- Chapter 9 - Wave manipulation in 2D elastic media using metamaterials.
Record Nr. UNINA-9910736026103321
Kim Yoon Young  
Singapore : , : Springer Nature Singapore Pte Ltd, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Electrodynamics of metamaterials [[electronic resource] /] / Andrey K. Sarychev, Vladimir M. Shalaev
Electrodynamics of metamaterials [[electronic resource] /] / Andrey K. Sarychev, Vladimir M. Shalaev
Autore Sarychev Andrey K
Pubbl/distr/stampa Singapore ; ; London, : World Scientific, c2007
Descrizione fisica 1 online resource (xii, 247 p. ) : ill
Disciplina 620.118
Altri autori (Persone) ShalaevVladimir M. <1957->
Soggetto topico Electrodynamics
Metamaterials
Soggetto genere / forma Electronic books.
ISBN 1-281-93365-1
9786611933654
981-279-099-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Introduction. 1.1. Surface plasmon resonance. 1.2. Percolation threshold : singularities in metal-dielectric composites -- 2. Conducting stick composites and left handed metamaterials. 2.1. Metamaterial. 2.2. Conductivity and dielectric constant : effective medium theory. 2.3. High-frequency response. 2.4. Giant enhancements of local electric fields. 2.5. Optical magnetism, left-handed optical materials and superresolution. 2.6. Planar nanowire composites -- 3. Semicontinuous metal films. 3.1. Introduction. 3.2. Giant field fluctuations. 3.3. Localization of surface plasmons. 3.4. Anomalous light scattering from semicontinuous metal films. 3.5. Surface Enhanced Raman Scattering (SERS). 3.6. Giant enhancements of optical nonlinearities. 3.7. Percolation-enhanced nonlinear scattering : high harmonic generation -- 4. Optical properties of metal-dielectric films : beyond quasistatic approximation. 4.1. Generalized Ohm's Law (GOL) and basic equations. 4.2. Transmittance, reflectance, and absorptance. 4.3. Numerical simulations of local electric and magnetic fields. 4.4. Spatial moments of local electric and magnetic fields. 4.5. Extraordinary Optical Transmittance (EOT) -- 5. Electromagnetic properties of metal-dielectric crystals. 5.1. Metal-dielectric composites. 5.2. Electromagnetic crystals.
Record Nr. UNINA-9910451429303321
Sarychev Andrey K  
Singapore ; ; London, : World Scientific, c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Electrodynamics of metamaterials [[electronic resource] /] / Andrey K. Sarychev, Vladimir M. Shalaev
Electrodynamics of metamaterials [[electronic resource] /] / Andrey K. Sarychev, Vladimir M. Shalaev
Autore Sarychev Andrey K
Pubbl/distr/stampa Singapore ; ; London, : World Scientific, c2007
Descrizione fisica 1 online resource (xii, 247 p. ) : ill
Disciplina 620.118
Altri autori (Persone) ShalaevVladimir M. <1957->
Soggetto topico Electrodynamics
Metamaterials
ISBN 1-281-93365-1
9786611933654
981-279-099-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Introduction. 1.1. Surface plasmon resonance. 1.2. Percolation threshold : singularities in metal-dielectric composites -- 2. Conducting stick composites and left handed metamaterials. 2.1. Metamaterial. 2.2. Conductivity and dielectric constant : effective medium theory. 2.3. High-frequency response. 2.4. Giant enhancements of local electric fields. 2.5. Optical magnetism, left-handed optical materials and superresolution. 2.6. Planar nanowire composites -- 3. Semicontinuous metal films. 3.1. Introduction. 3.2. Giant field fluctuations. 3.3. Localization of surface plasmons. 3.4. Anomalous light scattering from semicontinuous metal films. 3.5. Surface Enhanced Raman Scattering (SERS). 3.6. Giant enhancements of optical nonlinearities. 3.7. Percolation-enhanced nonlinear scattering : high harmonic generation -- 4. Optical properties of metal-dielectric films : beyond quasistatic approximation. 4.1. Generalized Ohm's Law (GOL) and basic equations. 4.2. Transmittance, reflectance, and absorptance. 4.3. Numerical simulations of local electric and magnetic fields. 4.4. Spatial moments of local electric and magnetic fields. 4.5. Extraordinary Optical Transmittance (EOT) -- 5. Electromagnetic properties of metal-dielectric crystals. 5.1. Metal-dielectric composites. 5.2. Electromagnetic crystals.
Record Nr. UNINA-9910777063703321
Sarychev Andrey K  
Singapore ; ; London, : World Scientific, c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui