top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Essential computational fluid dynamics [[electronic resource] /] / Oleg Zikanov
Essential computational fluid dynamics [[electronic resource] /] / Oleg Zikanov
Autore Zikanov Oleg
Edizione [1st ed.]
Pubbl/distr/stampa Hoboken, N.J., : Wiley, c2010
Descrizione fisica 1 online resource (320 p.)
Disciplina 532/.0501515
Soggetto topico Fluid dynamics - Mathematics
ISBN 1-118-17439-9
1-283-25818-8
9786613258182
1-118-17477-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Essential Computational Fluid Dynamics; Contents; Preface; 1 What Is CFD?; 1.1. Introduction; 1.2. Brief History of CFD; 1.3. Outline of the Book; References and Suggested Reading; I Fundamentals; 2 Governing Equations of Fluid Dynamics and Heat Transfer; 2.1. Preliminary Concepts; 2.2. Mass Conservation; 2.3. Conservation of Chemical Species; 2.4. Conservation of Momentum; 2.5. Conservation of Energy; 2.6. Equation of State; 2.7. Equations in Integral Form; 2.8. Equations in Conservation Form; 2.9. Equations in Vector Form; 2.10. Boundary Conditions; 2.10.1. Rigid Wall Boundary Conditions
2.10.2. Inlet and Exit Boundary Conditions2.10.3. Other Boundary Conditions; References and Suggested Reading; Problems; 3 Partial Differential Equations; 3.1. Model Equations; Formulation of a PDE Problem; 3.1.1. Model Equations; 3.1.2. Domain, Boundary, and Initial Conditions; 3.1.3. Equilibrium and Marching Problems; 3.1.4. Examples; 3.2. Mathematical Classification of PDE of Second Order; 3.2.1. Classification; 3.2.2. Hyperbolic Equations; 3.2.3. Parabolic Equations; 3.2.4. Elliptic Equations; 3.3. Numerical Discretization: Different Kinds of CFD; 3.3.1. Spectral Methods
4.2.7. Truncation Error of Linear Interpolation4.3. Approximation of Partial Differential Equations; 4.3.1. Approach and Examples; 4.3.2. Interpretation of Truncation Error: Numerical Dissipation and Dispersion; 4.3.3. Boundary and Initial Conditions; 4.3.4. Consistency of Numerical Approximation; 4.3.5. System of Difference Equations; 4.3.6. Implicit and Explicit Methods; 4.4. Development of Finite Difference Schemes; 4.4.1. Taylor Series Expansions; 4.4.2. Polynomial Fitting; References and Suggested Reading; Problems; 5 Finite Volume Method; 5.1. Introduction and Integral Formulation
5.1.1. Finite Volume Grid5.1.2. Global Conservation Property; 5.2. Approximation of Integrals; 5.2.1. Volume Integrals; 5.2.2. Surface Integrals; 5.3. Methods of Interpolation; 5.3.1. Upwind Interpolation; 5.3.2. Linear Interpolation; 5.3.3. Upwind Interpolation of Higher Order; 5.3.4. Interpolation on Nonorthogonal Grids; 5.4. Boundary Conditions; References and Suggested Reading; Problems; 6 Stability of Transient Solutions; 6.1. Introduction and Definition of Stability; 6.1.1. Discretization and Round-off Error; 6.1.2. Definition; 6.2. Stability Analysis; 6.2.1. Neumann Method
6.2.2. Matrix Method
Record Nr. UNINA-9910789064803321
Zikanov Oleg  
Hoboken, N.J., : Wiley, c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Essential computational fluid dynamics [[electronic resource] /] / Oleg Zikanov
Essential computational fluid dynamics [[electronic resource] /] / Oleg Zikanov
Autore Zikanov Oleg
Edizione [1st ed.]
Pubbl/distr/stampa Hoboken, N.J., : Wiley, c2010
Descrizione fisica 1 online resource (320 p.)
Disciplina 532/.0501515
Soggetto topico Fluid dynamics - Mathematics
ISBN 1-118-17439-9
1-283-25818-8
9786613258182
1-118-17477-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Essential Computational Fluid Dynamics; Contents; Preface; 1 What Is CFD?; 1.1. Introduction; 1.2. Brief History of CFD; 1.3. Outline of the Book; References and Suggested Reading; I Fundamentals; 2 Governing Equations of Fluid Dynamics and Heat Transfer; 2.1. Preliminary Concepts; 2.2. Mass Conservation; 2.3. Conservation of Chemical Species; 2.4. Conservation of Momentum; 2.5. Conservation of Energy; 2.6. Equation of State; 2.7. Equations in Integral Form; 2.8. Equations in Conservation Form; 2.9. Equations in Vector Form; 2.10. Boundary Conditions; 2.10.1. Rigid Wall Boundary Conditions
2.10.2. Inlet and Exit Boundary Conditions2.10.3. Other Boundary Conditions; References and Suggested Reading; Problems; 3 Partial Differential Equations; 3.1. Model Equations; Formulation of a PDE Problem; 3.1.1. Model Equations; 3.1.2. Domain, Boundary, and Initial Conditions; 3.1.3. Equilibrium and Marching Problems; 3.1.4. Examples; 3.2. Mathematical Classification of PDE of Second Order; 3.2.1. Classification; 3.2.2. Hyperbolic Equations; 3.2.3. Parabolic Equations; 3.2.4. Elliptic Equations; 3.3. Numerical Discretization: Different Kinds of CFD; 3.3.1. Spectral Methods
4.2.7. Truncation Error of Linear Interpolation4.3. Approximation of Partial Differential Equations; 4.3.1. Approach and Examples; 4.3.2. Interpretation of Truncation Error: Numerical Dissipation and Dispersion; 4.3.3. Boundary and Initial Conditions; 4.3.4. Consistency of Numerical Approximation; 4.3.5. System of Difference Equations; 4.3.6. Implicit and Explicit Methods; 4.4. Development of Finite Difference Schemes; 4.4.1. Taylor Series Expansions; 4.4.2. Polynomial Fitting; References and Suggested Reading; Problems; 5 Finite Volume Method; 5.1. Introduction and Integral Formulation
5.1.1. Finite Volume Grid5.1.2. Global Conservation Property; 5.2. Approximation of Integrals; 5.2.1. Volume Integrals; 5.2.2. Surface Integrals; 5.3. Methods of Interpolation; 5.3.1. Upwind Interpolation; 5.3.2. Linear Interpolation; 5.3.3. Upwind Interpolation of Higher Order; 5.3.4. Interpolation on Nonorthogonal Grids; 5.4. Boundary Conditions; References and Suggested Reading; Problems; 6 Stability of Transient Solutions; 6.1. Introduction and Definition of Stability; 6.1.1. Discretization and Round-off Error; 6.1.2. Definition; 6.2. Stability Analysis; 6.2.1. Neumann Method
6.2.2. Matrix Method
Record Nr. UNINA-9910824783203321
Zikanov Oleg  
Hoboken, N.J., : Wiley, c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fluid flow for chemical engineers [[electronic resource] /] / F.A. Holland, R. Bragg
Fluid flow for chemical engineers [[electronic resource] /] / F.A. Holland, R. Bragg
Autore Holland F. A
Edizione [2nd ed.]
Pubbl/distr/stampa London, : Edward Arnold, 1995
Descrizione fisica 1 online resource (375 p.)
Disciplina 532/.051
Altri autori (Persone) BraggR
Soggetto topico Fluid dynamics - Mathematics
Chemical engineering
Soggetto genere / forma Electronic books.
ISBN 1-281-03387-1
9786611033873
0-08-052369-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Fluid Flow for Chemical Engineers; Copyright Page; Contents; List of examples; Preface to the second edition; Nomenclature; Chaptre 1. Fluids in motion; 1.1 Units and dimensions; 1.2 Description of fluids and fluid flow; 1.3 Types of flow; 1.4 Conservation of mass; 1.5 Energy relationships and the Bernoulli equation; 1.6 Momentum of a flowing fluid; 1.7 Stress in fluids; 1.8 Sign conventions for stress; 1.9 Stress components; 1.10 Volumetric flow rate and average velocity in a pipe; 1.11 Momentum transfer in laminar flow; 1.12 Non-Newtonian behaviour
1.13 Turbulence and boundary layersChapter 2. Flow of incompressible Newtonian fluids in pipes and channels; 2.1 Reynolds number and flow patterns in pipes and tubes; 2.2 Shear stress in a pipe; 2.3 Friction factor and pressure drop; 2.4 Pressure drop in fittings and curved pipes; 2.5 Equivalent diameter for non-circular pipes; 2.6 Velocity profile for laminar Newtonian flow in a pipe; 2.7 Kinetic energy in laminar flow; 2.8 Velocity distribution for turbulent flow in a pipe; 2.9 Universal velocity distribution for turbulent flow in a pipe; 2.10 Flow in open channels
Chapter 3. Flow of incompressible non-Newtonian fluids in pipes3.1 Elementary viscometry; 3.2 Rabinowitsch-Mooney equation; 3.3 Calculation of flow rate-pressure drop relationship for laminar flow using t-y data; 3.4 Wall shear stress-flow characteristic curves and scale-up for laminar flow; 3.5 Generalized Reynolds number for flow in pipes; 3.6 Turbulent flow of inelastic non-Newtonian fluids in pipes; 3.7 Power law fluids; 3.8 Pressure drop for Bingham plastics in laminar flow; 3.9 Laminar flow of concentrated suspensions and apparent slip at the pipe wall; 3.10 Viscoelasticity
Chapter 4. Pumping of liquids4.1 Pumps and pumping; 4.2 System heads; 4.3 Centrifugal pumps; 4.4 Centrifugal pump relations; 4.5 Centrifugal pumps in series and in parallel; 4.6 Positive displacement pumps; 4.7 Pumping efficiencies; 4.8 Factors in pump selection; Chapter 5. Mixing of liquids in tanks; 5.1 Mixers and mixing; 5.2 Small blade high speed agitators; 5.3 Large blade low speed agitators; 5.4 Dimensionless groups for mixing; 5.5 Power curves; 5.6 Scale-up of liquid mixing systems; 5.7 The purging of stirred tank systems; Chapter 6. Flow of compressible fluids in conduits
6.1 Energy relationships6.2 Equations of state; 6.3 Isothermal flow of an ideal gas in a horizontal pipe; 6.4 Non-isothermal flow of an ideal gas in a horizontal pipe; 6.5 Adiabatic flow of an ideal gas in a horizontal pipe; 6.6 Speed of sound in a fluid; 6.7 Maximum flow rate in a pipe of constant cross-sectional area; 6.8 Adiabatic stagnation temperature for an ideal gas; 6.9 Gas compression and compressors; 6.10 Compressible flow through nozzles and constrictions; Chapter 7. Gas-liquid two-phase flow; 7.1 Flow patterns and flow regime maps; 7.2 Momentum equation for two-phase flow
7.3 Flow in bubble columns
Record Nr. UNINA-9910455673903321
Holland F. A  
London, : Edward Arnold, 1995
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fluid flow for chemical engineers [[electronic resource] /] / F.A. Holland, R. Bragg
Fluid flow for chemical engineers [[electronic resource] /] / F.A. Holland, R. Bragg
Autore Holland F. A
Edizione [2nd ed.]
Pubbl/distr/stampa London, : Edward Arnold, 1995
Descrizione fisica 1 online resource (375 p.)
Disciplina 532/.051
Altri autori (Persone) BraggR
Soggetto topico Fluid dynamics - Mathematics
Chemical engineering
ISBN 1-281-03387-1
9786611033873
0-08-052369-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Fluid Flow for Chemical Engineers; Copyright Page; Contents; List of examples; Preface to the second edition; Nomenclature; Chaptre 1. Fluids in motion; 1.1 Units and dimensions; 1.2 Description of fluids and fluid flow; 1.3 Types of flow; 1.4 Conservation of mass; 1.5 Energy relationships and the Bernoulli equation; 1.6 Momentum of a flowing fluid; 1.7 Stress in fluids; 1.8 Sign conventions for stress; 1.9 Stress components; 1.10 Volumetric flow rate and average velocity in a pipe; 1.11 Momentum transfer in laminar flow; 1.12 Non-Newtonian behaviour
1.13 Turbulence and boundary layersChapter 2. Flow of incompressible Newtonian fluids in pipes and channels; 2.1 Reynolds number and flow patterns in pipes and tubes; 2.2 Shear stress in a pipe; 2.3 Friction factor and pressure drop; 2.4 Pressure drop in fittings and curved pipes; 2.5 Equivalent diameter for non-circular pipes; 2.6 Velocity profile for laminar Newtonian flow in a pipe; 2.7 Kinetic energy in laminar flow; 2.8 Velocity distribution for turbulent flow in a pipe; 2.9 Universal velocity distribution for turbulent flow in a pipe; 2.10 Flow in open channels
Chapter 3. Flow of incompressible non-Newtonian fluids in pipes3.1 Elementary viscometry; 3.2 Rabinowitsch-Mooney equation; 3.3 Calculation of flow rate-pressure drop relationship for laminar flow using t-y data; 3.4 Wall shear stress-flow characteristic curves and scale-up for laminar flow; 3.5 Generalized Reynolds number for flow in pipes; 3.6 Turbulent flow of inelastic non-Newtonian fluids in pipes; 3.7 Power law fluids; 3.8 Pressure drop for Bingham plastics in laminar flow; 3.9 Laminar flow of concentrated suspensions and apparent slip at the pipe wall; 3.10 Viscoelasticity
Chapter 4. Pumping of liquids4.1 Pumps and pumping; 4.2 System heads; 4.3 Centrifugal pumps; 4.4 Centrifugal pump relations; 4.5 Centrifugal pumps in series and in parallel; 4.6 Positive displacement pumps; 4.7 Pumping efficiencies; 4.8 Factors in pump selection; Chapter 5. Mixing of liquids in tanks; 5.1 Mixers and mixing; 5.2 Small blade high speed agitators; 5.3 Large blade low speed agitators; 5.4 Dimensionless groups for mixing; 5.5 Power curves; 5.6 Scale-up of liquid mixing systems; 5.7 The purging of stirred tank systems; Chapter 6. Flow of compressible fluids in conduits
6.1 Energy relationships6.2 Equations of state; 6.3 Isothermal flow of an ideal gas in a horizontal pipe; 6.4 Non-isothermal flow of an ideal gas in a horizontal pipe; 6.5 Adiabatic flow of an ideal gas in a horizontal pipe; 6.6 Speed of sound in a fluid; 6.7 Maximum flow rate in a pipe of constant cross-sectional area; 6.8 Adiabatic stagnation temperature for an ideal gas; 6.9 Gas compression and compressors; 6.10 Compressible flow through nozzles and constrictions; Chapter 7. Gas-liquid two-phase flow; 7.1 Flow patterns and flow regime maps; 7.2 Momentum equation for two-phase flow
7.3 Flow in bubble columns
Record Nr. UNINA-9910780017503321
Holland F. A  
London, : Edward Arnold, 1995
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fluid flow for chemical engineers / / F.A. Holland, R. Bragg
Fluid flow for chemical engineers / / F.A. Holland, R. Bragg
Autore Holland F. A
Edizione [2nd ed.]
Pubbl/distr/stampa London, : Edward Arnold, 1995
Descrizione fisica 1 online resource (375 p.)
Disciplina 532/.051
532.051
Altri autori (Persone) BraggR
Soggetto topico Fluid dynamics - Mathematics
Chemical engineering
ISBN 1-281-03387-1
9786611033873
0-08-052369-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Fluid Flow for Chemical Engineers; Copyright Page; Contents; List of examples; Preface to the second edition; Nomenclature; Chaptre 1. Fluids in motion; 1.1 Units and dimensions; 1.2 Description of fluids and fluid flow; 1.3 Types of flow; 1.4 Conservation of mass; 1.5 Energy relationships and the Bernoulli equation; 1.6 Momentum of a flowing fluid; 1.7 Stress in fluids; 1.8 Sign conventions for stress; 1.9 Stress components; 1.10 Volumetric flow rate and average velocity in a pipe; 1.11 Momentum transfer in laminar flow; 1.12 Non-Newtonian behaviour
1.13 Turbulence and boundary layersChapter 2. Flow of incompressible Newtonian fluids in pipes and channels; 2.1 Reynolds number and flow patterns in pipes and tubes; 2.2 Shear stress in a pipe; 2.3 Friction factor and pressure drop; 2.4 Pressure drop in fittings and curved pipes; 2.5 Equivalent diameter for non-circular pipes; 2.6 Velocity profile for laminar Newtonian flow in a pipe; 2.7 Kinetic energy in laminar flow; 2.8 Velocity distribution for turbulent flow in a pipe; 2.9 Universal velocity distribution for turbulent flow in a pipe; 2.10 Flow in open channels
Chapter 3. Flow of incompressible non-Newtonian fluids in pipes3.1 Elementary viscometry; 3.2 Rabinowitsch-Mooney equation; 3.3 Calculation of flow rate-pressure drop relationship for laminar flow using t-y data; 3.4 Wall shear stress-flow characteristic curves and scale-up for laminar flow; 3.5 Generalized Reynolds number for flow in pipes; 3.6 Turbulent flow of inelastic non-Newtonian fluids in pipes; 3.7 Power law fluids; 3.8 Pressure drop for Bingham plastics in laminar flow; 3.9 Laminar flow of concentrated suspensions and apparent slip at the pipe wall; 3.10 Viscoelasticity
Chapter 4. Pumping of liquids4.1 Pumps and pumping; 4.2 System heads; 4.3 Centrifugal pumps; 4.4 Centrifugal pump relations; 4.5 Centrifugal pumps in series and in parallel; 4.6 Positive displacement pumps; 4.7 Pumping efficiencies; 4.8 Factors in pump selection; Chapter 5. Mixing of liquids in tanks; 5.1 Mixers and mixing; 5.2 Small blade high speed agitators; 5.3 Large blade low speed agitators; 5.4 Dimensionless groups for mixing; 5.5 Power curves; 5.6 Scale-up of liquid mixing systems; 5.7 The purging of stirred tank systems; Chapter 6. Flow of compressible fluids in conduits
6.1 Energy relationships6.2 Equations of state; 6.3 Isothermal flow of an ideal gas in a horizontal pipe; 6.4 Non-isothermal flow of an ideal gas in a horizontal pipe; 6.5 Adiabatic flow of an ideal gas in a horizontal pipe; 6.6 Speed of sound in a fluid; 6.7 Maximum flow rate in a pipe of constant cross-sectional area; 6.8 Adiabatic stagnation temperature for an ideal gas; 6.9 Gas compression and compressors; 6.10 Compressible flow through nozzles and constrictions; Chapter 7. Gas-liquid two-phase flow; 7.1 Flow patterns and flow regime maps; 7.2 Momentum equation for two-phase flow
7.3 Flow in bubble columns
Record Nr. UNINA-9910817379203321
Holland F. A  
London, : Edward Arnold, 1995
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Granular Materials / / edited by Michael Sakellariou
Granular Materials / / edited by Michael Sakellariou
Pubbl/distr/stampa Rijeka, Croatia : , : IntechOpen, , 2017
Descrizione fisica 1 online resource (192 pages) : illustrations
Disciplina 532.0
Soggetto topico Fluid dynamics - Mathematics
ISBN 953-51-4674-2
953-51-3506-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910251415303321
Rijeka, Croatia : , : IntechOpen, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Handbook of mathematical fluid dynamics. Vol. 3 [e-book] / edited by S. Friedlander, D. Serre
Handbook of mathematical fluid dynamics. Vol. 3 [e-book] / edited by S. Friedlander, D. Serre
Pubbl/distr/stampa Amsterdam : Elsevier, 2004
Descrizione fisica v. : ill. ; 25 cm
Disciplina 532.05
Altri autori (Persone) Friedlander, Susan
Serre, D. (Denis)
Soggetto topico Fluid dynamics - Mathematics
ISBN 9780444515568
0444515569
Formato Risorse elettroniche
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991003276359707536
Amsterdam : Elsevier, 2004
Risorse elettroniche
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Handbook on Navier-Stokes equations : theory and applied analysis / / Denise Campos, editor
Handbook on Navier-Stokes equations : theory and applied analysis / / Denise Campos, editor
Pubbl/distr/stampa New York : , : Nova Publishers, , 2016
Descrizione fisica 1 online resource (508 pages) : color illustrations
Disciplina 518/.64
Collana Physics Research and Technology
Soggetto topico Navier-Stokes equations
Fluid dynamics - Mathematics
Mathematical analysis
ISBN 1-5361-0308-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Generation of meshes in cardiovascular systems I: resolution of the Navier-Stokes equations for the blood flow in abdominal aortic aneurysms / Alejandro Acevedo-Malavé (Multidisciplinary Center of Sciences, Venezuelan Institute for Scientific Research (IVIC), Mérida, Venezuela) -- Generation of meshes in cardiovascular systems II: the blood flow in abdominal aortic aneurysms with exovascular stent devices / Alejandro Acevedo-Malavé (Multidisciplinary Center of Sciences, Venezuelan Institute for Scientific Research (IVIC), Mérida, Venezuela) -- A computational fluid dynamics (CFD) study of the blood flow in abdominal aortic aneurysms for real geometries in specific patients / Alejandro Acevedo-Malavé, Ricardo Fontes-Carvalho and Nelson Loaiza (Multidisciplinary Center of Sciences, Venezuelan Institute for Scientific Research (IVIC), Mérida, Venezuela, and others) -- Numerical resolution of the Navier-Stokes equations for the blood flow in intracranial aneurysms: a 3D approach using the finite volume method / Alejandro Acevedo-Malavé (Multidisciplinary Center of Sciences, Venezuelan Institute for Scientific Research (IVIC), Mérida, Venezuela) -- Numerical simulation of the turbulent flow around a savonius wind rotor using the Navier-Stokes equations / S. Frikha, Z. Driss, H. Kchaou and M.S. Abid (Laboratory of Electro-Mechanic Systems (LASEM), National Engineering School of Sfax (ENIS), University of Sfax (US), Sfax, Tunisia) -- Numerical prediction of the effect of the diameter outlet on the mixer flow of the diesel with the biodiesel / Mariem Lajnef, Zied Driss, Mohamed Chtourou, Dorra Driss, and Hedi Kchaou (Laboratory of Electro-Mechanic Systems (LASEM), National School of Engineers of Sfax (ENIS), University of Sfax (US), Sfax, Tunisia) -- Computer simulation of the turbulent flow around a six-blade rushton turbine / Zied Driss, Abdelkader Salah, Abdessalem Hichri, Sarhan Karray, and Mohamed Salah Abid (Laboratory of Electro-Mechanic Systems (LASEM), National School of Engineers of Sfax (ENIS), University of Sfax (US), Sfax, Tunisia) -- Study of the meshing choice of a negatively buoyant jet injected in a miscible liquid / Oumaima Eleuch, Noureddine Latrache, Sobhi Frikha, and Zied Driss (Laboratory of Electro-Mechanic Systems (LASEM), National School of Engineers of Sfax (ENIS), University of Sfax (US), Sfax, Tunisia, and others) -- Study of the wedging angle effect of a NACA2415 airfoil wind turbine / Zied Driss, Walid Barhoumi, Tarek Chelbi, and Mohamed Salah Abid (Laboratory of Electro-Mechanic Systems (LASEM), National School of Engineers of Sfax (ENIS), University of Sfax (US), Sfax, Tunisia) -- Study of the meshing effect on the flow characteristics inside a SCPP / Ahmed Ayadi, Abdallah Bouabidi, Zied Driss and Mohamed Salah Abid (Laboratory of Electro-Mechanic Systems (LASEM), National Engineering School of Sfax (ENIS), University of Sfax (US), Sfax, Tunisia) -- Study of the natural ventilation in a residential living room opening with two no-opposed positions / Slah Driss, Zied Driss, Imen Kallel Kammoun (Laboratory of Electro-Mechanic Systems (LASEM), National School of Engineers of Sfax (ENIS), University of Sfax (US), Sfax, Tunisia) -- Existence, uniqueness and smoothness of a solution for 3D Navier-Stokes equations with any smooth initial velocity. A priori estimate of this solution / Arkadiy Tsionskiy and Mikhail Tsionskiy (Tucson, AZ, USA, and others) -- Fuzzy solutions of 2D Navier-Stokes equations / Yung-Yue Chen (Department of Systems and Naval Mechatronic Engineering, National Cheng Kung University, Tainan, Taiwan) -- Effective wall-laws for Stokes equations over curved rough boundaries / Myong-Hwan Ri (Institute of Mathematics, State Academy of Sciences, DPR Korea) -- Singularities of the Navier-Stokes equations in differential form at the interface between air and water / Xianyun Wen (Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, England, UK) -- Self-similar analysis of various Navier-Stokes equations in two or three dimensions / I.F. Barna (Wigner Research Center of the Hungarian Academy of Sciences, Plasma Physics Department, Budapest, Hungary) -- Asymptotic solutions for the Navier-Stokes equations, describing systems of vortices with different spatial structures / Victor P. Maslov and Andrei I. Shafarevich (M.V. Lomonosov Moscow State University, Moscow, Russia) -- Analytic solutions of incompressible Navier-Stokes equations by Green's function method / Algirdas Maknickas and Algis Dziugys (Institute of Mechanical Science, Vilnius Gediminas Technical University, Vilnius, Lithuania, and others) -- Analysis of the time step size effect for the study of the liquid sloshing inside a container / Abdallah Bouabidi, Zied Driss and Mohamed Salah Abid (Laboratory of Electro-Mechanic Systems (LASEM), National Engineering School of Sfax (ENIS), University of Sfax (US), Sfax, Tunisia) -- Numerical analysis of Navier-Stokes equations on unstructured meshes / K. Volkov (Faculty of Science, Engineering and Computing, Kingston University, London, UK, and others) -- Integrals of motion of an incompressible medium flow: from classic to contemporary / Alexander V. Koptev (Admiral Makarov State University of Maritime and Inland Shipping, Saint-Petersburg, Russia) -- Local exact controllability of the Boussinesq equations with boundary conditions on the pressure / Tujin Kim and Daomin Cao (Institute of Mathematics, State Academy of Sciences, Pyongyang, DPR Korea, and others).
Record Nr. UNINA-9910155067803321
New York : , : Nova Publishers, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Hölder Continuous Euler Flows in Three Dimensions with Compact Support in Time / / Philip Isett
Hölder Continuous Euler Flows in Three Dimensions with Compact Support in Time / / Philip Isett
Autore Isett Philip
Pubbl/distr/stampa Princeton, NJ : , : Princeton University Press, , [2017]
Descrizione fisica 1 online resource (214 pages)
Disciplina 532/.05
Collana Annals of Mathematics Studies
Soggetto topico Fluid dynamics - Mathematics
Soggetto non controllato Beltrami flows
Einstein summation convention
Euler equations
Euler flow
Euler-Reynolds equations
Euler-Reynolds system
Galilean invariance
Galilean transformation
HighЈigh Interference term
HighЈigh term
HighЌow Interaction term
Hlder norm
Hlder regularity
Lars Onsager
Main Lemma
Main Theorem
Mollification term
Newton's law
Noether's theorem
Onsager's conjecture
Reynolds stres
Reynolds stress
Stress equation
Stress term
Transport equation
Transport term
Transport-Elliptic equation
abstract index notation
algebra
amplitude
coarse scale flow
coarse scale velocity
coefficient
commutator estimate
commutator term
commutator
conservation of momentum
continuous solution
contravariant tensor
convergence
convex integration
correction term
correction
covariant tensor
dimensional analysis
divergence equation
divergence free vector field
divergence operator
energy approximation
energy function
energy increment
energy regularity
energy variation
energy
error term
error
finite time interval
first material derivative
fluid dynamics
frequencies
frequency energy levels
h-principle
integral
lifespan parameter
lower indices
material derivative
mollification
mollifier
moment vanishing condition
momentum
multi-index
non-negative function
nonzero solution
optimal regularity
oscillatory factor
oscillatory term
parameters
parametrix expansion
parametrix
phase direction
phase function
phase gradient
pressure correction
pressure
regularity
relative acceleration
relative velocity
scaling symmetry
second material derivative
smooth function
smooth stress tensor
smooth vector field
spatial derivative
stress
tensor
theorem
time cutoff function
time derivative
transport derivative
transport equations
transport estimate
transport
upper indices
vector amplitude
velocity correction
velocity field
velocity
weak limit
weak solution
ISBN 1-4008-8542-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Contents -- Preface -- Part I. Introduction -- Part II. General Considerations of the Scheme -- Part III. Basic Construction of the Correction -- Part IV. Obtaining Solutions from the Construction -- Part V. Construction of Regular Weak Solutions: Preliminaries -- Part VI Construction of Regular Weak Solutions: Estimating the Correction -- Part VII. Construction of Regular Weak Solutions: Estimating the New Stress -- Acknowledgments -- Appendices -- References -- Index
Record Nr. UNINA-9910163942603321
Isett Philip  
Princeton, NJ : , : Princeton University Press, , [2017]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Industrial Valves : Calculations for Design, Manufacturing, Operation, and Safety Decisions / / Karan Sotoodeh
Industrial Valves : Calculations for Design, Manufacturing, Operation, and Safety Decisions / / Karan Sotoodeh
Autore Sotoodeh Karan
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2023]
Descrizione fisica 1 online resource (434 pages)
Soggetto topico Engineering mathematics
Fluid dynamics - Mathematics
Mathematics
ISBN 9781394185023
1-394-18503-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Chapter 1 Flow Capacity -- 1.1 Introduction -- 1.2 Flow Coefficient Chart and Flow Curve -- 1.3 Rangeability and Turndown -- 1.4 Valve Authority -- 1.5 Valve Gain -- Questions and Answers -- Further Reading -- Chapter 2 Valve Sizing -- 2.1 Introduction -- 2.2 Isolation Valve Sizing -- 2.3 Nonreturn (Check) Valve Sizing -- 2.4 Control Valve Sizing -- 2.4.1 Control Valve Sizing for Liquids -- 2.4.1.1 Specify the Variables Required to Size the Valve -- 2.4.1.2 Determine the Equation Constant (N) -- 2.4.1.3 Determine Piping Geometry Factor (FP) -- 2.4.1.4 Determine the Maximum Flow Rate (qmax) and Maximum Pressure Drop (ΔPmax) -- 2.4.1.5 Solve for Flow Coefficient -- 2.4.1.6 Select the Correct Valve Size -- 2.4.2 Control Valve Sizing for Gas and Steam -- 2.4.2.1 Specify the Variables Required to Size the Valve -- 2.4.2.2 Determine the Equation Constant (N) -- 2.4.2.3 Determine Piping Geometry Factor (FP) -- 2.4.2.4 Determine the Expansion Factor (Y) -- 2.4.2.5 Solve for the Required Flow Coefficient (Cv) -- 2.5 Safety Relief Valve Sizing -- 2.5.1 Sizing for Gas or Vapor Relief -- 2.5.1.1 Critical Flow -- 2.5.1.2 Subcritical Flow -- 2.5.2 Sizing for Steam Relief -- 2.5.3 Sizing for Liquid Relief -- 2.5.3.1 Sizing for Liquid Relief with Capacity Certification -- 2.5.3.2 Sizing for Liquid Relief Without Capacity Certification -- 2.5.4 Sizing for Two-Phase Liquid/Vapor Relief -- 2.5.4.1 Sizing for Saturated Liquid and Saturated Vapor, Liquid Flashes -- 2.5.4.2 Sizing for Subcooled at the Pressure Relief Valve Inlet -- 2.5.5 Sizing for Fire Case and Hydraulic Expansion -- 2.5.5.1 Hydraulic Expansion (Thermal Expansion) -- 2.5.5.2 Sizing Safety Valve for the Fire Case -- Questions and Answers -- Further Reading -- Chapter 3 Cavitation and Flashing -- 3.1 Introduction -- 3.2 Cavitation.
3.2.1 What is Cavitation? -- 3.2.2 Cavitation Essential Parameters -- 3.2.3 Cavitation Analysis -- 3.3 Flashing -- Questions and Answers -- Further Reading -- Chapter 4 Wall Thickness -- 4.1 Introduction -- 4.2 ASME B16.34 Minimum Wall Thickness Calculation -- 4.2.1 Conservation Approach (Mandatory Appendix A) -- 4.2.2 Nonconservation Method -- 4.2.3 ASME Sec. VIII Div. 02 Wall Thickness Calculation -- 4.3 Wafer Design Thickness Validation -- Questions and Answers -- Further Reading -- Chapter 5 Material and Corrosion -- 5.1 Introduction -- 5.2 Carbon Dioxide Corrosion -- 5.2.1 Corrosion Mechanism -- 5.2.2 Corrosion Mitigation -- 5.2.3 Corrosion Rate Calculation -- 5.2.3.1 Basic CO2 Corrosion Rate -- 5.2.3.2 Corrective CO2 Corrosion Rate -- 5.2.3.3 Final CO2 Corrosion Rate -- 5.3 Pitting Corrosion -- 5.4 Carbon Equivalent -- 5.5 Hydrogen-Induced. Stress Cracking (HISC) Corrosion -- 5.5.1 HISC and Vulnerable Materials -- 5.5.2 HISC and Stress -- 5.5.3 HISC and Cathodic Protection -- 5.5.4 HISC and DNV Standard -- Questions and Answers -- Further Reading -- Chapter 6 Noise -- 6.1 Introduction to Sound -- 6.2 Introduction to Noise -- 6.3 Noise in Industrial Valves -- 6.3.1 Mechanical Noise and Vibration -- 6.3.2 Fluid Noise -- 6.3.2.1 Aerodynamic Noise -- 6.3.2.2 Hydrodynamic Noise -- 6.3.3 Noise Control Strategies -- 6.4 Noise Calculations for Pipes and Valves -- 6.4.1 Acoustic Fatigue Analysis -- 6.4.1.1 Sound Power Level Calculations -- 6.4.1.2 Mach Number -- 6.4.2 Noise in Control Valves -- 6.4.2.1 Aerodynamic Noise in Control Valves -- 6.4.2.2 Hydrodynamic Noise in Control Valves -- 6.4.3 Noise in Pressure Safety or Relief Valves -- 6.4.3.1 Calculation of Noise Emission According to ISO 4126-9 -- 6.4.3.2 Calculation of Noise Emission According to API 521 -- 6.4.3.3 Calculation of Noise Emission According to VDI 2713 -- Questions and Answers.
Further Reading -- Chapter 7 Water Hammering -- 7.1 Introduction -- 7.2 Water Hammering and Pressure Loss in Check Valves -- 7.3 Water Hammering Calculations -- Questions and Answers -- Further Reading -- Chapter 8 Safety Valves -- 8.1 Introduction -- 8.2 Safety Valve Parts -- 8.3 Safety Valve Design and Operation -- 8.3.1 Design and Operation Parameters -- 8.3.1.1 Overpressure Criteria -- 8.3.2 Principle of Operation -- 8.3.3 Safety Valve Reaction Forces -- 8.3.4 Safety Valve Capacity Conversion -- Questions and Answers -- Further Reading -- Chapter 9 Safety and Reliability -- 9.1 Introduction -- 9.2 Safety Standards -- 9.3 Risk Analysis -- 9.4 Basic Safety and Reliability Concepts -- 9.4.1 System Incidents and Failures -- 9.4.1.1 Failure Rate -- 9.4.1.2 Repair Rate -- 9.4.1.3 Mean Time to Failure (MTTF) -- 9.4.1.4 Mean Time Between Failure (MTBF) -- 9.4.1.5 Mean Time to Repair and Recovery (MTTR) -- 9.4.1.6 Mean Time to Detection (MTTD) -- 9.4.2 Reliability and Unreliability -- 9.4.3 Availability and Unavailability -- 9.5 Safety Integrity Level (SIL) Calculations -- 9.5.1 SIL -- 9.5.2 Probability of Failure on Demand (PFD) -- 9.5.3 Mean Downtime -- 9.5.4 Diagnostic Coverage -- 9.5.5 Safe Failure Fraction (SFF) -- 9.6 Condition Monitoring (ValveWatch) -- Questions and Answers -- Further Reading -- Chapter 10 Valve Operation -- 10.1 Introduction -- 10.2 Valve Torque -- 10.3 Stem Design -- 10.3.1 MAST Calculations -- 10.3.2 Buckling Prevention -- 10.3.3 Torsional Deflection Prevention -- 10.3.4 MAST Limitation for Quarter-Turn Cryogenic Valves -- Questions and Answers -- Further Reading -- Chapter 11 Miscellaneous -- 11.1 Introduction -- 11.2 Joint Efficiency -- 11.2.1 Weld Joint Efficiency -- 11.2.2 Bolted Joint Efficiency -- 11.2.2.1 Bolted Bonnet or Cover Joints -- 11.2.2.2 Bolted Body Joints -- 11.2.3 Threaded Joint Efficiency.
11.2.3.1 Threaded Bonnet or Cover Joints -- 11.2.3.2 Threaded Body Joints -- 11.3 Stem Sealing -- Questions and Answers -- Further Reading -- Index -- EULA.
Record Nr. UNINA-9910829998303321
Sotoodeh Karan  
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui