top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Large-scale structures in acoustics and electromagnetics [[electronic resource] ] : proceedings of a symposium / / Board on Mathematical Sciences, Commission on Physical Sciences, Mathematics, and Applications, National Research Council
Large-scale structures in acoustics and electromagnetics [[electronic resource] ] : proceedings of a symposium / / Board on Mathematical Sciences, Commission on Physical Sciences, Mathematics, and Applications, National Research Council
Pubbl/distr/stampa Washington, D.C., : National Academy Press, 1996
Descrizione fisica 1 online resource (264 p.)
Disciplina 620.2/01/51
Soggetto topico Structural analysis (Engineering) - Mathematical models
Large scale systems - Mathematical models
Acoustical engineering - Mathematical models
Electromagnetism - Mathematical models
Soggetto genere / forma Electronic books.
ISBN 1-280-19268-2
9786610192687
0-309-56094-2
0-585-15412-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910456074303321
Washington, D.C., : National Academy Press, 1996
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Large-scale structures in acoustics and electromagnetics [[electronic resource] ] : proceedings of a symposium / / Board on Mathematical Sciences, Commission on Physical Sciences, Mathematics, and Applications, National Research Council
Large-scale structures in acoustics and electromagnetics [[electronic resource] ] : proceedings of a symposium / / Board on Mathematical Sciences, Commission on Physical Sciences, Mathematics, and Applications, National Research Council
Pubbl/distr/stampa Washington, D.C., : National Academy Press, 1996
Descrizione fisica 1 online resource (264 p.)
Disciplina 620.2/01/51
Soggetto topico Structural analysis (Engineering) - Mathematical models
Large scale systems - Mathematical models
Acoustical engineering - Mathematical models
Electromagnetism - Mathematical models
ISBN 1-280-19268-2
9786610192687
0-309-56094-2
0-585-15412-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910778663003321
Washington, D.C., : National Academy Press, 1996
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Large-scale structures in acoustics and electromagnetics [[electronic resource] ] : proceedings of a symposium / / Board on Mathematical Sciences, Commission on Physical Sciences, Mathematics, and Applications, National Research Council
Large-scale structures in acoustics and electromagnetics [[electronic resource] ] : proceedings of a symposium / / Board on Mathematical Sciences, Commission on Physical Sciences, Mathematics, and Applications, National Research Council
Pubbl/distr/stampa Washington, D.C., : National Academy Press, 1996
Descrizione fisica 1 online resource (264 p.)
Disciplina 620.2/01/51
Soggetto topico Structural analysis (Engineering) - Mathematical models
Large scale systems - Mathematical models
Acoustical engineering - Mathematical models
Electromagnetism - Mathematical models
ISBN 1-280-19268-2
9786610192687
0-309-56094-2
0-585-15412-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910828405103321
Washington, D.C., : National Academy Press, 1996
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Multiforms, dyadics, and electromagnetic media / / Ismo V. Lindell
Multiforms, dyadics, and electromagnetic media / / Ismo V. Lindell
Autore Lindell Ismo V.
Pubbl/distr/stampa Hoboken, New Jersey : , : IEEE Press/Wiley, [2015]
Descrizione fisica 1 online resource (416 p.)
Disciplina 537.01/515
Collana IEEE Press series on electromagnetic wave theory
Soggetto topico Electromagnetism - Mathematics
Electromagnetism - Mathematical models
ISBN 1-119-05239-4
1-119-05238-6
1-119-05240-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface xi -- 1 Multivectors and Multiforms 1 -- 1.1 Vectors and One-Forms, 1 -- 1.1.1 Bar Product | 1 -- 1.1.2 Basis Expansions 2 -- 1.2 Bivectors and Two-Forms, 3 -- 1.2.1 Wedge Product ∧ 3 -- 1.2.2 Basis Expansions 4 -- 1.2.3 Bar Product 5 -- 1.2.4 Contraction Products ⌋ and ⌊ 6 -- 1.2.5 Decomposition of Vectors and One-Forms 8 -- 1.3 Multivectors and Multiforms, 8 -- 1.3.1 Basis of Multivectors 9 -- 1.3.2 Bar Product of Multivectors and Multiforms 10 -- 1.3.3 Contraction of Trivectors and Three-Forms 11 -- 1.3.4 Contraction of Quadrivectors and Four-Forms 12 -- 1.3.5 Construction of Reciprocal Basis 13 -- 1.3.6 Contraction of Quintivector 14 -- 1.3.7 Generalized Bac-Cab Rules 14 -- 1.4 Some Properties of Bivectors and Two-Forms, 16 -- 1.4.1 Bivector Invariant 16 -- 1.4.2 Natural Dot Product 17 -- 1.4.3 Bivector as Mapping 17 -- Problems, 18 -- 2 Dyadics 21 -- 2.1 Mapping Vectors and One-Forms, 21 -- 2.1.1 Dyadics 21 -- 2.1.2 Double-Bar Product || 23 -- 2.1.3 Metric Dyadics 24 -- 2.2 Mapping Multivectors and Multiforms, 25 -- 2.2.1 Bidyadics 25 -- 2.2.2 Double-Wedge Product ∧∧ -- 2.2.3 Double-Wedge Powers 28 -- 2.2.4 Double Contractions ⌊⌊ and ⌋⌋ 30 -- 2.2.5 Natural Dot Product for Bidyadics 31 -- 2.3 Dyadic Identities, 32 -- 2.3.1 Contraction Identities 32 -- 2.3.2 Special Cases 33 -- 2.3.3 More General Rules 35 -- 2.3.4 Cayley / Hamilton Equation 36 -- 2.3.5 Inverse Dyadics 36 -- 2.4 Rank of Dyadics, 39 -- 2.5 Eigenproblems, 41 -- 2.5.1 Eigenvectors and Eigen One-Forms 41 -- 2.5.2 Reduced Cayley / Hamilton Equations 42 -- 2.5.3 Construction of Eigenvectors 43 -- 2.6 Metric Dyadics, 45 -- 2.6.1 Symmetric Dyadics 46 -- 2.6.2 Antisymmetric Dyadics 47 -- 2.6.3 Inverse Rules for Metric Dyadics 48 -- Problems, 49 -- 3 Bidyadics 53 -- 3.1 Cayley / Hamilton Equation, 54 -- 3.1.1 Coefficient Functions 55 -- 3.1.2 Determinant of a Bidyadic 57 -- 3.1.3 Antisymmetric Bidyadic 57 -- 3.2 Bidyadic Eigenproblem, 58 -- 3.2.1 Eigenbidyadic C- 60 -- 3.2.2 Eigenbidyadic C+ 60 -- 3.3 Hehl / Obukhov Decomposition, 61.
3.4 Example: Simple Antisymmetric Bidyadic, 64 -- 3.5 Inverse Rules for Bidyadics, 66 -- 3.5.1 Skewon Bidyadic 67 -- 3.5.2 Extended Bidyadics 70 -- 3.5.3 3D Expansions 73 -- Problems, 74 -- 4 Special Dyadics and Bidyadics 79 -- 4.1 Orthogonality Conditions, 79 -- 4.1.1 Orthogonality of Dyadics 79 -- 4.1.2 Orthogonality of Bidyadics 81 -- 4.2 Nilpotent Dyadics and Bidyadics, 81 -- 4.3 Projection Dyadics and Bidyadics, 83 -- 4.4 Unipotent Dyadics and Bidyadics, 85 -- 4.5 Almost-Complex Dyadics, 87 -- 4.5.1 Two-Dimensional AC Dyadics 89 -- 4.5.2 Four-Dimensional AC Dyadics 89 -- 4.6 Almost-Complex Bidyadics, 91 -- 4.7 Modified Closure Relation, 93 -- 4.7.1 Equivalent Conditions 94 -- 4.7.2 Solutions 94 -- 4.7.3 Testing the Two Solutions 96 -- Problems, 98 -- 5 Electromagnetic Fields 101 -- 5.1 Field Equations, 101 -- 5.1.1 Differentiation Operator 101 -- 5.1.2 Maxwell Equations 103 -- 5.1.3 Potential One-Form 105 -- 5.2 Medium Equations, 106 -- 5.2.1 Medium Bidyadics 106 -- 5.2.2 Potential Equation 107 -- 5.2.3 Expansions of Medium Bidyadics 107 -- 5.2.4 Gibbsian Representation 109 -- 5.3 Basic Classes of Media, 110 -- 5.3.1 Hehl / Obukhov Decomposition 110 -- 5.3.2 3D Expansions 112 -- 5.3.3 Simple Principal Medium 114 -- 5.4 Interfaces and Boundaries, 117 -- 5.4.1 Interface Conditions 117 -- 5.4.2 Boundary Conditions 119 -- 5.5 Power and Energy, 123 -- 5.5.1 Bilinear Invariants 123 -- 5.5.2 The Stress / Energy Dyadic 125 -- 5.5.3 Differentiation Rule 127 -- 5.6 Plane Waves, 128 -- 5.6.1 Basic Equations 128 -- 5.6.2 Dispersion Equation 130 -- 5.6.3 Special Cases 132 -- 5.6.4 Plane-Wave Fields 132 -- 5.6.5 Simple Principal Medium 134 -- 5.6.6 Handedness of Plane Wave 135 -- Problems, 136 -- 6 Transformation of Fields and Media 141 -- 6.1 Affine Transformation, 141 -- 6.1.1 Transformation of Fields 141 -- 6.1.2 Transformation of Media 142 -- 6.1.3 Dispersion Equation 144 -- 6.1.4 Simple Principal Medium 145 -- 6.2 Duality Transformation, 145 -- 6.2.1 Transformation of Fields 146.
6.2.2 Involutionary Duality Transformation 147 -- 6.2.3 Transformation of Media 149 -- 6.3 Transformation of Boundary Conditions, 150 -- 6.3.1 Simple Principal Medium 152 -- 6.3.2 Plane Wave 152 -- 6.4 Reciprocity Transformation, 153 -- 6.4.1 Medium Transformation 153 -- 6.4.2 Reciprocity Conditions 155 -- 6.4.3 Field Relations 157 -- 6.4.4 Time-Harmonic Fields 158 -- 6.5 Conformal Transformation, 159 -- 6.5.1 Properties of the Conformal Transformation 160 -- 6.5.2 Field Transformation 164 -- 6.5.3 Medium Transformation 165 -- Problems, 166 -- 7 Basic Classes of Electromagnetic Media 169 -- 7.1 Gibbsian Isotropy, 169 -- 7.1.1 Gibbsian Isotropic Medium 169 -- 7.1.2 Gibbsian Bi-isotropic Medium 170 -- 7.1.3 Decomposition of GBI Medium 171 -- 7.1.4 Affine Transformation 173 -- 7.1.5 Eigenfields in GBI Medium 174 -- 7.1.6 Plane Wave in GBI Medium 176 -- 7.2 The Axion Medium, 178 -- 7.2.1 Perfect Electromagnetic Conductor 179 -- 7.2.2 PEMC as Limiting Case of GBI Medium 180 -- 7.2.3 PEMC Boundary Problems 181 -- 7.3 Skewon / Axion Media, 182 -- 7.3.1 Plane Wave in Skewon / Axion Medium 184 -- 7.3.2 Gibbsian Representation 185 -- 7.3.3 Boundary Conditions 187 -- 7.4 Extended Skewon / Axion Media, 192 -- Problems, 194 -- 8 Quadratic Media 197 -- 8.1 P Media and Q Media, 197 -- 8.2 Transformations, 200 -- 8.3 Spatial Expansions, 201 -- 8.3.1 Spatial Expansion of Q Media 201 -- 8.3.2 Spatial Expansion of P Media 203 -- 8.3.3 Relation Between P Media and Q Media 204 -- 8.4 Plane Waves, 205 -- 8.4.1 Plane Waves in Q Media 205 -- 8.4.2 Plane Waves in P Media 207 -- 8.4.3 P Medium as Boundary Material 208 -- 8.5 P-Axion and Q-Axion Media, 209 -- 8.6 Extended Q Media, 211 -- 8.6.1 Gibbsian Representation 211 -- 8.6.2 Field Decomposition 214 -- 8.6.3 Transformations 215 -- 8.6.4 Plane Waves in Extended Q Media 215 -- 8.7 Extended P Media, 218 -- 8.7.1 Medium Conditions 218 -- 8.7.2 Plane Waves in Extended P Media 219 -- 8.7.3 Field Conditions 220 -- Problems, 221 -- 9 Media Defined by Bidyadic Equations 225.
9.1 Quadratic Equation, 226 -- 9.1.1 SD Media 227 -- 9.1.2 Eigenexpansions 228 -- 9.1.3 Duality Transformation 229 -- 9.1.4 3D Representations 231 -- 9.1.5 SDN Media 234 -- 9.2 Cubic Equation, 235 -- 9.2.1 CU Media 235 -- 9.2.2 Eigenexpansions 236 -- 9.2.3 Examples of CU Media 238 -- 9.3 Bi-Quadratic Equation, 240 -- 9.3.1 BQ Media 241 -- 9.3.2 Eigenexpansions 242 -- 9.3.3 3D Representation 244 -- 9.3.4 Special Case 245 -- Problems, 246 -- 10 Media Defined by Plane-Wave Properties 249 -- 10.1 Media with No Dispersion Equation (NDE Media), 249 -- 10.1.1 Two Cases of Solutions 250 -- 10.1.2 Plane-Wave Fields in NDE Media 255 -- 10.1.3 Other Possible NDE Media 257 -- 10.2 Decomposable Media, 259 -- 10.2.1 Special Cases 259 -- 10.2.2 DC-Medium Subclasses 263 -- 10.2.3 Plane-Wave Properties 267 -- Problems, 269 -- Appendix A Solutions to Problems 273 -- Appendix B Transformation to Gibbsian Formalism 369 -- Appendix C Multivector and Dyadic Identities 375 -- References 389 -- Index 395.
Record Nr. UNINA-9910132448803321
Lindell Ismo V.  
Hoboken, New Jersey : , : IEEE Press/Wiley, [2015]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Multiforms, dyadics, and electromagnetic media / / Ismo V. Lindell
Multiforms, dyadics, and electromagnetic media / / Ismo V. Lindell
Autore Lindell Ismo V.
Pubbl/distr/stampa Hoboken, New Jersey : , : IEEE Press/Wiley, [2015]
Descrizione fisica 1 online resource (416 p.)
Disciplina 537.01/515
Collana IEEE Press series on electromagnetic wave theory
Soggetto topico Electromagnetism - Mathematics
Electromagnetism - Mathematical models
ISBN 1-119-05239-4
1-119-05238-6
1-119-05240-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface xi -- 1 Multivectors and Multiforms 1 -- 1.1 Vectors and One-Forms, 1 -- 1.1.1 Bar Product | 1 -- 1.1.2 Basis Expansions 2 -- 1.2 Bivectors and Two-Forms, 3 -- 1.2.1 Wedge Product ∧ 3 -- 1.2.2 Basis Expansions 4 -- 1.2.3 Bar Product 5 -- 1.2.4 Contraction Products ⌋ and ⌊ 6 -- 1.2.5 Decomposition of Vectors and One-Forms 8 -- 1.3 Multivectors and Multiforms, 8 -- 1.3.1 Basis of Multivectors 9 -- 1.3.2 Bar Product of Multivectors and Multiforms 10 -- 1.3.3 Contraction of Trivectors and Three-Forms 11 -- 1.3.4 Contraction of Quadrivectors and Four-Forms 12 -- 1.3.5 Construction of Reciprocal Basis 13 -- 1.3.6 Contraction of Quintivector 14 -- 1.3.7 Generalized Bac-Cab Rules 14 -- 1.4 Some Properties of Bivectors and Two-Forms, 16 -- 1.4.1 Bivector Invariant 16 -- 1.4.2 Natural Dot Product 17 -- 1.4.3 Bivector as Mapping 17 -- Problems, 18 -- 2 Dyadics 21 -- 2.1 Mapping Vectors and One-Forms, 21 -- 2.1.1 Dyadics 21 -- 2.1.2 Double-Bar Product || 23 -- 2.1.3 Metric Dyadics 24 -- 2.2 Mapping Multivectors and Multiforms, 25 -- 2.2.1 Bidyadics 25 -- 2.2.2 Double-Wedge Product ∧∧ -- 2.2.3 Double-Wedge Powers 28 -- 2.2.4 Double Contractions ⌊⌊ and ⌋⌋ 30 -- 2.2.5 Natural Dot Product for Bidyadics 31 -- 2.3 Dyadic Identities, 32 -- 2.3.1 Contraction Identities 32 -- 2.3.2 Special Cases 33 -- 2.3.3 More General Rules 35 -- 2.3.4 Cayley / Hamilton Equation 36 -- 2.3.5 Inverse Dyadics 36 -- 2.4 Rank of Dyadics, 39 -- 2.5 Eigenproblems, 41 -- 2.5.1 Eigenvectors and Eigen One-Forms 41 -- 2.5.2 Reduced Cayley / Hamilton Equations 42 -- 2.5.3 Construction of Eigenvectors 43 -- 2.6 Metric Dyadics, 45 -- 2.6.1 Symmetric Dyadics 46 -- 2.6.2 Antisymmetric Dyadics 47 -- 2.6.3 Inverse Rules for Metric Dyadics 48 -- Problems, 49 -- 3 Bidyadics 53 -- 3.1 Cayley / Hamilton Equation, 54 -- 3.1.1 Coefficient Functions 55 -- 3.1.2 Determinant of a Bidyadic 57 -- 3.1.3 Antisymmetric Bidyadic 57 -- 3.2 Bidyadic Eigenproblem, 58 -- 3.2.1 Eigenbidyadic C- 60 -- 3.2.2 Eigenbidyadic C+ 60 -- 3.3 Hehl / Obukhov Decomposition, 61.
3.4 Example: Simple Antisymmetric Bidyadic, 64 -- 3.5 Inverse Rules for Bidyadics, 66 -- 3.5.1 Skewon Bidyadic 67 -- 3.5.2 Extended Bidyadics 70 -- 3.5.3 3D Expansions 73 -- Problems, 74 -- 4 Special Dyadics and Bidyadics 79 -- 4.1 Orthogonality Conditions, 79 -- 4.1.1 Orthogonality of Dyadics 79 -- 4.1.2 Orthogonality of Bidyadics 81 -- 4.2 Nilpotent Dyadics and Bidyadics, 81 -- 4.3 Projection Dyadics and Bidyadics, 83 -- 4.4 Unipotent Dyadics and Bidyadics, 85 -- 4.5 Almost-Complex Dyadics, 87 -- 4.5.1 Two-Dimensional AC Dyadics 89 -- 4.5.2 Four-Dimensional AC Dyadics 89 -- 4.6 Almost-Complex Bidyadics, 91 -- 4.7 Modified Closure Relation, 93 -- 4.7.1 Equivalent Conditions 94 -- 4.7.2 Solutions 94 -- 4.7.3 Testing the Two Solutions 96 -- Problems, 98 -- 5 Electromagnetic Fields 101 -- 5.1 Field Equations, 101 -- 5.1.1 Differentiation Operator 101 -- 5.1.2 Maxwell Equations 103 -- 5.1.3 Potential One-Form 105 -- 5.2 Medium Equations, 106 -- 5.2.1 Medium Bidyadics 106 -- 5.2.2 Potential Equation 107 -- 5.2.3 Expansions of Medium Bidyadics 107 -- 5.2.4 Gibbsian Representation 109 -- 5.3 Basic Classes of Media, 110 -- 5.3.1 Hehl / Obukhov Decomposition 110 -- 5.3.2 3D Expansions 112 -- 5.3.3 Simple Principal Medium 114 -- 5.4 Interfaces and Boundaries, 117 -- 5.4.1 Interface Conditions 117 -- 5.4.2 Boundary Conditions 119 -- 5.5 Power and Energy, 123 -- 5.5.1 Bilinear Invariants 123 -- 5.5.2 The Stress / Energy Dyadic 125 -- 5.5.3 Differentiation Rule 127 -- 5.6 Plane Waves, 128 -- 5.6.1 Basic Equations 128 -- 5.6.2 Dispersion Equation 130 -- 5.6.3 Special Cases 132 -- 5.6.4 Plane-Wave Fields 132 -- 5.6.5 Simple Principal Medium 134 -- 5.6.6 Handedness of Plane Wave 135 -- Problems, 136 -- 6 Transformation of Fields and Media 141 -- 6.1 Affine Transformation, 141 -- 6.1.1 Transformation of Fields 141 -- 6.1.2 Transformation of Media 142 -- 6.1.3 Dispersion Equation 144 -- 6.1.4 Simple Principal Medium 145 -- 6.2 Duality Transformation, 145 -- 6.2.1 Transformation of Fields 146.
6.2.2 Involutionary Duality Transformation 147 -- 6.2.3 Transformation of Media 149 -- 6.3 Transformation of Boundary Conditions, 150 -- 6.3.1 Simple Principal Medium 152 -- 6.3.2 Plane Wave 152 -- 6.4 Reciprocity Transformation, 153 -- 6.4.1 Medium Transformation 153 -- 6.4.2 Reciprocity Conditions 155 -- 6.4.3 Field Relations 157 -- 6.4.4 Time-Harmonic Fields 158 -- 6.5 Conformal Transformation, 159 -- 6.5.1 Properties of the Conformal Transformation 160 -- 6.5.2 Field Transformation 164 -- 6.5.3 Medium Transformation 165 -- Problems, 166 -- 7 Basic Classes of Electromagnetic Media 169 -- 7.1 Gibbsian Isotropy, 169 -- 7.1.1 Gibbsian Isotropic Medium 169 -- 7.1.2 Gibbsian Bi-isotropic Medium 170 -- 7.1.3 Decomposition of GBI Medium 171 -- 7.1.4 Affine Transformation 173 -- 7.1.5 Eigenfields in GBI Medium 174 -- 7.1.6 Plane Wave in GBI Medium 176 -- 7.2 The Axion Medium, 178 -- 7.2.1 Perfect Electromagnetic Conductor 179 -- 7.2.2 PEMC as Limiting Case of GBI Medium 180 -- 7.2.3 PEMC Boundary Problems 181 -- 7.3 Skewon / Axion Media, 182 -- 7.3.1 Plane Wave in Skewon / Axion Medium 184 -- 7.3.2 Gibbsian Representation 185 -- 7.3.3 Boundary Conditions 187 -- 7.4 Extended Skewon / Axion Media, 192 -- Problems, 194 -- 8 Quadratic Media 197 -- 8.1 P Media and Q Media, 197 -- 8.2 Transformations, 200 -- 8.3 Spatial Expansions, 201 -- 8.3.1 Spatial Expansion of Q Media 201 -- 8.3.2 Spatial Expansion of P Media 203 -- 8.3.3 Relation Between P Media and Q Media 204 -- 8.4 Plane Waves, 205 -- 8.4.1 Plane Waves in Q Media 205 -- 8.4.2 Plane Waves in P Media 207 -- 8.4.3 P Medium as Boundary Material 208 -- 8.5 P-Axion and Q-Axion Media, 209 -- 8.6 Extended Q Media, 211 -- 8.6.1 Gibbsian Representation 211 -- 8.6.2 Field Decomposition 214 -- 8.6.3 Transformations 215 -- 8.6.4 Plane Waves in Extended Q Media 215 -- 8.7 Extended P Media, 218 -- 8.7.1 Medium Conditions 218 -- 8.7.2 Plane Waves in Extended P Media 219 -- 8.7.3 Field Conditions 220 -- Problems, 221 -- 9 Media Defined by Bidyadic Equations 225.
9.1 Quadratic Equation, 226 -- 9.1.1 SD Media 227 -- 9.1.2 Eigenexpansions 228 -- 9.1.3 Duality Transformation 229 -- 9.1.4 3D Representations 231 -- 9.1.5 SDN Media 234 -- 9.2 Cubic Equation, 235 -- 9.2.1 CU Media 235 -- 9.2.2 Eigenexpansions 236 -- 9.2.3 Examples of CU Media 238 -- 9.3 Bi-Quadratic Equation, 240 -- 9.3.1 BQ Media 241 -- 9.3.2 Eigenexpansions 242 -- 9.3.3 3D Representation 244 -- 9.3.4 Special Case 245 -- Problems, 246 -- 10 Media Defined by Plane-Wave Properties 249 -- 10.1 Media with No Dispersion Equation (NDE Media), 249 -- 10.1.1 Two Cases of Solutions 250 -- 10.1.2 Plane-Wave Fields in NDE Media 255 -- 10.1.3 Other Possible NDE Media 257 -- 10.2 Decomposable Media, 259 -- 10.2.1 Special Cases 259 -- 10.2.2 DC-Medium Subclasses 263 -- 10.2.3 Plane-Wave Properties 267 -- Problems, 269 -- Appendix A Solutions to Problems 273 -- Appendix B Transformation to Gibbsian Formalism 369 -- Appendix C Multivector and Dyadic Identities 375 -- References 389 -- Index 395.
Record Nr. UNINA-9910813439503321
Lindell Ismo V.  
Hoboken, New Jersey : , : IEEE Press/Wiley, [2015]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Numerical analysis in electromagnetics [[electronic resource] ] : the TLM method / / Pierre Saguet
Numerical analysis in electromagnetics [[electronic resource] ] : the TLM method / / Pierre Saguet
Autore Saguet Pierre
Edizione [1st edition]
Pubbl/distr/stampa London, : ISTE
Descrizione fisica 1 online resource (186 p.)
Disciplina 537.01/515
Collana ISTE
Soggetto topico Electromagnetism - Mathematical models
Time-domain analysis
Numerical analysis
Electrical engineering - Mathematics
ISBN 1-118-56235-6
1-118-61400-3
1-299-31492-9
1-118-61422-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Numerical Analysis in Electromagnetics; Title Page; Copyright Page; Table of Contents; Introduction; Chapter 1. Basis of the TLM Method: the 2D TLM Method; 1.1. Historical introduction; 1.2. 2D simulation; 1.2.1. Parallel node; 1.2.2. Series node; 1.2.3. Simulation of inhomogeneous media with losses; 1.2.4. Scattering matrices; 1.2.5. Boundary conditions; 1.2.6. Dielectric interface passage conditions; 1.2.7. Dispersion of 2D nodes; 1.3. The TLM process; 1.3.1. Basic algorithm; 1.3.2. Excitation; 1.3.3. Output signal processing; Chapter 2. 3D Nodes; 2.1. Historical development
2.1.1. Distributed nodes2.1.2. Asymmetrical condensed node (ACN); 2.1.3. The symmetrical condensed node (SCN); 2.1.4. Other types of nodes; 2.2. The generalized condensed node; 2.2.1. General description; 2.2.2. Derivation of 3D TLM nodes; 2.2.3. Scattering matrices; 2.3. Time step; 2.4. Dispersion of 3D nodes; 2.4.1. Theoretical study in simple cases; 2.4.2. Case of inhomogeneous media; 2.5. Absorbing walls; 2.5.1. Matched impedance; 2.5.2. Segmentation techniques; 2.5.3. Perfectly matched layers; 2.5.4. Optimization of the PML layer profile; 2.5.5. Anisotropic and dispersive layers
2.5.6. Conclusion2.6. Orthogonal curvilinear mesh; 2.6.1. 3D TLM curvilinear cell; 2.6.2. The TLM algorithm; 2.6.3. Scattering matrices for curvilinear nodes; 2.6.4. Stability conditions and the time step; 2.6.5. Validation of the algorithm; 2.7. Non-Cartesian nodes; Chapter 3. Introduction of Discrete Elements and Thin Wires in the TLM Method; 3.1. Introduction of discrete elements; 3.1.1. History of 2D TLM; 3.1.2. 3D TLM; 3.1.3. Application example: modeling of a p-n diode; 3.2. Introduction of thin wires; 3.2.1. Arbitrarily oriented thin wire model
3.2.2. Validation of the arbitrarily oriented thin wire modelChapter 4. The TLM Method in Matrix Form and the Z Transform; 4.1. Introduction; 4.2. Matrix form of Maxwell's equations; 4.3. Cubic mesh normalized Maxwell's equations; 4.4. The propagation process; 4.5. Wave-matter interaction; 4.6. The normalized parallelepipedic mesh Maxwell's equations; 4.7. Application example: plasma modeling; 4.7.1. Theoretical model; 4.7.2. Validation of the TLM simulation; 4.8. Conclusion; APPENDICES; Appendix A. Development of Maxwell's Equations using the Z Transform with a Variable Mesh
Appendix B. Treatment of Plasma using the Z Transform for the TLM MethodBibliography; Index
Record Nr. UNINA-9910139054203321
Saguet Pierre  
London, : ISTE
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Numerical analysis in electromagnetics [[electronic resource] ] : the TLM method / / Pierre Saguet
Numerical analysis in electromagnetics [[electronic resource] ] : the TLM method / / Pierre Saguet
Autore Saguet Pierre
Edizione [1st edition]
Pubbl/distr/stampa London, : ISTE
Descrizione fisica 1 online resource (186 p.)
Disciplina 537.01/515
Collana ISTE
Soggetto topico Electromagnetism - Mathematical models
Time-domain analysis
Numerical analysis
Electrical engineering - Mathematics
ISBN 1-118-56235-6
1-118-61400-3
1-299-31492-9
1-118-61422-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Numerical Analysis in Electromagnetics; Title Page; Copyright Page; Table of Contents; Introduction; Chapter 1. Basis of the TLM Method: the 2D TLM Method; 1.1. Historical introduction; 1.2. 2D simulation; 1.2.1. Parallel node; 1.2.2. Series node; 1.2.3. Simulation of inhomogeneous media with losses; 1.2.4. Scattering matrices; 1.2.5. Boundary conditions; 1.2.6. Dielectric interface passage conditions; 1.2.7. Dispersion of 2D nodes; 1.3. The TLM process; 1.3.1. Basic algorithm; 1.3.2. Excitation; 1.3.3. Output signal processing; Chapter 2. 3D Nodes; 2.1. Historical development
2.1.1. Distributed nodes2.1.2. Asymmetrical condensed node (ACN); 2.1.3. The symmetrical condensed node (SCN); 2.1.4. Other types of nodes; 2.2. The generalized condensed node; 2.2.1. General description; 2.2.2. Derivation of 3D TLM nodes; 2.2.3. Scattering matrices; 2.3. Time step; 2.4. Dispersion of 3D nodes; 2.4.1. Theoretical study in simple cases; 2.4.2. Case of inhomogeneous media; 2.5. Absorbing walls; 2.5.1. Matched impedance; 2.5.2. Segmentation techniques; 2.5.3. Perfectly matched layers; 2.5.4. Optimization of the PML layer profile; 2.5.5. Anisotropic and dispersive layers
2.5.6. Conclusion2.6. Orthogonal curvilinear mesh; 2.6.1. 3D TLM curvilinear cell; 2.6.2. The TLM algorithm; 2.6.3. Scattering matrices for curvilinear nodes; 2.6.4. Stability conditions and the time step; 2.6.5. Validation of the algorithm; 2.7. Non-Cartesian nodes; Chapter 3. Introduction of Discrete Elements and Thin Wires in the TLM Method; 3.1. Introduction of discrete elements; 3.1.1. History of 2D TLM; 3.1.2. 3D TLM; 3.1.3. Application example: modeling of a p-n diode; 3.2. Introduction of thin wires; 3.2.1. Arbitrarily oriented thin wire model
3.2.2. Validation of the arbitrarily oriented thin wire modelChapter 4. The TLM Method in Matrix Form and the Z Transform; 4.1. Introduction; 4.2. Matrix form of Maxwell's equations; 4.3. Cubic mesh normalized Maxwell's equations; 4.4. The propagation process; 4.5. Wave-matter interaction; 4.6. The normalized parallelepipedic mesh Maxwell's equations; 4.7. Application example: plasma modeling; 4.7.1. Theoretical model; 4.7.2. Validation of the TLM simulation; 4.8. Conclusion; APPENDICES; Appendix A. Development of Maxwell's Equations using the Z Transform with a Variable Mesh
Appendix B. Treatment of Plasma using the Z Transform for the TLM MethodBibliography; Index
Record Nr. UNINA-9910807660703321
Saguet Pierre  
London, : ISTE
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The partial element equivalent circuit method for electro-magnetic and circuit problems : a paradigm for EM modeling / / Albert E. Ruehli, Giulio Antonini, Lijun Jiang
The partial element equivalent circuit method for electro-magnetic and circuit problems : a paradigm for EM modeling / / Albert E. Ruehli, Giulio Antonini, Lijun Jiang
Autore Ruehli A. E (Albert E.), <1937->
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, , 2016
Descrizione fisica 1 online resource (436 pages)
Disciplina 621.301/51
Collana Wiley - IEEE
Soggetto topico Electric circuits - Mathematical models
Electromagnetism - Mathematical models
ISBN 1-119-07840-7
1-119-07839-3
1-119-07838-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto -- DEDICATION xv -- PREFACE xvii -- ACKNOWLEDGEMENTS xxi -- ACRONYMS xxv -- 1 Introduction 1 -- References, 6 -- 2 Circuit Analysis for PEEC Methods 9 -- 2.1 Circuit Analysis Techniques, 9 -- 2.2 Overall Electromagnetic and Circuit Solver Structure, 9 -- 2.3 Circuit Laws, 11 -- 2.4 Frequency and Time Domain Analyses, 13 -- 2.5 Frequency Domain Analysis Formulation, 14 -- 2.6 Time Domain Analysis Formulations, 17 -- 2.7 General Modified Nodal Analysis (MNA), 22 -- 2.8 Including Frequency Dependent Models in Time Domain Solution, 28 -- 2.9 Including Frequency Domain Models in Circuit Solution, 31 -- 2.10 Recursive Convolution Solution, 39 -- 2.11 Circuit Models with Delays or Retardation, 41 -- Problems, 43 -- References, 44 -- 3 Maxwell's Equations 47 -- 3.1 Maxwell's Equations for PEEC Solutions, 47 -- 3.2 Auxiliary Potentials, 52 -- 3.3 Wave Equations and Their Solutions, 54 -- 3.4 Green's Function, 58 -- 3.5 Equivalence Principles, 60 -- 3.6 Numerical Solution of Integral Equations, 63 -- Problems, 65 -- References, 66 -- 4 Capacitance Computations 67 -- 4.1 Multiconductor Capacitance Concepts, 68 -- 4.2 Capacitance Models, 69 -- 4.3 Solution Techniques for Capacitance Problems, 74 -- 4.4 Meshing Related Accuracy Problems for PEEC Model, 79 -- 4.5 Representation of Capacitive Currents for PEEC Models, 82 -- Problems, 85 -- References, 86 -- 5 Inductance Computations 89 -- 5.1 Loop Inductance Computations, 90 -- 5.2 Inductance Computation Using a Solution or a Circuit Solver, 95 -- 5.3 Flux Loops for Partial Inductance, 95 -- 5.4 Inductances of Incomplete Structures, 96 -- 5.5 Computation of Partial Inductances, 99 -- 5.6 General Inductance Computations Using Partial Inductances and Open Loop Inductance, 107 -- 5.7 Difference Cell Pair Inductance Models, 109 -- 5.8 Partial Inductances with Frequency Domain Retardation, 119 -- Retardation, 123 -- Problems, 125 -- References, 131 -- 6 Building PEEC Models 133 -- 6.1 Resistive Circuit Elements for Manhattan-Type Geometries, 134.
6.2 Inductance / Resistance (Lp,R)PEEC Models, 136 -- 6.3 General (Lp,p,R)PEEC Model Development, 138 -- 6.4 Complete PEEC Model with Input and Output Connections, 148 -- 6.5 Time Domain Representation, 154 -- Problems, 154 -- References, 155 -- 7 Nonorthogonal PEEC Models 157 -- 7.1 Representation of Nonorthogonal Shapes, 158 -- 7.2 Specification of Nonorthogonal Partial Elements, 163 -- 7.3 Evaluation of Partial Elements for Nonorthogonal PEEC Circuits, 169 -- Problems, 181 -- References, 182 -- 8 Geometrical Description and Meshing 185 -- 8.1 General Aspects of PEEC Model Meshing Requirements, 186 -- 8.2 Outline of Some Meshing Techniques Available Today, 187 -- 8.3 SPICE Type Geometry Description, 194 -- 8.4 Detailed Properties of Meshing Algorithms, 196 -- 8.5 Automatic Generation of Geometrical Objects, 202 -- 8.6 Meshing of Some Three Dimensional Pre-determined Shapes, 205 -- 8.7 Approximations with Simplified Meshes, 207 -- 8.8 Mesh Generation Codes, 208 -- Problems, 209 -- References, 210 -- 9 Skin Effect Modeling 213 -- 9.1 Transmission Line Based Models, 214 -- 9.2 One Dimensional Current Flow Techniques, 215 -- 9.3 3D Volume Filament (VFI) Skin-Effect Model, 227 -- 9.4 Comparisons of Different Skin-Effect Models, 238 -- Problems, 244 -- References, 246 -- 10 PEEC Models for Dielectrics 249 -- 10.1 Electrical Models for Dielectric Materials, 249 -- 10.2 Circuit Oriented Models for Dispersive Dielectrics, 254 -- 10.3 Multi-Pole Debye Model, 257 -- 10.4 Including Dielectric Models in PEEC Solutions, 260 -- 10.5 Example for Impact of Dielectric Properties in the Time Domain, 276 -- Problems, 281 -- References, 281 -- 11 PEEC Models for Magnetic Material 285 -- 11.1 Inclusion of Problems with Magnetic Materials, 285 -- 11.2 Model for Magnetic Bodies by Using a Magnetic Scalar Potential and Magnetic Charge Formulation, 292 -- 11.3 PEEC Formulation Including Magnetic Bodies, 295 -- 11.4 Surface Models for Magnetic and Dielectric Material Solutions in PEEC, 300.
Problems, 307 -- References, 308 -- 12 Incident and Radiated Field Models 309 -- 12.1 External Incident Field Applied to PEEC Model, 310 -- 12.2 Far-Field Radiation Models by Using Sensors, 312 -- 12.3 Direct Far-Field Radiation Computation, 318 -- Problems, 322 -- References, 322 -- 13 Stability and Passivity of PEEC Models 325 -- 13.1 Fundamental Stability and Passivity Concepts, 327 -- 13.2 Analysis of Properties of PEEC Circuits, 332 -- 13.3 Observability and Controllability of PEEC Circuits, 334 -- 13.4 Passivity Assessment of Solution, 337 -- 13.5 Solver Based Stability and Passivity Enhancement Techniques, 342 -- 13.6 Time Domain Solver Issues for Stability and Passivity, 359 -- Acknowledgment, 364 -- Problems, 364 -- References, 365 -- A Table of Units 369 -- A.1 Collection of Variables and Constants for Different Applications, 369 -- B Modified Nodal Analysis Stamps 373 -- B.1 Modified Nodal Analysis Matrix Stamps, 373 -- B.2 Controlled Source Stamps, 380 -- References, 382 -- C Computation of Partial Inductances 383 -- C.1 Partial Inductance Formulas for Orthogonal Geometries, 385 -- C.2 Partial inductance formulas for nonorthogonal geometries, 398 -- References, 407 -- D Computation of Partial Coefficients of Potential 409 -- D.1 Partial Potential Coefficients for Orthogonal Geometries, 410 -- D.2 Partial Potential Coefficient Formulas for Nonorthogonal Geometries, 418 -- References, 421 -- E Auxiliary Techniques for Partial Element Computations 423 -- E.1 Multi-function Partial Element Integration, 423 -- Subdivisions for Nonself-Partial Elements, 428 -- References, 429 -- INDEX 431.
Record Nr. UNINA-9910270885403321
Ruehli A. E (Albert E.), <1937->  
Hoboken, New Jersey : , : John Wiley & Sons, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The partial element equivalent circuit method for electro-magnetic and circuit problems : a paradigm for EM modeling / / Albert E. Ruehli, Giulio Antonini, Lijun Jiang
The partial element equivalent circuit method for electro-magnetic and circuit problems : a paradigm for EM modeling / / Albert E. Ruehli, Giulio Antonini, Lijun Jiang
Autore Ruehli A. E (Albert E.), <1937->
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, , 2016
Descrizione fisica 1 online resource (436 pages)
Disciplina 621.301/51
Collana Wiley - IEEE
Soggetto topico Electric circuits - Mathematical models
Electromagnetism - Mathematical models
ISBN 1-119-07840-7
1-119-07839-3
1-119-07838-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto -- DEDICATION xv -- PREFACE xvii -- ACKNOWLEDGEMENTS xxi -- ACRONYMS xxv -- 1 Introduction 1 -- References, 6 -- 2 Circuit Analysis for PEEC Methods 9 -- 2.1 Circuit Analysis Techniques, 9 -- 2.2 Overall Electromagnetic and Circuit Solver Structure, 9 -- 2.3 Circuit Laws, 11 -- 2.4 Frequency and Time Domain Analyses, 13 -- 2.5 Frequency Domain Analysis Formulation, 14 -- 2.6 Time Domain Analysis Formulations, 17 -- 2.7 General Modified Nodal Analysis (MNA), 22 -- 2.8 Including Frequency Dependent Models in Time Domain Solution, 28 -- 2.9 Including Frequency Domain Models in Circuit Solution, 31 -- 2.10 Recursive Convolution Solution, 39 -- 2.11 Circuit Models with Delays or Retardation, 41 -- Problems, 43 -- References, 44 -- 3 Maxwell's Equations 47 -- 3.1 Maxwell's Equations for PEEC Solutions, 47 -- 3.2 Auxiliary Potentials, 52 -- 3.3 Wave Equations and Their Solutions, 54 -- 3.4 Green's Function, 58 -- 3.5 Equivalence Principles, 60 -- 3.6 Numerical Solution of Integral Equations, 63 -- Problems, 65 -- References, 66 -- 4 Capacitance Computations 67 -- 4.1 Multiconductor Capacitance Concepts, 68 -- 4.2 Capacitance Models, 69 -- 4.3 Solution Techniques for Capacitance Problems, 74 -- 4.4 Meshing Related Accuracy Problems for PEEC Model, 79 -- 4.5 Representation of Capacitive Currents for PEEC Models, 82 -- Problems, 85 -- References, 86 -- 5 Inductance Computations 89 -- 5.1 Loop Inductance Computations, 90 -- 5.2 Inductance Computation Using a Solution or a Circuit Solver, 95 -- 5.3 Flux Loops for Partial Inductance, 95 -- 5.4 Inductances of Incomplete Structures, 96 -- 5.5 Computation of Partial Inductances, 99 -- 5.6 General Inductance Computations Using Partial Inductances and Open Loop Inductance, 107 -- 5.7 Difference Cell Pair Inductance Models, 109 -- 5.8 Partial Inductances with Frequency Domain Retardation, 119 -- Retardation, 123 -- Problems, 125 -- References, 131 -- 6 Building PEEC Models 133 -- 6.1 Resistive Circuit Elements for Manhattan-Type Geometries, 134.
6.2 Inductance / Resistance (Lp,R)PEEC Models, 136 -- 6.3 General (Lp,p,R)PEEC Model Development, 138 -- 6.4 Complete PEEC Model with Input and Output Connections, 148 -- 6.5 Time Domain Representation, 154 -- Problems, 154 -- References, 155 -- 7 Nonorthogonal PEEC Models 157 -- 7.1 Representation of Nonorthogonal Shapes, 158 -- 7.2 Specification of Nonorthogonal Partial Elements, 163 -- 7.3 Evaluation of Partial Elements for Nonorthogonal PEEC Circuits, 169 -- Problems, 181 -- References, 182 -- 8 Geometrical Description and Meshing 185 -- 8.1 General Aspects of PEEC Model Meshing Requirements, 186 -- 8.2 Outline of Some Meshing Techniques Available Today, 187 -- 8.3 SPICE Type Geometry Description, 194 -- 8.4 Detailed Properties of Meshing Algorithms, 196 -- 8.5 Automatic Generation of Geometrical Objects, 202 -- 8.6 Meshing of Some Three Dimensional Pre-determined Shapes, 205 -- 8.7 Approximations with Simplified Meshes, 207 -- 8.8 Mesh Generation Codes, 208 -- Problems, 209 -- References, 210 -- 9 Skin Effect Modeling 213 -- 9.1 Transmission Line Based Models, 214 -- 9.2 One Dimensional Current Flow Techniques, 215 -- 9.3 3D Volume Filament (VFI) Skin-Effect Model, 227 -- 9.4 Comparisons of Different Skin-Effect Models, 238 -- Problems, 244 -- References, 246 -- 10 PEEC Models for Dielectrics 249 -- 10.1 Electrical Models for Dielectric Materials, 249 -- 10.2 Circuit Oriented Models for Dispersive Dielectrics, 254 -- 10.3 Multi-Pole Debye Model, 257 -- 10.4 Including Dielectric Models in PEEC Solutions, 260 -- 10.5 Example for Impact of Dielectric Properties in the Time Domain, 276 -- Problems, 281 -- References, 281 -- 11 PEEC Models for Magnetic Material 285 -- 11.1 Inclusion of Problems with Magnetic Materials, 285 -- 11.2 Model for Magnetic Bodies by Using a Magnetic Scalar Potential and Magnetic Charge Formulation, 292 -- 11.3 PEEC Formulation Including Magnetic Bodies, 295 -- 11.4 Surface Models for Magnetic and Dielectric Material Solutions in PEEC, 300.
Problems, 307 -- References, 308 -- 12 Incident and Radiated Field Models 309 -- 12.1 External Incident Field Applied to PEEC Model, 310 -- 12.2 Far-Field Radiation Models by Using Sensors, 312 -- 12.3 Direct Far-Field Radiation Computation, 318 -- Problems, 322 -- References, 322 -- 13 Stability and Passivity of PEEC Models 325 -- 13.1 Fundamental Stability and Passivity Concepts, 327 -- 13.2 Analysis of Properties of PEEC Circuits, 332 -- 13.3 Observability and Controllability of PEEC Circuits, 334 -- 13.4 Passivity Assessment of Solution, 337 -- 13.5 Solver Based Stability and Passivity Enhancement Techniques, 342 -- 13.6 Time Domain Solver Issues for Stability and Passivity, 359 -- Acknowledgment, 364 -- Problems, 364 -- References, 365 -- A Table of Units 369 -- A.1 Collection of Variables and Constants for Different Applications, 369 -- B Modified Nodal Analysis Stamps 373 -- B.1 Modified Nodal Analysis Matrix Stamps, 373 -- B.2 Controlled Source Stamps, 380 -- References, 382 -- C Computation of Partial Inductances 383 -- C.1 Partial Inductance Formulas for Orthogonal Geometries, 385 -- C.2 Partial inductance formulas for nonorthogonal geometries, 398 -- References, 407 -- D Computation of Partial Coefficients of Potential 409 -- D.1 Partial Potential Coefficients for Orthogonal Geometries, 410 -- D.2 Partial Potential Coefficient Formulas for Nonorthogonal Geometries, 418 -- References, 421 -- E Auxiliary Techniques for Partial Element Computations 423 -- E.1 Multi-function Partial Element Integration, 423 -- Subdivisions for Nonself-Partial Elements, 428 -- References, 429 -- INDEX 431.
Record Nr. UNINA-9910813795003321
Ruehli A. E (Albert E.), <1937->  
Hoboken, New Jersey : , : John Wiley & Sons, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Wavelet applications in engineering electromagnetics / / Tapan Sarkar, Magdalena Salazar-Palma, Michael C. Wicks ; with contributions from Raviraj Adve [and others]
Wavelet applications in engineering electromagnetics / / Tapan Sarkar, Magdalena Salazar-Palma, Michael C. Wicks ; with contributions from Raviraj Adve [and others]
Autore Sarkar Tapan (Tapan K.)
Pubbl/distr/stampa Boston, Massachusetts : , : Artech House, , [2002]
Descrizione fisica 1 online resource (366 p.)
Disciplina 621.382/2
Altri autori (Persone) Salazar-PalmaMagdalena
WicksMichael C
Collana Artech House electromagnetic analysis series
Soggetto topico Electric filters - Mathematical models
Electromagnetic theory
Electromagnetism - Mathematical models
Signal processing - Mathematics
Wavelets (Mathematics)
Soggetto genere / forma Electronic books.
ISBN 1-58053-800-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto V; List of Figures ix; List of Tables xv; PREFACE xix; ACKNOWLEDGMENTS xxi; 1 ROAD MAP OF THE BOOK 1; 1.1 INTRODUCTION 1; 1.2 WHY USE WAVELETS? 1; 1.3 WHAT ARE WAVELETS? 2; 1.4 WHAT IS THE WAVELET TRANSFORM? 3; 1.5 USE OF WAVELETS IN THE NUMERICAL SOLUTION OF ELECTROMAGNETIC FIELD PROBLEMS 4; 1.6 WAVELET METHODOLOGIES COMPLEMENT FOURIER TECHNIQUES 7; 1.7 OVERVIEW OF THE CHAPTERS 10; REFERENCES 11; 2 WAVELETS FROM AN ELECTRICAL ENGINEERING PERSPECTIVE 15; 2.1 INTRODUCTION 15; 2.2 DEVELOPMENT OF THE DISCRETE WAVELET METHODOLOGY FROM FILTER THEORY CONCEPTS 16.
Record Nr. UNINA-9910451045403321
Sarkar Tapan (Tapan K.)  
Boston, Massachusetts : , : Artech House, , [2002]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui