top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Computational thermo-fluid dynamics : in materials science and engineering / / Petr A. Nikrityuk
Computational thermo-fluid dynamics : in materials science and engineering / / Petr A. Nikrityuk
Autore Nikrityuk Petr A
Edizione [2nd ed.]
Pubbl/distr/stampa Weinheim, Germany, : Wiley-VCH Verlag, c2011
Descrizione fisica 1 online resource (371 p.)
Disciplina 333.79
620.11
Soggetto topico Materials - Thermal properties - Mathematical models
Thermodynamics - Mathematical models
Fluid dynamics - Mathematical models
Heat - Transmission - Mathematical models
Mass transfer - Mathematical models
ISBN 3-527-63608-0
1-280-66276-X
9786613639691
3-527-63607-2
3-527-63609-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Computational Thermo-Fluid Dynamics; Contents; Preface; Acknowledgments; 1 Introduction; 1.1 Heat and Fluid Flows in Materials Science and Engineering; 1.2 Overview of the Present Work; 2 Mathematical Description of Physical Phenomena in Thermofluid Dynamics; 2.1 Conservation Equations for Continuum Media; 2.1.1 Conservation of Mass; 2.1.2 Conservation of Momentum; 2.1.3 Energy Conservation Equation; 2.1.4 Conservation of Chemical Species; 2.1.5 Boussinesq Approximation; 2.1.6 Unified Form of Conservation Equations; 2.1.7 Nondimensional Form of Conservation Equations; 2.1.8 Short Summary
2.2 Boundary and Initial Conditions2.2.1 Heat Transfer; 2.2.2 Solutal Transfer; 2.2.3 Fluid Dynamics; 2.3 Conservation Equations in Electromagnetics; 2.3.1 Maxwell Equations; 2.3.2 Induction and Poisson Equations; 2.3.3 An Example of a Low Magnetic Reynolds Number Approximation: Rotating Magnetic Field; 3 Discretization Approaches and Numerical Methods; 3.1 The Finite Difference Method; 3.1.1 Introduction; 3.1.2 Approximation Schemes; 3.1.3 Example of Conservative Property of FDM; 3.1.4 Discretization Schemes of Unsteady Equations; 3.1.5 Example of Unsteady Diffusion Equation
3.2 The Finite Volume Method3.2.1 Basic Concept; 3.2.2 Interpolation Schemes; 3.2.3 Linearized Form of Discretized Conservation Equation; 3.2.4 Treatment of Source Terms; 3.2.5 Boundary Conditions; 3.2.6 Comparative Study of Schemes for One-Dimensional Convection/Diffusion Problem; 3.3 Solution of Linear Equation Systems; 3.3.1 Direct Methods; 3.3.2 Iterative Methods; 3.3.3 Residuals and Convergence; 3.3.4 Multigrid Method; 3.3.5 Illustration of Iterative Methods; 4 Calculations of Flows with Heat and Mass Transfer; 4.1 Solution of Incompressible Navier-Stokes Equations
4.2 Pressure and Velocity Coupling: SIMPLE Family4.2.1 SIMPLE; 4.2.2 SIMPLER; 4.2.3 SIMPLE with Collocated Variables Arrangement; 4.3 Illustrations of Schemes for Flow with Heat Transfer; 4.4 Complex Geometry Problems on Fixed Cartesian Grids; 4.4.1 Immersed Boundary Methods; 4.4.2 Cartesian Grid Methods; 4.4.3 Immersed Surface Reconstruction; 4.4.4 Illustration of Continuous-Forcing IBM; 5 Convection-Diffusion Phase-Change Problems; 5.1 Some Aspects of Solidification Thermodynamics; 5.1.1 One-Component Melts; 5.1.2 Binary Alloys; 5.1.3 Interface and Equilibrium
5.2 Modeling of Macroscale Phase-Change Phenomena5.2.1 Heat Transfer in Phase-Change Systems: Fixed and Moving Grids; 5.2.2 Mathematical Models of a Binary Alloy Solidification; 5.2.3 Closure Relations for the Volume Fraction of Liquid; 5.3 Turbulent Solidification; 5.3.1 Review of Unsteady RANS Modeling of a Solidification; 5.3.2 Conditions for the DNS of Convection-Driven Solidification; 5.4 Microscale Phase-Change Phenomena; 5.4.1 Basic Modeling Concepts; 5.4.2 Modified Cellular Automaton Model; 5.4.3 Virtual Interface Tracking Model; 5.5 Modeling of Crystal Growth
5.5.1 Modeling Approaches
Record Nr. UNINA-9910810441703321
Nikrityuk Petr A  
Weinheim, Germany, : Wiley-VCH Verlag, c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Film boiling from submerged spheres / / by Robert C. Hendricks and Kenneth J. Baumeister
Film boiling from submerged spheres / / by Robert C. Hendricks and Kenneth J. Baumeister
Autore Hendricks Robert C.
Pubbl/distr/stampa Washington, D.C. : , : National Aeronautics and Space Administration, , June 1969
Descrizione fisica 1 online resource (ii pages, 67 unnumbered pages) : illustrations
Collana NASA technical note
Soggetto topico Film boiling - Mathematical models
Heat - Transmission - Mathematical models
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910713913303321
Hendricks Robert C.  
Washington, D.C. : , : National Aeronautics and Space Administration, , June 1969
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The finite element method in heat transfer and fluid dynamics / / by J. N. Reddy and D.K. Gartling
The finite element method in heat transfer and fluid dynamics / / by J. N. Reddy and D.K. Gartling
Autore Reddy J. N (Junuthula Narasimha), <1945->
Edizione [Third edition.]
Pubbl/distr/stampa Boca Raton, FL : , : CRC Press, an imprint of Taylor and Francis, , 2010
Descrizione fisica 1 online resource (515 p.)
Disciplina 620.106
Collana CRC Series in Computational Mechanics and Applied Analysis
Soggetto topico Fluid dynamics - Mathematical models
Heat - Transmission - Mathematical models
Finite element method
Soggetto genere / forma Electronic books.
ISBN 0-429-11142-8
1-4398-8257-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front cover; Contents; Preface to the Third Edition; Preface to the Second Edition; Preface to the First Edition; About the Authors; Chapter 1: Equations of Heat Transferand Fluid Mechanics; Chapter 2: The Finite Element Method; Chapter 3: Conduction Heat Transfer; Chapter 4: Flows of Viscous Incompressible Fluids; Chapter 5: Coupled Fluid Flowand Heat Transfer; Chapter 6: Non-Newtonian Fluids; Chapter 7: Multiphysics Problems; Chapter 8: Parallel Processing; Appendix A: Computer ProgramFEM2DHT; Appendix B: Solution of Linear Equations; Back cover
Record Nr. UNINA-9910460856103321
Reddy J. N (Junuthula Narasimha), <1945->  
Boca Raton, FL : , : CRC Press, an imprint of Taylor and Francis, , 2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The finite element method in heat transfer and fluid dynamics / / by J. N. Reddy and D.K. Gartling
The finite element method in heat transfer and fluid dynamics / / by J. N. Reddy and D.K. Gartling
Autore Reddy J. N (Junuthula Narasimha), <1945->
Edizione [Third edition.]
Pubbl/distr/stampa Boca Raton, FL : , : CRC Press, an imprint of Taylor and Francis, , 2010
Descrizione fisica 1 online resource (515 p.)
Disciplina 620.106
Collana CRC Series in Computational Mechanics and Applied Analysis
Soggetto topico Fluid dynamics - Mathematical models
Heat - Transmission - Mathematical models
Finite element method
ISBN 0-429-11142-8
1-4398-8257-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front cover; Contents; Preface to the Third Edition; Preface to the Second Edition; Preface to the First Edition; About the Authors; Chapter 1: Equations of Heat Transferand Fluid Mechanics; Chapter 2: The Finite Element Method; Chapter 3: Conduction Heat Transfer; Chapter 4: Flows of Viscous Incompressible Fluids; Chapter 5: Coupled Fluid Flowand Heat Transfer; Chapter 6: Non-Newtonian Fluids; Chapter 7: Multiphysics Problems; Chapter 8: Parallel Processing; Appendix A: Computer ProgramFEM2DHT; Appendix B: Solution of Linear Equations; Back cover
Record Nr. UNINA-9910797037403321
Reddy J. N (Junuthula Narasimha), <1945->  
Boca Raton, FL : , : CRC Press, an imprint of Taylor and Francis, , 2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The finite element method in heat transfer and fluid dynamics / / by J. N. Reddy and D.K. Gartling
The finite element method in heat transfer and fluid dynamics / / by J. N. Reddy and D.K. Gartling
Autore Reddy J. N (Junuthula Narasimha), <1945->
Edizione [Third edition.]
Pubbl/distr/stampa Boca Raton, FL : , : CRC Press, an imprint of Taylor and Francis, , 2010
Descrizione fisica 1 online resource (515 p.)
Disciplina 620.106
Collana CRC Series in Computational Mechanics and Applied Analysis
Soggetto topico Fluid dynamics - Mathematical models
Heat - Transmission - Mathematical models
Finite element method
ISBN 0-429-11142-8
1-4398-8257-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front cover; Contents; Preface to the Third Edition; Preface to the Second Edition; Preface to the First Edition; About the Authors; Chapter 1: Equations of Heat Transferand Fluid Mechanics; Chapter 2: The Finite Element Method; Chapter 3: Conduction Heat Transfer; Chapter 4: Flows of Viscous Incompressible Fluids; Chapter 5: Coupled Fluid Flowand Heat Transfer; Chapter 6: Non-Newtonian Fluids; Chapter 7: Multiphysics Problems; Chapter 8: Parallel Processing; Appendix A: Computer ProgramFEM2DHT; Appendix B: Solution of Linear Equations; Back cover
Record Nr. UNINA-9910829025403321
Reddy J. N (Junuthula Narasimha), <1945->  
Boca Raton, FL : , : CRC Press, an imprint of Taylor and Francis, , 2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Finite element simulation of heat transfer [[electronic resource] /] / Jean-Michel Bergheau, Roland Fortunier
Finite element simulation of heat transfer [[electronic resource] /] / Jean-Michel Bergheau, Roland Fortunier
Autore Bergheau Jean-Michel
Pubbl/distr/stampa London, : ISTE Ltd.
Descrizione fisica 1 online resource (281 p.)
Disciplina 621.402/2015118
621.4022015118
Altri autori (Persone) FortunierRoland
Collana ISTE
Soggetto topico Heat - Transmission - Mathematical models
Finite element method
Soggetto genere / forma Electronic books.
ISBN 1-282-16521-6
9786612165214
0-470-61141-3
0-470-39403-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Finite Element Simulation of Heat Transfer; Table of Contents; Introduction; PART 1. Steady State Conduction; Chapter 1. Problem Formulation; 1.1. Physical modeling; 1.1.1. Thermal equilibrium equation; 1.1.2. Fourier law; 1.1.3. Boundary conditions; 1.2. Mathematical analysis; 1.2.1. Weighted residual method; 1.2.2.Weak integral formulation; 1.3. Working example; 1.3.1. Physical modeling; 1.3.2. Direct methods; 1.3.2.1. Analytical integration; 1.3.2.2. The finite difference method; 1.3.3. Collocation methods; 1.3.3.1. Point collocation; 1.3.3.2. Sub-domain collocation; 1.3.4.Galerkin method
1.3.4.1. Polynomial functions1.3.4.2. Piecewise linear functions; Chapter 2. The Finite Element Method; 2.1. Finite element approximation; 2.1.1.Mesh; 2.1.2. Nodal approximation; 2.2.Discrete problem formulation; 2.2.1. Element quantities; 2.2.2. Assembly; 2.3. Solution; 2.3.1. Application of temperature boundary conditions; 2.3.2. Linear system solution; 2.3.2.1. Direct methods; 2.3.2.2. Iterative methods; 2.3.3. Storing the linear system matrix; 2.3.4. Analysis of results; 2.3.4.1. Smoothing the heat flux density; 2.3.4.2. Result accuracy; 2.4. Working example
2.4.1. Finite element approximation2.4.1.1.Mesh; 2.4.1.2. Nodal approximation; 2.4.2.Discrete problem formulation; 2.4.2.1. Element quantities; 2.4.2.2. Assembly; 2.4.3. Solution; 2.4.3.1. Application of boundary conditions; 2.4.3.2. Solution; Chapter 3. Isoparametric Finite Elements; 3.1. Definitions; 3.1.1. Reference element; 3.1.1.1. Triangular element with linear transformation functions; 3.1.1.2. Quadrangle element with linear transformation functions; 3.1.1.3. Quadrangle element with quadratic transformation functions; 3.1.2. Isoparametric elements
3.1.3. Interpolation function properties3.2. Calculation of element quantities; 3.2.1. Expression in the reference frame; 3.2.2. Gaussian quadrature; 3.2.2.1. 1D numerical integration; 3.2.2.2. 2D and 3D numerical integration; 3.3. Some finite elements; PART 2. Transient State, Non-linearities, Transport Phenomena; Chapter 4. Transient Heat Conduction; 4.1. Problem formulation; 4.1.1. The continuous problem; 4.1.2. Finite element approximation; 4.1.3. Linear case; 4.2.Time integration; 4.2.1. Modal method; 4.2.1.1. Determining the modal basis; 4.2.1.2. Projection on the modal basis
4.2.2.Direct time integration4.2.3. Accuracy and stability of a direct integration algorithm; 4.2.3.1. Accuracy; 4.2.3.2. Stability; 4.2.3.3. Simplified analysis of the stability condition; 4.2.4. Practical complementary rules; 4.2.4.1. Space oscillations during thermal shock simulation; 4.2.4.2. Discrete maximum principle; 4.2.4.3. Initial temperatures during thermal contact simulation; 4.3. Working example; 4.3.1. Physical modeling and approximation; 4.3.2. Numerical applications; Chapter 5. Non-linearities; 5.1. Formulation and solution techniques; 5.1.1. Formulation
5.1.2. Non-linear equation system solution methods
Record Nr. UNINA-9910139467003321
Bergheau Jean-Michel  
London, : ISTE Ltd.
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Finite element simulation of heat transfer [[electronic resource] /] / Jean-Michel Bergheau, Roland Fortunier
Finite element simulation of heat transfer [[electronic resource] /] / Jean-Michel Bergheau, Roland Fortunier
Autore Bergheau Jean-Michel
Pubbl/distr/stampa London, : ISTE Ltd.
Descrizione fisica 1 online resource (281 p.)
Disciplina 621.402/2015118
621.4022015118
Altri autori (Persone) FortunierRoland
Collana ISTE
Soggetto topico Heat - Transmission - Mathematical models
Finite element method
ISBN 1-282-16521-6
9786612165214
0-470-61141-3
0-470-39403-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Finite Element Simulation of Heat Transfer; Table of Contents; Introduction; PART 1. Steady State Conduction; Chapter 1. Problem Formulation; 1.1. Physical modeling; 1.1.1. Thermal equilibrium equation; 1.1.2. Fourier law; 1.1.3. Boundary conditions; 1.2. Mathematical analysis; 1.2.1. Weighted residual method; 1.2.2.Weak integral formulation; 1.3. Working example; 1.3.1. Physical modeling; 1.3.2. Direct methods; 1.3.2.1. Analytical integration; 1.3.2.2. The finite difference method; 1.3.3. Collocation methods; 1.3.3.1. Point collocation; 1.3.3.2. Sub-domain collocation; 1.3.4.Galerkin method
1.3.4.1. Polynomial functions1.3.4.2. Piecewise linear functions; Chapter 2. The Finite Element Method; 2.1. Finite element approximation; 2.1.1.Mesh; 2.1.2. Nodal approximation; 2.2.Discrete problem formulation; 2.2.1. Element quantities; 2.2.2. Assembly; 2.3. Solution; 2.3.1. Application of temperature boundary conditions; 2.3.2. Linear system solution; 2.3.2.1. Direct methods; 2.3.2.2. Iterative methods; 2.3.3. Storing the linear system matrix; 2.3.4. Analysis of results; 2.3.4.1. Smoothing the heat flux density; 2.3.4.2. Result accuracy; 2.4. Working example
2.4.1. Finite element approximation2.4.1.1.Mesh; 2.4.1.2. Nodal approximation; 2.4.2.Discrete problem formulation; 2.4.2.1. Element quantities; 2.4.2.2. Assembly; 2.4.3. Solution; 2.4.3.1. Application of boundary conditions; 2.4.3.2. Solution; Chapter 3. Isoparametric Finite Elements; 3.1. Definitions; 3.1.1. Reference element; 3.1.1.1. Triangular element with linear transformation functions; 3.1.1.2. Quadrangle element with linear transformation functions; 3.1.1.3. Quadrangle element with quadratic transformation functions; 3.1.2. Isoparametric elements
3.1.3. Interpolation function properties3.2. Calculation of element quantities; 3.2.1. Expression in the reference frame; 3.2.2. Gaussian quadrature; 3.2.2.1. 1D numerical integration; 3.2.2.2. 2D and 3D numerical integration; 3.3. Some finite elements; PART 2. Transient State, Non-linearities, Transport Phenomena; Chapter 4. Transient Heat Conduction; 4.1. Problem formulation; 4.1.1. The continuous problem; 4.1.2. Finite element approximation; 4.1.3. Linear case; 4.2.Time integration; 4.2.1. Modal method; 4.2.1.1. Determining the modal basis; 4.2.1.2. Projection on the modal basis
4.2.2.Direct time integration4.2.3. Accuracy and stability of a direct integration algorithm; 4.2.3.1. Accuracy; 4.2.3.2. Stability; 4.2.3.3. Simplified analysis of the stability condition; 4.2.4. Practical complementary rules; 4.2.4.1. Space oscillations during thermal shock simulation; 4.2.4.2. Discrete maximum principle; 4.2.4.3. Initial temperatures during thermal contact simulation; 4.3. Working example; 4.3.1. Physical modeling and approximation; 4.3.2. Numerical applications; Chapter 5. Non-linearities; 5.1. Formulation and solution techniques; 5.1.1. Formulation
5.1.2. Non-linear equation system solution methods
Record Nr. UNINA-9910830663303321
Bergheau Jean-Michel  
London, : ISTE Ltd.
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Hydrothermal analysis in engineering using control volume finite element method / / Mohsen Sheikholeslami Kandelousi, Davood Domairry Ganji
Hydrothermal analysis in engineering using control volume finite element method / / Mohsen Sheikholeslami Kandelousi, Davood Domairry Ganji
Autore Kandelousi Mohsen Sheikholeslami
Pubbl/distr/stampa Amsterdam, [Netherlands] : , : Academic Press, , 2015
Descrizione fisica 1 online resource (237 p.)
Disciplina 620.00151535
Soggetto topico Finite element method
Fluid dynamics - Mathematical models
Heat - Transmission - Mathematical models
ISBN 0-08-100361-7
0-12-802950-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Hydrothermal Analysis in Engineering Using Control Volume Finite Element Method; Copyright; Contents; Nomenclature; Preface; Chapter 1: Control volume finite element method (CVFEM); 1.1. Introduction; 1.2. Discretization: Grid, Mesh, and Cloud; 1.2.1. Grid; 1.2.2. Mesh; 1.2.3. Cloud; 1.3. Element and interpolation shape functions; 1.4. Region of support and control volume; 1.5. Discretization and solution; 1.5.1. Steady-State Advection-Diffusion with Source Terms; 1.5.2. Implementation of Source Terms and Boundary Conditions; 1.5.3. Unsteady Advection-Diffusion with Source Terms
ReferencesChapter 2: CVFEM stream function-vorticity solution; 2.1. CVFEM Stream Function-Vorticity Solution for a Lid-Driven Cavity Flow; 2.1.1. Definition of the Problem and Governing Equation; 2.1.2. The CVFEM Discretization of the Stream Function Equation; 2.1.2.1. Diffusion contributions; 2.1.2.2. Source terms; 2.1.2.3. Boundary conditions; 2.1.3. The CVFEM Discretization of the Vorticity Equation; 2.1.3.1. Diffusion contributions; 2.1.3.2. Advection coefficients; 2.1.3.3. Boundary conditions; 2.1.4. Calculating the Nodal Velocity Field; 2.1.5. Results
2.2. CVFEM stream function-vorticity solution for natural convection2.2.1. Definition of the Problem and Governing Equation; 2.2.2. Effect of Active Parameters; References; Chapter 3: Nanofluid flow and heat transfer in an enclosure; 3.1. Introduction; 3.2. Nanofluid; 3.2.1. Definition of Nanofluid; 3.2.2. Model Description; 3.2.3. Conservation Equations; 3.2.3.1. Single-phase model; 3.2.3.2. Two-phase model; 3.2.3.2.1. Continuity equation; 3.2.3.2.2. Nanoparticle continuity equation; 3.2.3.2.3. Momentum equation; 3.2.3.2.4. Energy equation
3.2.4. Physical Properties of Nanofluids in a Single-Phase Model3.2.4.1. Density; 3.2.4.2. Specific heat capacity; 3.2.4.3. Thermal expansion coefficient; 3.2.4.4. Electrical conductivity; 3.2.4.5. Dynamic viscosity; 3.2.4.6. Thermal conductivity; 3.3. Simulation of nanofluid in vorticity stream function form; 3.3.1. Mathematical Modeling of a Single-Phase Model; 3.3.1.1. Natural convection; 3.3.1.2. Force convection; 3.3.1.3. Mixed convection; 3.3.2. CVFEM for Nanofluid Flow and Heat Transfer (Single-Phase Model)
3.3.2.1. Natural convection heat transfer in a nanofluid-filled, inclined, L-shaped enclosure3.3.2.1.1. Problem definition; 3.3.2.1.2. Effect of active parameters; 3.3.2.2. Natural convection heat transfer in a nanofluid-filled, semiannulus enclosure; 3.3.2.2.1. Problem definition; 3.3.2.2.2. Effect of active parameters; 3.3.3. Two-Phase Model; 3.3.3.1. Natural convection; 3.3.3.2. Force convection; 3.3.3.3. Mixed convection; 3.3.4. CVFEM for Nanofluid Flow and Heat Transfer (Two-Phase Model); 3.3.4.1. Two-phase simulation of nanofluid flow and heat transfer using heatline analysis
3.3.4.1.1. Problem definition
Record Nr. UNINA-9910797068003321
Kandelousi Mohsen Sheikholeslami  
Amsterdam, [Netherlands] : , : Academic Press, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Hydrothermal analysis in engineering using control volume finite element method / / Mohsen Sheikholeslami Kandelousi, Davood Domairry Ganji
Hydrothermal analysis in engineering using control volume finite element method / / Mohsen Sheikholeslami Kandelousi, Davood Domairry Ganji
Autore Kandelousi Mohsen Sheikholeslami
Pubbl/distr/stampa Amsterdam, [Netherlands] : , : Academic Press, , 2015
Descrizione fisica 1 online resource (237 p.)
Disciplina 620.00151535
Soggetto topico Finite element method
Fluid dynamics - Mathematical models
Heat - Transmission - Mathematical models
ISBN 0-08-100361-7
0-12-802950-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Hydrothermal Analysis in Engineering Using Control Volume Finite Element Method; Copyright; Contents; Nomenclature; Preface; Chapter 1: Control volume finite element method (CVFEM); 1.1. Introduction; 1.2. Discretization: Grid, Mesh, and Cloud; 1.2.1. Grid; 1.2.2. Mesh; 1.2.3. Cloud; 1.3. Element and interpolation shape functions; 1.4. Region of support and control volume; 1.5. Discretization and solution; 1.5.1. Steady-State Advection-Diffusion with Source Terms; 1.5.2. Implementation of Source Terms and Boundary Conditions; 1.5.3. Unsteady Advection-Diffusion with Source Terms
ReferencesChapter 2: CVFEM stream function-vorticity solution; 2.1. CVFEM Stream Function-Vorticity Solution for a Lid-Driven Cavity Flow; 2.1.1. Definition of the Problem and Governing Equation; 2.1.2. The CVFEM Discretization of the Stream Function Equation; 2.1.2.1. Diffusion contributions; 2.1.2.2. Source terms; 2.1.2.3. Boundary conditions; 2.1.3. The CVFEM Discretization of the Vorticity Equation; 2.1.3.1. Diffusion contributions; 2.1.3.2. Advection coefficients; 2.1.3.3. Boundary conditions; 2.1.4. Calculating the Nodal Velocity Field; 2.1.5. Results
2.2. CVFEM stream function-vorticity solution for natural convection2.2.1. Definition of the Problem and Governing Equation; 2.2.2. Effect of Active Parameters; References; Chapter 3: Nanofluid flow and heat transfer in an enclosure; 3.1. Introduction; 3.2. Nanofluid; 3.2.1. Definition of Nanofluid; 3.2.2. Model Description; 3.2.3. Conservation Equations; 3.2.3.1. Single-phase model; 3.2.3.2. Two-phase model; 3.2.3.2.1. Continuity equation; 3.2.3.2.2. Nanoparticle continuity equation; 3.2.3.2.3. Momentum equation; 3.2.3.2.4. Energy equation
3.2.4. Physical Properties of Nanofluids in a Single-Phase Model3.2.4.1. Density; 3.2.4.2. Specific heat capacity; 3.2.4.3. Thermal expansion coefficient; 3.2.4.4. Electrical conductivity; 3.2.4.5. Dynamic viscosity; 3.2.4.6. Thermal conductivity; 3.3. Simulation of nanofluid in vorticity stream function form; 3.3.1. Mathematical Modeling of a Single-Phase Model; 3.3.1.1. Natural convection; 3.3.1.2. Force convection; 3.3.1.3. Mixed convection; 3.3.2. CVFEM for Nanofluid Flow and Heat Transfer (Single-Phase Model)
3.3.2.1. Natural convection heat transfer in a nanofluid-filled, inclined, L-shaped enclosure3.3.2.1.1. Problem definition; 3.3.2.1.2. Effect of active parameters; 3.3.2.2. Natural convection heat transfer in a nanofluid-filled, semiannulus enclosure; 3.3.2.2.1. Problem definition; 3.3.2.2.2. Effect of active parameters; 3.3.3. Two-Phase Model; 3.3.3.1. Natural convection; 3.3.3.2. Force convection; 3.3.3.3. Mixed convection; 3.3.4. CVFEM for Nanofluid Flow and Heat Transfer (Two-Phase Model); 3.3.4.1. Two-phase simulation of nanofluid flow and heat transfer using heatline analysis
3.3.4.1.1. Problem definition
Record Nr. UNINA-9910809759603321
Kandelousi Mohsen Sheikholeslami  
Amsterdam, [Netherlands] : , : Academic Press, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Modelling subcooled boiling flows [[electronic resource] /] / G. H. Yeoh and J. Y. Tu
Modelling subcooled boiling flows [[electronic resource] /] / G. H. Yeoh and J. Y. Tu
Autore Yeoh Guan Heng
Pubbl/distr/stampa New York, : Nova Science Publishers, c2009
Descrizione fisica 1 online resource (100 p.)
Disciplina 621.402/2015118
Altri autori (Persone) TuJiyuan
Soggetto topico Fluid dynamics
Heat - Transmission - Mathematical models
Soggetto genere / forma Electronic books.
ISBN 1-60876-420-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910455189003321
Yeoh Guan Heng  
New York, : Nova Science Publishers, c2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui